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Abstract 
This article examines the popular logistic model of growth from three 

perspectives: its sensitivity to initial conditions; its relationship to analogous difference 

equation models; and the formulation of stochastic models of population growth where 

the mean population size satisfies the logistic relationship. The results indicate that the 

appealing sigmoid logistic curve is sensitive to initial conditions and care must be 

exercised in developing difference equation models which display the same appealing 

long term behavior as the logistic growth curve. It is shown that although the logistic 

model is appealing in terms of its simplicity its realism is questionable in terms of the 

degree to which it reflects demographically accepted assumptions about the probabilities 

of individual births and deaths in the growth of a population. In particular this lack of 

realism has serious implications for the computer simulation of stochastic birth and death 

processes where the mean population size satisfies the logistic. 

______________________________ 
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1. Introduction  
               It is common in many fields of study to use a deterministic model of the values 

of a variable of interest N(t) using an autonomous differential equation of the form, 

                    
dt

tdN )(  = F(N(t)),                         (1) 

where N(t) is a continuous real-valued function of time t. In the cases where realistically 

N(t) is an integer-valued function of t (1) is considered to be a model of the mean value 

of the integer-valued process. Assuming that the coefficient of variation of that process is 

small, the continuous model in (1) is used to represent N(t). If
dt

tdN
tN

)(
)(

1  is constant, 

then the growth in N(t) is said to be density independent and otherwise it is density 

dependent.  

          In many situations, experimental values of N(t) exhibit an S-shaped graphical 

representation and although many possible functions F(N(t)) may be used in (1) to 

produce models with sigmoid growth curves, the Verhulst [1] logistic model represented 

by the logistics differential equation in (2) is certainly one of the most popular [2], 

                                              
dt

tdN )(  = λ [K – N(t)] N(t),                                      (2) 

where normally N(0) = N0 < K, λ > 0, K is the carrying capacity which is an upper bound 

on the value of N(t)) and it reflects environmental conditions that may limit the population 

size (e.g. the food supply), and the product λK is referred to as the intrinsic rate of 

increase. The model in (2) has been studied and used extensively over a long period of 

time by researchers in demography, the biological sciences, ecology, genetics, applied 

statistics (logistic regression), software metrics, and many other fields of study [3- 11]. 

      However, the popularity of the logistic model is probably based more on its 

simplicity than its realism. Some of its features and its relationship to analogous models 

using difference equations and stochastic growth models are often not well understood 

by researchers who use the model simply on the basis of its appealing sigmoid growth 

curve. In particular, as early as 1940 Feller [3] warned against blind faith in the use of the 

logistic. He considered S-shaped data from an experiment and then selected several S-

shaped functions at random. Applying the usual criteria for best fit, he ranked the various 

functions. The results showed that the logistic fitted the data worse than any of the other 

selected functions and he concluded that the recorded agreement between the logistic 

and actually observed phenomena of growth does not produce any significant new 

evidence in support of the logistic beyond the plausibility of its deduction. 
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      The purpose of this article is to: (a) examine the sensitivity of the solution to the 

logistic differential equation in (2)  under various initial conditions (section 2); (b) examine 

the formulation and features of models using difference equations which are considered 

to be analogous to the solution to the logistic differential equation (2) (section 3); and (c) 

investigate stochastic birth and death processes which have mean behavior represented 

by the logistic differential equation in (2) (section 4). Throughout the article, an attempt 

has been made to select references which direct the reader to primary sources and 

consequently provide the interested reader with an historical perspective on the topic. 

 

2.   The Graphical Representation of the Logistic Model  

 The solution to the differential equation (2) if N(0) = N0 and λ > 0 is: 

                                   
)exp()(

)(
KtNKN

KN
tN

λ−−+
=

00
0 ,                              (3) 

and the graphical representation of N(t) for K > N0 > 0 is the usual S-shaped curve as 

shown in Figure 1. 

)
N
Kln(

K
11

0
−

λ

Figure 1.  The S-shaped logistic curve. 

In Figure.1, the point of inflection is in the first quadrant if K > 2N0, the second 

quadrant if N0 < K < 2N0, and at (0, N0) if K = 2N0. The slope of the tangent at the point of 

inflection is λK2/4. The curve approaches the t-axis asymptotically as t → - ∞ and it 

approaches N(t) = K asymptotically as t → ∞. The curve is approximately exponential for 

values of t < )
N
Kln(

K
11

0
−

λ
when the growth is in a transient stage. 
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However, if the initial conditions are N(0) = N0 > K > 0 and λ > 0, then, the logistic 

function has a less well known form as shown in Figure 2 where the solution curve is no 

longer S-shaped. 

⎥⎦
⎤

⎢⎣
⎡

−
−

KN
Nln

K 0

01
λ

 
Figure 2.  Non S-shaped logistic curve. 

 

3. Difference Equations and the Logistic  

Difference equations are relations between the values of an unknown function 

at a discrete pattern of values of the argument, such as t –τ , t – 2τ , t – 3τ , … where 

τ is a fixed known number and the argument t varies continuously. Recurrence relations, 

on the other hand, while defined in the same way, do not allow t to vary continuously and 

in fact t will take on only equally spaced discrete values which are multiples of τ. 

However, in accordance with common usage, the terms difference equation and 

recurrence relation are used interchangeably. 

          There is a considerable literature on the relationship between differential 

equations and difference equations [12 - 14]. Two fundamental questions arise: (a) 

Starting with a differential equation how can one find the difference equation with the 

“same” solutions as the differential equation? and (b) In what sense are the solutions the 

same? In what follows, these questions are examined using two different methods that 

are commonly used to develop a difference equation analogous to the solution in (3) for 

the logistic differential equation (2). 

Method 1 

         For the logistic differential equation (2) a difference equation can be formulated 

where solutions at each time t have the same values as those obtained from the solution 

in (3). Thus from (3) with t = t +τ , ( )[ ]τλ
τ

+−−+
=+

tKexp)NK(N
KN

)t(N
00

0 and since 
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( ) ( )
( )0

0
NK)t(N

)t(NKN
Ktexp

−

−
=− λ the required difference equation 

is ( )
( )[ ] )t(NKexpK

Kexp)t(KN)t(N
1−+

=+
λτ

λττ , which has the solution, 

                                    
( )

( )[ ] 01
0

NKnexpK
KnexpKN

)n(N
−+

=
λτ

λτ
τ , for n = 1, 2, 3, … .                    (4) 

It is noted that making the substitution n = t /τ  in (4) and taking the limit of 

N(nτ ) as τ  → 0 reproduces  the solution in (3). 

 Method 2 

A different approach to the development of a difference equation analogous to 

the logistic is proposed by May [12] and uses ⎥⎦
⎤

⎢⎣
⎡ −+

→
=

τ
τ

τ

)t(N)t(NLim
dt

)t(dN
0

, which 

when applied to (2) gives the difference equation, 

                             N(t + τ ) = [1 + τ λK– τ λN(t)]N(t).                                      (5) 

Analysis of the behavior of N(t + τ ) in (5) produces the following three sets of 

results (R1, R2, and R3) which are then used to compare the behavior of the difference 

equation (5) with the solution in (3) to the logistic differential equation.  

R1. If λK τ < 1 then: (a) N(t) < N(t + τ  < K for t ≥ 0 when 0 < N(t) < K < 1/(λτ ); (b) N(t) 

> N(t + τ ) > K for t ≥ 0 when 0 < K < N(t) < 1/(λτ ); and (c) N(t) > K > N(t + τ ) for t ≥ 0 

when 0 < K < 1/(λτ ) < N(t). 

R2. If λτ K >1 then: (a) N(t + τ  > K > N(t) for t ≥ 0 when 0 < 1/(λτ ) < N(t) < K; (b) N(t + 

τ ) < K < N(t) for t ≥ 0 when 0 < 1/(λτ ) < K < N(t); and (c) N(t) < (λτ K)N(t) < N(t + τ ) 

< K for t ≥ 0 when 0 < N(t) < 1/(λτ ) < K. 

R3. From R2(c) it is seen that if  0 < N(t + τ ) < 1/(λτ ) < K then K > N(t + 2τ ) > 

(λτ K)N(t + τ ) > (λτ K)2N(t) and if this pattern continues then N(t + nτ ) > (λτ K)n N(t) 

> N(t) and (λτ K)n N(t) > 1/(λτ ) for an integer n > 
)Kln(

))t(Nln(
λτ
λτ− . Under these conditions 

K > N(t + nτ ) > 1/(λτ ) and the subsequent behavior of N(t) is described by R2(a) and 

R2(b). 

          The proof of R1(a) is provided in order to illustrate the manner in which the 

reader may construct proofs for the other results. 
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Proof for R1(a): If 0 < N(t) < K < 1/(λτ ) then  0 < λτ N(t) < λτ K < 1 = [ ]
[ ])t(NK

)t(NK
−
− , and 

so 0 < λτ N(t)[K – N(t)] < K – N(t) and adding N(t) throughout gives N(t) < N(t + τ ) < K 

as stated. ■ 

          From R1(a) and R1(c) it is seen that N(τ ) < N(2τ ) < N(3τ ) < ... < K, which 

resembles the behavior of N(t) in (3). However, under the conditions in R1(b) one can 

see that N0 > N(τ ) > N(2τ ) > N(3τ ) > … > K, and from R2(a), R2(b), R2(c) and R3 it 

is seen that regardless of the positive value of N0 the values of N(t) eventually oscillate 

asymptotically around the value of K. Consequently, the difference equation (5) exhibits 

very different behavior to the difference equation (4) which exhibits exact agreement with 

the solution in (3). In fact, there is no differential equation of the form in (1) which has a 

solution that exhibits exact agreement with the difference equation (5). This follows from 

the result that N(t + τ) in (5) does not satisfy the group property which requires that, for t2 

> t1 > 0, [1 + t2λK - t2λ N0]N0 = [1 + (t2 – t1)λK - (t2 – t1)λN(t1)]N(t1) where N(t1) = [1 + t1λK – 

t1λ N0]N0 ([14]). 

 

4. Stochastic Models of Population Growth and the Logistic 

 May [12] refers to stochastic features arising from the fact that the population 

size is fundamentally discrete as demographic stochasticity and these features are 

incorporated into a model by considering the probabilities that an individual will give birth 

or die in the next time interval ∆t. By analyzing the birth and death process it is possible 

to either make a probability statement about the population size at time t, which is 

represented by the random variable N(t), or at least determine the mean population size 

M(t) = E[N(t)] and the variance at that time. In a different approach Levins [15] introduces 

stochasticity into the model parameters in order to incorporate stochastic elements which 

reflect a fluctuating environment. With this approach the analysis of the probability 

distribution of population size normally uses the Fokker-Planck diffusion equation where 

it is assumed that the variability in the environmental parameter is white noise [12]. 

Here the concern is only with demographic stochasticity which involves a 

system of differential equations describing the transition probabilities associated with 

changes in the value of the random variable N(t). Suppose that: Pk(t) = P[N(t) = k | N(0) = 

N0] is the probability at time t that the population size is k given that the initial size of the 

population is N0;  BkΔt + o(Δt) is the probability at time t that in a population of size k 

there will be a single birth in the next time interval Δt; DkΔt + o(Δt) is the probability at 

time t that in a population of size k there will be a single death in the next time interval Δt; 
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and o(y) is any function such that o(y)/y → 0 as y → 0. Bk and Dk are referred to as the 

infinitesimal birth and death rates, respectively, and if they are functions of t then they 

are said to be time inhomogeneous and otherwise they are time homogeneous. It follows 

that Pk(t + Δt) = Bk-1Pk-1(t)Δt + Dk+1Pk+1(t)Δt + (1 – (Bk + Dk)Δt)Pk(t) + o(Δt) and subtracting 

Pk(t) from both sides, dividing through by Δt, and then taking the limit as Δt approaches 0 

gives, 

                       
dt

)t(dPk  = 
( )

( ) ( ) ( ) ( )⎢
⎣

⎡
=+−+

=

++−− .,,,k,tPDBtPDtPB
,k,tPD

kkkkkkk K321
0

1111

11       (6) 

          The following assumptions are made concerning a single individual in the 

population: b(t)Δt + o(Δt) is the probability of a single individual producing a single birth 

in the time interval (t, t + Δt); d(t)Δt + o(Δt) is the probability of a single individual dying in 

the time interval (t, t + Δt); and births and deaths of individuals are independent. This 

means that in (6) Bk = kb(t) and Dk = kd(t) and so (6) becomes, 

      
dt

)t(dPk  =
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )⎢
⎣

⎡
=+−++−

=

+− .,,,k,tPtdtbktPtdktPtbk
,k,tPtd

kkk K32111
0

11

1          (7) 

Multiplying both sides of (7) by k and summing over the values of k gives, 

                                      ( ) )t(M)]t(d)t(b[
k dt

tdPk
dt

)t(dM k −=∑
∞

=
=

0
,                   (8) 

where, ( ) ( )[ ]tNEt
ok
kP)t(M k =∑

∞

=
= . Also, if K is the saturation level for this birth and 

death process then it is assumed that b(t) and d(t) decrease and increase, respectively, 

to the same limiting value.  

Now we investigate choices for b(t) and d(t) which may result in M(t) satisfying the 

logistic differential equation (2). 

Choice 1 

Suppose that, 

                                                  
( ) ( )
( ) ( ),tMdtd

,tMbtb
λγ
λγ

2

1
+=
−=

                                                (9) 

where b – d = λK.  

 If γ1 + γ2  = 1 then substituting (9) in (8) gives [ ]M(t)d(t)b(t)
dt

dM(t)
−=  = 

[ ] )t(M)t(MK −λ   and  as hoped M(t) satisfies the logistic differential equation (2). 

Also, provided 1 ≥ γ1 ≥ 0, then b(t) and d(t) have the desired behavior of decreasing and 

increasing, respectively, to the same limiting value b(1 - γ1) + γ1d. 
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It is noted that the b(t) and d(t) in (9) are not the only choices that result in M(t) 

having logistic behavior but in all such cases b(t) and d(t) will depend on M(t) and this 

illustrates a problem which is discussed following the consideration of a different choice 

for b(t) and d(t). 

Choice 2 

          The stochastic model that is usually regarded as the analogue of the logistic is 

described by Pielou [8] and uses, 

                                          
( )
( ) ( ) ,kdtd

,kbtb
λγ

λγ

1

1
1−+=
−=

                                            (10) 

where, as in (9), b – d = λK and if 1 ≥ γ1 ≥ 0 then b(t) and d(t) have same desired 

behavior. 

          This means that the probabilities of a birth and death for a single individual in 

the time interval t to t + Δt, in a population of size k at time t, depend on the actual 

population size k rather than the mean population size M(t) as is the case in (9). This is a 

demographically plausible assumption. However, substituting (10) in (7), multiplying by k, 

and summing over k gives,  

                                                         )t(M
)t(M
)t(SK

dt
)t(dM

⎥
⎦

⎤
⎢
⎣

⎡
−= λ ,                                  (11) 

where the second moment S(t) = E[N2(t)] > {E[N(t)]}2 = M2(t). Consequently, from (11) 

under the demographically plausible assumptions in (10) [ ] )t(M)t(MK
dt

)t(dM
−< λ and 

M(t) does not satisfy the logistic differential equation (2). Furthermore, it is not possible to 

choose any b(t) and d(t) which depend on the actual size of the population k at time t and 

have the mean population size M(t) satisfy the logistic differential equation (2).          

If it is assumed that S(t) = M2(t) then the differential equation (11) for M(t) is the 

logistic differential equation (2). However, this assumption means that the variance is 

zero and so the process is no longer stochastic but is deterministic. This correspondence 

is the reason why the stochastic birth and death process using (10) is regarded as the 

stochastic analogue of the deterministic logistic but it is clear that the analogy is not 

based on exact agreement between the mean of the stochastic process and the solution 

to the logistic differential equation (2). Although the assumption in (10) that b(t) and d(t) 

are dependent on the actual population size k at time t rather than the mean population 

size M(t) is demographically plausible it does not result in the mean of the stochastic 

process having exact logistic behavior. Consequently, the logistic model of population 

growth is not supported by an underlying stochastic birth and death process which is 
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based on demographically plausible assumptions about the probabilities of a birth or 

death in the population. 

Conclusions Regarding Stochastic Models with Mean Logistic Behavior 

Stochastic models have been described in (9) that have mean behavior 

corresponding to the logistic and these appear to be reasonable models since they 

require that the individual birth rate is initially greater than the death rate and that the 

birth rate decreases while the death rate increases over time to the same limiting value. 

These models assume that the density dependent effect is based on the mean 

population size M(t) rather than the actual population size k at time t. Any attempt to take 

account of the actual population size k in determining the transition probabilities results 

in the introduction of the second moment S(t) in the differential equation for M(t) and 

consequently the loss of the logistic relationship. This means that the logistic growth 

process cannot be simulated on a computer relying only on information contained in the 

simulated population level. Instead, in order to determine the probability of a birth or 

death in the population in the next time interval the mean size of the population must be 

calculated. This not demographically plausible since it implies that for the stochastic 

process to have mean logistic behavior regardless of the actual size of the population at 

time t the probability of an individual dying is the same for every member of the 

population and the same implication applies to births. It is well accepted by 

demographers that the probabilities of births and deaths are proportional to the actual 

population size k at time t and not the mean value of the size of the population M(t). 

Consequently, in order for the stochastic birth and death process to have a mean 

population size which satisfies the logistic equation requires individual behavior that is 

not demographically acceptable. 

 

5.   Conclusion  

        This article has investigated three aspects concerning the popular logistic 

model of growth: (a) the features of the solution to the logistic differential equation for 

various initial conditions; (b) methods for the formulation of difference equations which 

are considered to be analogous to the logistic model; and (c) the development of 

stochastic models which have mean logistic behavior. 

          It is shown that the appealing S-shaped graphical features of the logistic model 

are sensitive to initial conditions. In particular, the S-shaped graphical representation of 

the logistic is lost if the initial population size exceeds the carrying capacity. 
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          Two different methods for constructing difference equations analogous to the 

logistic were considered. The first method produced a difference equation model which 

agreed exactly with the solution to the logistic differential equation. However, the second 

method, despite the plausibility of its formulation, produced a difference equation which 

under certain conditions has very different long term behavior to the solution of the 

logistic differential equation. Consequently, a clear warning is sounded for those 

interested in formulating difference equations with logistic behavior since although such 

models may realistically compute discrete integer values for the population size they may 

exhibit long term behavior that is not commensurate with the appealing long term 

behavior of the logistic. 

          It is shown that it is possible to construct stochastic models with mean logistic 

behavior and this was done in the context of stochastic models of birth and death 

processes. It was demonstrated that in order to construct stochastic models with mean 

logistic behavior it is necessary to have the birth and death rates for individuals in the 

population dependent on the mean size of the population and that this requirement is 

demographically unacceptable and in particular poses problems for computer 

simulations of the process. On the other hand, if these rates are dependent on the actual 

population size, which is more realistic, then the mean size of the population does not 

satisfy the logistic equation. Thus stochastic birth and death processes which incorporate 

demographically acceptable assumptions about the probabilities of individual births and 

deaths do not have mean logistic behavior.  

          The results indicate that although, subject to appropriate initial conditions, the 

logistic model is simple and intuitively appealing its appeal is based more on its simplicity 

than its plausibility as it does not reflect demographically accepted assumptions about 

the probabilities of individual births and deaths in a population. In addition, care must be 

taken in constructing difference equations which are expected to have logistic behavior. 

It is hoped that these results will guide researchers to a deeper understanding of the 

commonly used logistic model of growth. 
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