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Abstract

This article examines the popular logistic model of growth from three
perspectives: its sensitivity to initial conditions; its relationship to analogous difference
equation models; and the formulation of stochastic models of population growth where
the mean population size satisfies the logistic relationship. The results indicate that the
appealing sigmoid logistic curve is sensitive to initial conditions and care must be
exercised in developing difference equation models which display the same appealing
long term behavior as the logistic growth curve. It is shown that although the logistic
model is appealing in terms of its simplicity its realism is questionable in terms of the
degree to which it reflects demographically accepted assumptions about the probabilities
of individual births and deaths in the growth of a population. In particular this lack of
realism has serious implications for the computer simulation of stochastic birth and death

processes where the mean population size satisfies the logistic.
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1. Introduction
It is common in many fields of study to use a deterministic model of the values
of a variable of interest N(t) using an autonomous differential equation of the form,

dN(t)
dt

= F(N(1)), (1)

where N(f) is a continuous real-valued function of time ¢. In the cases where realistically
N(t) is an integer-valued function of f (1) is considered to be a model of the mean value
of the integer-valued process. Assuming that the coefficient of variation of that process is

L aNe)

small, the continuous model in (1) is used to represent N(f) N(D

is constant,

then the growth in N(f) is said to be density independent and otherwise it is density
dependent.

In many situations, experimental values of N(f) exhibit an S-shaped graphical
representation and although many possible functions F(N(f)) may be used in (1) to
produce models with sigmoid growth curves, the Verhulst [1] logistic model represented
by the logistics differential equation in (2) is certainly one of the most popular [2],

L = k- o oo, @
where normally N(0) = Np < K, A > 0, K is the carrying capacity which is an upper bound
on the value of N(f)) and it reflects environmental conditions that may limit the population
size (e.g. the food supply), and the product AK is referred to as the intrinsic rate of
increase. The model in (2) has been studied and used extensively over a long period of
time by researchers in demography, the biological sciences, ecology, genetics, applied
statistics (logistic regression), software metrics, and many other fields of study [3- 11].

However, the popularity of the logistic model is probably based more on its
simplicity than its realism. Some of its features and its relationship to analogous models
using difference equations and stochastic growth models are often not well understood
by researchers who use the model simply on the basis of its appealing sigmoid growth
curve. In particular, as early as 1940 Feller [3] warned against blind faith in the use of the
logistic. He considered S-shaped data from an experiment and then selected several S-
shaped functions at random. Applying the usual criteria for best fit, he ranked the various
functions. The results showed that the logistic fitted the data worse than any of the other
selected functions and he concluded that the recorded agreement between the logistic
and actually observed phenomena of growth does not produce any significant new

evidence in support of the logistic beyond the plausibility of its deduction.
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The purpose of this article is to: (a) examine the sensitivity of the solution to the
logistic differential equation in (2) under various initial conditions (section 2); (b) examine
the formulation and features of models using difference equations which are considered
to be analogous to the solution to the logistic differential equation (2) (section 3); and (c)
investigate stochastic birth and death processes which have mean behavior represented
by the logistic differential equation in (2) (section 4). Throughout the article, an attempt
has been made to select references which direct the reader to primary sources and

consequently provide the interested reader with an historical perspective on the topic.

2. The Graphical Representation of the Logistic Model
The solution to the differential equation (2) if N(0) = Np and A > 0 is:

NoK

N()= N + (K = Ng )exp(—AKt)

@)

and the graphical representation of N(t) for K> Ny > 0 is the usual S-shaped curve as

shown in Figure 1.
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Figure 1. The S-shaped logistic curve.

In Figure.1, the point of inflection is in the first quadrant if K > 2Ny, the second
quadrant if Np < K < 2Ny, and at (0, No) if K= 2Np. The slope of the tangent at the point of
inflection is AK*/4. The curve approaches the t-axis asymptotically as t — - « and it
approaches N(t) = K asymptotically as t — «~. The curve is approximately exponential for

values of t <iln(£—1) when the growth is in a transient stage.
AK Ny
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However, if the initial conditions are N(0) = Np > K> 0 and A > 0, then, the logistic
function has a less well known form as shown in Figure 2 where the solution curve is no

longer S-shaped.
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Figure 2. Non S-shaped logistic curve.

3. Difference Equations and the Logistic

Difference equations are relations between the values of an unknown function
at a discrete pattern of values of the argument, suchast-7,t-27,t-37, ... where
7 is a fixed known number and the argument t varies continuously. Recurrence relations,
on the other hand, while defined in the same way, do not allow t to vary continuously and
in fact t will take on only equally spaced discrete values which are multiples of r.
However, in accordance with common usage, the terms difference equation and
recurrence relation are used interchangeably.

There is a considerable literature on the relationship between differential
equations and difference equations [12 - 14]. Two fundamental questions arise: (a)
Starting with a differential equation how can one find the difference equation with the
“same” solutions as the differential equation? and (b) In what sense are the solutions the
same? In what follows, these questions are examined using two different methods that
are commonly used to develop a difference equation analogous to the solution in (3) for
the logistic differential equation (2).

Method 1

For the logistic differential equation (2) a difference equation can be formulated
where solutions at each time t have the same values as those obtained from the solution
NoK

and since
Ng + (K —Ng ) exp|- AK(t + 7]

in (3). Thus from (3) witht=t+7, N(t+7)=
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No (K - N(t)) . .
exp (— iKt): the required difference equation
N(t )iK -Np i
isN(t+7)= KN(t)exp(ﬂrK) , which has the solution,

K +|exp(22K)-1N(t)
NoK exp(nizK)
K +[exp(nieK)-1JNg

N(nz)= ,forn=1,2,3, .... (4)

It is noted that making the substitution n=t/7 in (4) and taking the limit of
N(n7 )as 7 — O reproduces the solution in (3).
Method 2

A different approach to the development of a difference equation analogous to

the logistic is proposed by May [12] and usesM: Lim [M} which

r—>0 T

when applied to (2) gives the difference equation,
N+ 7 )=[1+ T AK— T AN(t)IN(t). (5)

Analysis of the behavior of N(t + 7 ) in (5) produces the following three sets of
results (R1, R2, and R3) which are then used to compare the behavior of the difference
equation (5) with the solution in (3) to the logistic differential equation.
R1. If AK 7 <1 then: (&) N(f) < N(t+ 7 < Kfort=0 when 0 < N(f) < K< 1/(AT); (b) N(t)
>N({t+ 7)>Kfort=0when 0 <K< N(t)<1/(AT ); and (c) N(f) > K> N(t+ T )fort=0
when 0 < K< 1/(AT ) < N(t).
R2.If AT K>1then: (@) N(t+ 7 > K> N(t) for t =0 when 0 < 1/(AT ) < N(t) < K; (b) N(t +
T)<K<N()fort=0when 0<1/(AT )< K< N(t); and (c) N(t) < (AT K)N(t) < N(t+ T )
<Kfort=0when0<N(f)<1/(AT )< K.
R3. From R2(c) it is seen that if O < N(t+ 7 ) < 1/(AT) < Kthen K> N(t + 27 ) >
AT KN+ T)> (AT K)ZN(t) and if this pattern continues then N(t + n7 ) > (AT K)" N(f)

> N(t) and (AT K)" N(t) > 1/(AT ) for an integer n > W . Under these conditions
n

K> N(t+nt)>1/(A7 ) and the subsequent behavior of N(t) is described by R2(a) and
R2(b).
The proof of R1(a) is provided in order to illustrate the manner in which the

reader may construct proofs for the other results.
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Proof for R1(a): fO < N(f) <K< 1/(AT )then O<AT N(t)<AT K<1= % and

s0 0 < AT N(t)[K — N(t)] < K— N(f) and adding N(f) throughout gives N(f) < N(t+ 7 ) < K
as stated. m

From R1(a) and R1(c) itis seen that N(T ) < N(27 ) < N(37 ) < ... < K, which
resembles the behavior of N(t) in (3). However, under the conditions in R7(b) one can
seethat No> N(7 )>N(27T )>NB7)>...>K, and from R2(a), R2(b), R2(c) and R3 it
is seen that regardless of the positive value of Ny the values of N(t) eventually oscillate
asymptotically around the value of K. Consequently, the difference equation (5) exhibits
very different behavior to the difference equation (4) which exhibits exact agreement with
the solution in (3). In fact, there is no differential equation of the form in (1) which has a
solution that exhibits exact agreement with the difference equation (5). This follows from
the result that N(t + 1) in (5) does not satisfy the group property which requires that, for f,
>t >0, [1+ 0AK - A No]No = [1 + (2 — t)AK - (f2— t1)AN(t1)IN(t1) where N(t1) = [1 + t1AK —
t1A No]No ([14]).

4. Stochastic Models of Population Growth and the Logistic

May [12] refers to stochastic features arising from the fact that the population
size is fundamentally discrete as demographic stochasticity and these features are
incorporated into a model by considering the probabilities that an individual will give birth
or die in the next time interval At. By analyzing the birth and death process it is possible
to either make a probability statement about the population size at time f, which is
represented by the random variable N(t), or at least determine the mean population size
M(t) = E[N(t)] and the variance at that time. In a different approach Levins [15] introduces
stochasticity into the model parameters in order to incorporate stochastic elements which
reflect a fluctuating environment. With this approach the analysis of the probability
distribution of population size normally uses the Fokker-Planck diffusion equation where
it is assumed that the variability in the environmental parameter is white noise [12].

Here the concern is only with demographic stochasticity which involves a
system of differential equations describing the transition probabilities associated with
changes in the value of the random variable N(t). Suppose that: Pi(t) = P[N(f) = k | N(0) =
No] is the probability at time t that the population size is k given that the initial size of the
population is No; Bt + o(Atf) is the probability at time t that in a population of size k
there will be a single birth in the next time interval Af; DAt + o(Af) is the probability at

time t that in a population of size k there will be a single death in the next time interval Af;
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and o(y) is any function such that o(y)/ly — 0 as y — 0. Bx and Dy are referred to as the
infinitesimal birth and death rates, respectively, and if they are functions of f then they
are said to be time inhomogeneous and otherwise they are time homogeneous. It follows
that Py(t + At) = Bic1Pici(t)At + D1 Pis1 ()AL + (1 — (B + Di)At)Pi(t) + o(At) and subtracting
Pi(t) from both sides, dividing through by At, and then taking the limit as At approaches 0
gives,

dPx(t) _ DiP(t), k=0,
at ka’]’Dkf'] (t)+ Dk+1Pk+1(t)_ (Bk + Dk )Pk(t), k= 1,2,3, e

(6)

The following assumptions are made concerning a single individual in the
population: b(t)At + o(At) is the probability of a single individual producing a single birth
in the time interval (¢, t + Af); d(f)At + o(At) is the probability of a single individual dying in
the time interval (¢, t + Af); and births and deaths of individuals are independent. This

means that in (6) Bx= kb(t) and Dk = kd(f) and so (6) becomes,
dPu(t) _ d(t)P(t), k=0,

Tt | (k=B A)+ (k- OB () Kb+ OB, K=123,....
Multiplying both sides of (7) by k and summing over the values of k gives,
am(t) 2 dR(t) ~
T —kEOK—dt =[b(t)-d(t)IM(t), (8)

o0
where, M(t)= Y kP,(t)=E[N(t)]. Also, if K is the saturation level for this birth and
k=o0

death process then it is assumed that b(f) and d(f) decrease and increase, respectively,
to the same limiting value.

Now we investigate choices for b(f) and d(f) which may result in M(t) satisfying the
logistic differential equation (2).
Choice 1

Suppose that,
blt)=" b-yaM(t)

d(t)= d+yAM(t)
where b —d = AK.

If y1 + y2 = 1 then substituting (9) in (8) gives % = [b(t) —d(t) ]M(t) =

/I[K - M(t)]M(l‘) and as hoped M(t) satisfies the logistic differential equation (2).
Also, provided 1 = y4 2 0, then b(t) and d(t) have the desired behavior of decreasing and

increasing, respectively, to the same limiting value b(1 - y1) + y1d.
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It is noted that the b(t) and d(t) in (9) are not the only choices that result in M(f)
having logistic behavior but in all such cases b(t) and d(t) will depend on M(t) and this
illustrates a problem which is discussed following the consideration of a different choice
for b(t) and d(t).

Choice 2

The stochastic model that is usually regarded as the analogue of the logistic is

described by Pielou [8] and uses,

bl(t)= b -k,
d((t)): d+(1i/1;/1)/1k, (19)
where, as in (9), b — d = AK and if 1 =2 y4 = 0 then b(f) and d(f) have same desired
behavior.

This means that the probabilities of a birth and death for a single individual in
the time interval t to t + At, in a population of size k at time t, depend on the actual
population size k rather than the mean population size M(t) as is the case in (9). This is a
demographically plausible assumption. However, substituting (10) in (7), multiplying by k,

and summing over K gives,

aMm(t) _S(t)
i _A{K M(t)}M(t)' (11)
where the second moment S(t) = E[N*(t)] > {E[N(t)]}* = M(t). Consequently, from (11)
under the demographically plausible assumptions in (10) %I{U<1[K—M(t)]M(t) and

M(t) does not satisfy the logistic differential equation (2). Furthermore, it is not possible to
choose any b(t) and d(t) which depend on the actual size of the population k at time ¢t and
have the mean population size M(t) satisfy the logistic differential equation (2).

If it is assumed that S(t) = Mz(t) then the differential equation (11) for M(t) is the
logistic differential equation (2). However, this assumption means that the variance is
zero and so the process is no longer stochastic but is deterministic. This correspondence
is the reason why the stochastic birth and death process using (10) is regarded as the
stochastic analogue of the deterministic logistic but it is clear that the analogy is not
based on exact agreement between the mean of the stochastic process and the solution
to the logistic differential equation (2). Although the assumption in (10) that b(f) and d(t)
are dependent on the actual population size k at time ¢ rather than the mean population
size M(t) is demographically plausible it does not result in the mean of the stochastic
process having exact logistic behavior. Consequently, the logistic model of population

growth is not supported by an underlying stochastic birth and death process which is
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based on demographically plausible assumptions about the probabilities of a birth or
death in the population.
Conclusions Regarding Stochastic Models with Mean Logistic Behavior

Stochastic models have been described in (9) that have mean behavior
corresponding to the logistic and these appear to be reasonable models since they
require that the individual birth rate is initially greater than the death rate and that the
birth rate decreases while the death rate increases over time to the same limiting value.
These models assume that the density dependent effect is based on the mean
population size M(t) rather than the actual population size k at time t. Any attempt to take
account of the actual population size k in determining the transition probabilities results
in the introduction of the second moment S(t) in the differential equation for M(f) and
consequently the loss of the logistic relationship. This means that the logistic growth
process cannot be simulated on a computer relying only on information contained in the
simulated population level. Instead, in order to determine the probability of a birth or
death in the population in the next time interval the mean size of the population must be
calculated. This not demographically plausible since it implies that for the stochastic
process to have mean logistic behavior regardless of the actual size of the population at
time t the probability of an individual dying is the same for every member of the
population and the same implication applies to births. It is well accepted by
demographers that the probabilities of births and deaths are proportional to the actual
population size k at time t and not the mean value of the size of the population M(t).
Consequently, in order for the stochastic birth and death process to have a mean
population size which satisfies the logistic equation requires individual behavior that is

not demographically acceptable.

5. Conclusion

This article has investigated three aspects concerning the popular logistic
model of growth: (a) the features of the solution to the logistic differential equation for
various initial conditions; (b) methods for the formulation of difference equations which
are considered to be analogous to the logistic model; and (c) the development of
stochastic models which have mean logistic behavior.

It is shown that the appealing S-shaped graphical features of the logistic model
are sensitive to initial conditions. In particular, the S-shaped graphical representation of

the logistic is lost if the initial population size exceeds the carrying capacity.
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Two different methods for constructing difference equations analogous to the
logistic were considered. The first method produced a difference equation model which
agreed exactly with the solution to the logistic differential equation. However, the second
method, despite the plausibility of its formulation, produced a difference equation which
under certain conditions has very different long term behavior to the solution of the
logistic differential equation. Consequently, a clear warning is sounded for those
interested in formulating difference equations with logistic behavior since although such
models may realistically compute discrete integer values for the population size they may
exhibit long term behavior that is not commensurate with the appealing long term
behavior of the logistic.

It is shown that it is possible to construct stochastic models with mean logistic
behavior and this was done in the context of stochastic models of birth and death
processes. It was demonstrated that in order to construct stochastic models with mean
logistic behavior it is necessary to have the birth and death rates for individuals in the
population dependent on the mean size of the population and that this requirement is
demographically unacceptable and in particular poses problems for computer
simulations of the process. On the other hand, if these rates are dependent on the actual
population size, which is more realistic, then the mean size of the population does not
satisfy the logistic equation. Thus stochastic birth and death processes which incorporate
demographically acceptable assumptions about the probabilities of individual births and
deaths do not have mean logistic behavior.

The results indicate that although, subject to appropriate initial conditions, the
logistic model is simple and intuitively appealing its appeal is based more on its simplicity
than its plausibility as it does not reflect demographically accepted assumptions about
the probabilities of individual births and deaths in a population. In addition, care must be
taken in constructing difference equations which are expected to have logistic behavior.
It is hoped that these results will guide researchers to a deeper understanding of the

commonly used logistic model of growth.
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