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Abstract 

Two kernel estimators of a density function ( )f x  are considered. The 

measures of errors of the estimates depend on the corresponding kernel functions used 

to derive them together with the bandwidths of the kernels. Simulation study is carried 

out to compare the AMISE of the estimates with those of uniform, Epanechnikov and 

Gaussian kernel functions. The bandwidths used for comparison of the errors of the 

estimates are the Silverman rule of thump (SRT), two-stage direct plug-in (DPI) and the 

solve-the-equation (STE) method bandwidths. For data from Gaussian, skewed 

unimodal, and separated bimodal distributions, the proposed kernel estimates perform 

better than the uniform and Gaussian estimates. One of the proposed kernel estimates 

with STE bandwidth performs well when the sample data are from a kurtotic unimodal 

and trimodal distributions and with samples of sizes 50 and 100. This kernel estimate 

also performs better than the others for data from multimodal distribution. Another 

proposed kernel estimate also performs better than the uniform and Gaussian estimates.   

______________________________ 

Keywords: Density estimation, error criteria, kernel estimator, mean squared error, 

mean integrated  squared error. 

 



168                                                                     Thailand Statistician, 2010; 8(2):167-181 

1. Introduction 

Density estimation is an interesting problem in statistical inference for a long 

time. One well-known method of density estimation is the use of kernel functions 

introduced by Rosenblatt [1], and Parzen [2]. Let 1( , , )= 


nX X X  be a random 

sample of size n from a population with an unknown probability density function ( )f x , 

and 1( , , )= 


nx x x  the sample observations on 

X . The kernel density estimate of 

( )f x   at the point 0x  is given by     

 0
0

1

1ˆ ( , ) ( )
=

−
= ∑



n
i

i

x Xf x X K
nh h

,     (1) 

where ( )K u  is a real valued kernel function, ( )= − iu x X h  is in its support, and h a 

positive real number, called the bandwidth or window width of iX  [1, 2]. The properties 

of a kernel density estimate depend on the properties of the kernel function ( )K u and 

the bandwidth h used. If ( )K u is a probability density function, then the estimates 

ˆ ( , )f x X


of the form (1) are also density functions. Usually, but not always, ( )K u  will be 

a symmetric unimodal density function. A kernel is said to be of order p for some 2≥p  

if  

  

1, 0,
( ) 0, 1,..., 1,

, .µ

 =
= = −
 =

∫ j

p

j
u K u du j p

j p
  (2) 

 

If the kernel is of order greater than 2, then the density estimate may be negative at 

some points. The kernel function ( )K u  should satisfy the properties:    

i) ( )K u is a nonnegative real valued function and continuous on its support, 

ii) ( ) 1=∫K u du , 

iii) ( )K u is symmetric about 0, which implies 1 ( ) 0µ = =∫uK u du , 

iv) 2
2 ( )µ = < ∞∫u K u du  i.e. 2µ  is finite. 
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There are many kernel functions which satisfy the above properties such as uniform, 

=)(uKU  )(5.0 ]1,1[ uI − , Epanechnikov, 2
[ 1,1]( ) 0.75(1 ) ( )−= −EK u u I u , Gaussian, 

2 / 2( ) / 2π−= u
GK u e . Also, there are many criteria of measuring the errors of the 

kernel estimates. These include the mean squared error ( ˆ( ( , ))MSE f x X


) and the mean 

integrated squared error ( ˆ( )MISE f ).The mean squared error, MSE of 0
ˆ ( , )


f x X , is the 

error at a point 0x  of the density. 

 2
0 0 0~ ~

ˆ ˆ( ( , )) [ ( , ) ( )]= −MSE f x X E f x X f x   

or 

 2
0 0 0~ ~ ~

ˆ ˆ ˆ( ( , )) ( ( , )) ( ( , ))= +MSE f x X V f x X B f x X ,   (3) 

where 0
ˆ( ( , ))


V f x X  is the variance of 0 ~

ˆ ( , )f x X and 0
ˆ( ( , ))


B f x X  is its bias. Assume 

that ( )f x is continuous and squared integrable, having second derivative with respect to 

x  at 0x . The kernel density estimator with ( )K u  is asymptotically unbiased having 

bandwidth ( ) 0= →h h n  as →∞n . In such a case, the bias of 0
ˆ ( , )


f x X  is  

 
2

2
0 0 2

ˆ( ( , )) ( ) ( )
2

µ′′= +


hB f x X f x o h ,      (4) 

where 2µ is the kernel variance, (Hardle [3]). Also, the variance of 0
ˆ ( , )


f x X  is  

     0
0

1

1ˆ( ( , )) [ ( )]
=

−
= ∑



n
i

i

x XV f x X V K
nh h

 

      0
2

1 [ ( )]x XV K
nh h

−
=  

 2 20 0
2

1 1 1{ ( ) ( ) [ ( ) ( ) ] }x x x xK f x dx K f x dx
n h h h h

− −
= −∫ ∫ .          (5) 

By Taylor series expansion of ( )f x  about 0x  and let huxx −= 0 , we have 

 
2

10 0
0

( ) ( ( ))ˆ( ( , )) ( ) ( )f x f xV f x X R K o n
nh n

−= − +


,      (6) 
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where 2( ) ( )R K K u du= ∫  is the squared 2L norm of ( )K u , 2L is the set of all 

Lebesque measurable real valued functions, ( )g t , such that 2 ( )g t dt∫ exists and is 

finite, or “the roughness of ( )K u ” [4]. So 

  
2 4

20 0
0 0 2~

( ) ( ( ))ˆ( ( , )) ( ) [ ( ) ]
4

f x f x hMSE f x X R K f x
nh n

µ′′= − +  

 1 4( ) ( )o n o h−+ + .       (7) 

The mean integrated squared error (MISE) of ˆ ( , )f x X


, obtained by integrating 

the MISE of ˆ ( , )f x X


, is an error measure over the real line, i.e. 

 ˆ ˆ( ) ( ( , ))MISE f MSE f x X dx= ∫ 
   

   
4 2

2 1 42 ( )( ) 1 ( ) (( ) ) ( )
4

h R fR K f x dx o nh o h
nh n

µ −′′
= − + + +∫ .    (8) 

The notation AMISE of ˆ ( , )f x X


 is used to represent asymptotic MISE of 

ˆ ( , )f x X


 (ignoring higher order in the expansion of MISE of ˆ ( , )f x X


), i.e.  

  
4 2

2 ( )( ) ( )ˆ( )
4

h R fR K R fAMISE f
nh n

µ ′′
= − + .   (9) 

The ˆ( )AMISE f  depends on its bandwidth, ( )R f and ( )R f ′′ . ( )R f ′′  is a 

measure of total curvature which is increasing with its skewness, kurtosis and 

multimodality [5]. A numerical method for comparing the ˆ( )AMISE f  in various 

populations are needed.  

 

2.  New Kernel Functions  

In this study we give two new kernel functions 1( )K u  and 2 ( )K u that yield 

“good” estimates of a density function in the sense that the bias and the variance of each 

density estimator are small. A symmetric kernel function with small variance, 2µ , is used 

to decrease the bias 0
ˆ( ( , ))B f x X


. To decrease the variance of 0

ˆ ( , ))f x X


, we need to 

minimize the roughness of ( )K u . To decrease the sum of 0
ˆ( ( , ))B f x X


and the 
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variance of 0
ˆ ( , ))f x X


 the kernel function is found to minimize 1 2( ) ( )A K R K µ= + , 

the sum of the squared 2L  norm of ( )K u and the kernel variance. 0
ˆ( ( , ))MSE f x X


, 

ˆ( )MISE f  and ˆ( )AMISE f  depend on the sum of the squared bias and the variance. 

So the kernel function that minimizes the sum of ( )R K  and 2
2µ are chosen, i.e. we 

choose the kernel function that minimizes, the sum of the squared 2L  norm of ( )K u and 

the squared kernel variance, 2
2 2( ) ( )A K R K µ= + . 

A kernel function with compact support expressed in the form of polynomials 

can be found in Muller [6], Gasser, Muller & Mammitzsch [7], Granovsky & Muller [8], 

Muller & Wang [9], Horova [10], Delaigle & Hall [11], and Mammitzsch [12]. Horova [10] 

presented the construction of kernel functions that minimize the squared 2L  norm of 

( )K u under the condition that the moments of ( )K u  are polynomials of certain degrees. 

Hence, in this paper we need to find the coefficients of the new kernel functions 

in the form of second degree polynomial with support [-1, 1]; 

 
2

0
( ) i

i
i

K u c u
=

=∑ ,     (10) 

where ic  are the coefficients to be determined in order to minimize 1( )A K  or 2 ( )A K  

subject to the constraint that ( )K u is a symmetric density function. To derive the kernel 

functions 1 2( ), ( )K u K u  we use Lagrange multipliers. To obtain the kernel function 

1( )K u  under the constraints that minimizes 1( )A K let  

 1 1 1 0 2 1( ) ( ) (1 ) ( )L K A K λ µ λ µ= + − +   (11) 

where 1 2,λ λ  are Lagrange multipliers. The result is   

 
2

1 [ 1,1]
2( ) ( ) ( )
3 2

uK u I u−= − .   (12) 

To minimize 2 ( )A K under the constraints, construct the corresponding 

Lagrange function    

 2 2 1 0 2 1( ) ( ) (1 ) ( )L K A K λ µ λ µ= + − +   (13) 

where 1 2,λ λ  are Lagrange multipliers. The result is   
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2

2 [ 1,1]
63 15( ) ( ) ( )

106 53
uK u I u−= − .   (14) 

The kernel density estimates using the proposed two kernel functions 1( )K u  

and 2 ( )K u  are then obtained from equation (1) at the given sample observations 

1( , , )nx x x= 


. 

 
3.  Simulation Study 

In order to study the AMISE of the kernel estimates of a density function, a 

simulation study is carried out under various kernel functions and bandwidths. The 

effects of the kernels and bandwidths of the estimates of f (x) for different sample sizes 

are considered. The simulations are performed using programs written in R. Symmetric 

and asymmetric multimodal populations of size 50,000 are generated for each of the 

populations which are built from normal mixtures [13]. In this study, nine different    

normal mixture distributions are simulated, namely Gaussian (0,1)N , skewed                 

unimodal 2 21 1 1 2 3 13 5(0,1) ( ,( ) ) ( ,( ) ),
5 5 2 3 5 12 9

N N N+ +  kurtotic unimodal 2 (0,1)
3

+N 21 1(0,( ) ),
3 10

N  

separated bimodal 2 21 3 1 1 3 1( ,( ) ) ( ,( ) )
2 2 2 2 2 2

− +N N , trimodal 2 29 6 3 9 6 3( ,( ) ) ( ,( ) )
20 5 5 20 5 5

N N− + +  

21 1(0,( ) )
10 4

N , double claw 2 249 2 49 2( 1,( ) ) (1,( ) )
100 3 100 3

− + +N N
6

2

0

1 ( 3) 1( ,( ) )
350 2 100=

−∑
i

iN , 

asymmetric claw 
12

2

2

1 2 2(0,1) (( 1/ 2),( ) )
2 31 10

− −

=−

+ +∑
i i

i
N N i , asymmetric double claw 

1 3 3
2 2 2

0 1 1

46 2 1 1 7 7(2 1,( ) ) ( ,( ) ) ( ,( ) )
100 3 300 2 100 300 2 100= = =

− + − +∑ ∑ ∑
i i i

i iN i N N , and smooth comp 

55
2

0

2 65 96* 2 32( ,( ) )
63 21 63* 2

− −

=

−∑
i i

i
i

N . Random samples of sizes 50, 100, 200 and 500 are 

drawn from the generated population, each repeats 1,000 times. The bandwidths used in 

the simulation studies are the Silverman rule of thump (SRT) bandwidth (the commonly 

used quick and simple idea for selecting the bandwidth, most popular and easy to 

implement [14], two-stage direct plug-in bandwidth (DPI) [5] (it provides a good  

estimates for a data-based bandwidth [15], and the solve-the-equation method bandwidth 

(STE) ([5]) (the solve-the-equation method bandwidth is the best in term of overall 

performance [14,16]. The AMISE of the kernel estimates are computed. From 1,000 
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samples with specified sizes, the mean of ˆ( )AMISE f , ˆ( )AMISE f , of kernel 

estimates are computed and compared.  

 

4.  Results of  the Simulation  

The values of ˆ( )AMISE f  and the estimated standard deviation (SD) by 

distributions, bandwidths, and various sample sizes with 1,000 replications are shown in 

Tables 1-7. The bold number is the smallest ˆ( )AMISE f  for each bandwidths and 

various sample sizes. 

 

For data from Gaussian or skewed unimodal distribution, the kernel estimates 

using the proposed K1 and K2 perform better than the uniform and Gaussian estimates 

as shown in Tables 1, 2. For samples of any sizes the AMISE of ˆ ( , )


f x x with DPI 

bandwidth is lower than the AMISE  of ˆ ( , )


f x x  with SRT and STE bandwidth for data 

with Gaussian distribution. For data from skewed unimodal distribution the AMISE of 

ˆ ( , )


f x x with SRT bandwidth is lower than the AMISE  of ˆ ( , )


f x x  with DPI or STE 

bandwidth. The AMISE  of ˆ ( , )


f x x  is close to zero as the sample size gets larger. 
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Table 1. ˆ( )AMISE f of  kernel estimates for Gaussian distribution. 
 

n Kernel functions 
hSRT hDPI hSTE 

ˆ( )AMISE f  SD ˆ( )AMISE f  SD ˆ( )AMISE f  SD 

50 

Uniform 0.010929 0.001674 0.010241 0.001624 0.010878 0.002721 
Epanechnikov 0.009978 0.001575 0.009336 0.001529 0.009936 0.002561 

Gaussian 0.010616 0.00164 0.009948 0.001591 0.010572 0.002665 
K1 0.010027 0.001583 0.009377 0.001536 0.009979 0.002573 
K2 0.010231 0.001604 0.009573 0.001556 0.010183 0.002606 

 
100 

Uniform 0.006476 0.000627 0.006076 0.000556 0.006304 0.00101 
Epanechnikov 0.005943 0.000589 0.005569 0.000522 0.005784 0.000949 

Gaussian 0.006301 0.000613 0.005912 0.000544 0.006135 0.000988 
k1 0.00597 0.000593 0.005592 0.000526 0.005807 0.000955 
k2 0.006085 0.0006 0.005701 0.000533 0.00592 0.000967 

200 

Uniform 0.003834 0.000223 0.003603 0.000202 0.003666 0.000342 
Epanechnikov 0.003533 0.000209 0.003317 0.000189 0.003377 0.000322 

Gaussian 0.003735 0.000218 0.003511 0.000197 0.003573 0.000335 
K1 0.003549 0.000211 0.00333 0.000191 0.00339 0.000324 
K2 0.003613 0.000213 0.003392 0.000193 0.003453 0.000328 

500 

Uniform 0.001925 6.17E-05 0.001814 4.24E-05 0.001825 6.66E-05 
Epanechnikov 0.001783 5.79E-05 0.001679 3.97E-05 0.001689 6.24E-05 

Gaussian 0.001878 6.03E-05 0.00177 4.13E-05 0.001781 6.49E-05 
K1 0.00179 5.83E-05 0.001685 4.01E-05 0.001695 6.3E-05 
K2 0.00182 5.91E-05 0.001714 4.06E-05 0.001724 6.38E-05 

 

 

Table 2. ˆ( )AMISE f of  kernel estimates for skewed unimodal distribution. 
 

n Kernel functions 
hSRT hDPI hSTE 

ˆ( )AMISE f  SD ˆ( )AMISE f  SD ˆ( )AMISE f  SD 

50 

Uniform 0.016285 0.002614 0.019509 0.006874 0.019624 0.007043 
Epanechnikov 0.014942 0.00248 0.018003 0.006519 0.018108 0.006678 

Gaussian 0.01586 0.002582 0.019046 0.006785 0.019156 0.00695 
K1 0.014989 0.002472 0.018037 0.0065 0.018147 0.00666 
K2 0.015283 0.002504 0.018371 0.006585 0.018482 0.006747 

 
100 

Uniform 0.009645 0.00096 0.011203 0.002628 0.011129 0.00267 
Epanechnikov 0.008889 0.000913 0.010369 0.002494 0.010297 0.002533 

Gaussian 0.009406 0.00095 0.010946 0.002596 0.010872 0.002637 
k1 0.008915 0.000908 0.010388 0.002486 0.010318 0.002525 
k2 0.00908 0.00092 0.010573 0.002518 0.010502 0.002558 

200 

Uniform 0.005712 0.000368 0.006431 0.000935 0.006355 0.000943 
Epanechnikov 0.005284 0.00035 0.005967 0.000887 0.005895 0.000895 

Gaussian 0.005577 0.000364 0.006288 0.000924 0.006212 0.000932 
K1 0.005299 0.000348 0.005979 0.000884 0.005907 0.000892 
K2 0.005392 0.000352 0.006081 0.000895 0.006008 0.000903 

500 

Uniform 0.002861 0.000112 0.003138 0.000294 0.003109 0.000299 
Epanechnikov 0.002657 0.000107 0.00292 0.000279 0.002893 0.000284 

Gaussian 0.002797 0.000111 0.00307 0.000291 0.003042 0.000295 
K1 0.002664 0.000106 0.002926 0.000278 0.002899 0.000283 
K2 0.002709 0.000107 0.002974 0.000282 0.002947 0.000286 
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For sample data from a population distributed as kurtotic unimodal, 

the AMISE of ˆ ( , )


f x x  with STE bandwidth is lower than the AMISE of the other kernel 

estimates and ˆ ( , )


f x x using K1 performs well when sample sizes are 50 and 100 as in 

Table 3. For data from separated bimodal distribution, from Table 4, the ˆ ( , )


f x x  using K1 

and the SRT bandwidth give lower ˆ( )AMISE f than the other kernel estimates. From 

Table 4, the AMISE of ˆ ( , )


f x x with STE bandwidth is lower than the AMISE  of 

ˆ ( , )


f x x  with SRT or DPI bandwidth. For data from kurtotic unimodal and separated 

bimodal distributions, the ˆ ( , )


f x x  using K2 perform better than the ˆ ( , )


f x x  with uniform 

and Gaussian kernel functions. 

 

Table 3. ˆ( )AMISE f of  kernel estimates for kurtotic unimodal distribution. 
 

n Kernel functions 
hSRT hDPI hSTE 

ˆ( )AMISE f  SD ˆ( )AMISE f  SD ˆ( )AMISE f  SD 

50 

Uniform 1.708632 2.436767 1.221782 3.575027 0.675117 3.409776 
Epanechnikov 1.617245 2.307618 1.156175 3.385528 0.638445 3.229033 

Gaussian 1.683792 2.401856 1.203893 3.523785 0.66502 3.360899 
K1 1.615013 2.304207 1.154648 3.380546 0.637721 3.224283 
K2 1.636223 2.334239 1.169857 3.424607 0.646194 3.266308 

 
100 

Uniform 0.76216 0.742883 0.261676 0.296474 0.108328 0.091476 
Epanechnikov 0.721346 0.703517 0.247366 0.280776 0.102119 0.086647 

Gaussian 0.751055 0.732247 0.257719 0.292242 0.106541 0.090186 
k1 0.720364 0.70247 0.247106 0.280345 0.102101 0.0865 
k2 0.729833 0.711626 0.250407 0.283999 0.103512 0.087627 

200 

Uniform 0.369239 0.280356 0.080956 0.055355 0.042642 0.01631 
Epanechnikov 0.349454 0.265501 0.07643 0.05243 0.040131 0.015455 

Gaussian 0.36385 0.276343 0.079677 0.054571 0.041896 0.016086 
K1 0.348985 0.265105 0.076385 0.052343 0.040155 0.015422 
K2 0.353573 0.26856 0.07742 0.053025 0.040719 0.015623 

500 

Uniform 0.155967 0.078679 0.023782 0.006618 0.016641 0.002169 
Epanechnikov 0.147611 0.074511 0.022418 0.00627 0.015648 0.002057 

Gaussian 0.153689 0.077554 0.023383 0.006527 0.016337 0.002141 
K1 0.147415 0.074399 0.022421 0.006258 0.015669 0.002051 
K2 0.149353 0.075369 0.02273 0.006339 0.015889 0.002077 
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Table 4. ˆ( )AMISE f of  kernel estimates for separated bimodal distribution. 
 

n Kernel functions 
hSRT hDPI hSTE 

ˆ( )AMISE f  SD ˆ( )AMISE f  SD ˆ( )AMISE f  SD 

50 

Uniform 0.160904 0.029481 0.030682 0.005448 0.022796 0.002676 
Epanechnikov 0.152033 0.027921 0.028687 0.005164 0.021205 0.002541 

Gaussian 0.158472 0.029061 0.030089 0.005375 0.022301 0.002645 
K1 0.151844 0.027878 0.028706 0.005152 0.021249 0.00253 
K2 0.153897 0.028241 0.029154 0.005219 0.021599 0.002563 

 
100 

Uniform 0.092554 0.01118 0.015327 0.001445 0.012937 0.000843 
Epanechnikov 0.087474 0.010588 0.014322 0.001371 0.012052 0.000802 

Gaussian 0.091162 0.01102 0.015022 0.001427 0.01266 0.000834 
k1 0.087366 0.010572 0.01434 0.001367 0.01208 0.000797 
k2 0.088541 0.010709 0.014563 0.001385 0.012274 0.000808 

200 

Uniform 0.053486 0.004379 0.008215 0.000449 0.007457 0.000287 
Epanechnikov 0.050561 0.004147 0.007679 0.000426 0.006958 0.000274 

Gaussian 0.052684 0.004316 0.00805 0.000443 0.0073 0.000285 
K1 0.050499 0.00414 0.007691 0.000424 0.006975 0.000272 
K2 0.051176 0.004194 0.00781 0.00043 0.007084 0.000275 

500 

Uniform 0.025703 0.001405 0.003792 0.000105 0.003622 7.04E-05 
Epanechnikov 0.024304 0.001331 0.003547 0.0001 0.003386 6.73E-05 

Gaussian 0.02532 0.001385 0.003715 0.000104 0.003547 7E-05 
K1 0.024274 0.001329 0.003555 9.96E-05 0.003394 6.66E-05 
K2 0.024598 0.001346 0.003608 0.000101 0.003446 6.75E-05 

 

From Table 5, the data from trimodal distribution, ˆ ( , )f x x


 using K1 with the 

STE bandwidth gives a smaller ˆ( )AMISE f than the others ˆ ( , )f x x


 with the SRT or 

DPI bandwidth for samples of sizes 50 and 100. The AMISE  of ˆ ( , )f x x


are close to 

zero as the sample size gets large. 

For data from double claw distribution, the AMISE of ˆ ( , )f x x


 using K1 with 

the SRT bandwidth is lower than the ˆ( )AMISE f  of the others ˆ ( , )f x x


 with the STE or 

DPI bandwidth for sample of size 50. For samples of sizes between 100 and 500, 

the AMISE of ˆ ( , )f x x


 using K1 with STE bandwidth is lower than the ˆ( )AMISE f of 

the others ˆ ( , )f x x


 with the SRT or DPI bandwidth. The AMISE  of all ˆ ( , )f x x


 

decrease as the sample size increase. 
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Table 5. ˆ( )AMISE f of  kernel estimates for trimodal distribution. 
 

n Kernel functions 
hSRT hDPI hSTE 

ˆ( )AMISE f  SD ˆ( )AMISE f  SD ˆ( )AMISE f  SD 

50 

Uniform 0.06103 0.01464 0.062204 0.03317 0.050482 0.036083 
Epanechnikov 0.057503 0.013867 0.058613 0.031419 0.047505 0.034181 

Gaussian 0.060036 0.014433 0.061191 0.032702 0.049629 0.035577 
K1 0.057464 0.013843 0.058575 0.031365 0.047491 0.03412 
K2 0.058272 0.014024 0.059397 0.031774 0.048168 0.034564 

 
100 

Uniform 0.035266 0.005868 0.029997 0.012964 0.02421 0.013325 
Epanechnikov 0.033247 0.005558 0.028255 0.01228 0.022771 0.012624 

Gaussian 0.034697 0.005785 0.029501 0.012782 0.023793 0.01314 
k1 0.033225 0.005549 0.028243 0.012258 0.022771 0.0126 
k2 0.033687 0.005621 0.02864 0.012418 0.023097 0.012765 

200 

Uniform 0.020294 0.002268 0.014262 0.004484 0.011583 0.004342 
Epanechnikov 0.019142 0.002148 0.013427 0.004248 0.010887 0.004114 

Gaussian 0.019969 0.002236 0.014021 0.004422 0.011378 0.004282 
K1 0.019129 0.002145 0.013425 0.00424 0.010891 0.004106 
K2 0.019393 0.002173 0.013615 0.004296 0.011048 0.004159 

500 

Uniform 0.009795 0.000696 0.005635 0.001005 0.004759 0.000926 
Epanechnikov 0.009244 0.000659 0.005302 0.000953 0.004472 0.000877 

Gaussian 0.00964 0.000686 0.005537 0.000992 0.004673 0.000913 
K1 0.009238 0.000658 0.005304 0.000951 0.004476 0.000875 
K2 0.009364 0.000667 0.005379 0.000963 0.00454 0.000887 

 
 

Table 6. ˆ( )AMISE f of  kernel estimates for double claw distribution. 
 

n Kernel functions 
hSRT hDPI hSTE 

ˆ( )AMISE f  SD ˆ( )AMISE f  SD ˆ( )AMISE f  SD 

50 

Uniform 1864.231 561.3389 2316.902 1541.768 1877.222 1757.202 
Epanechnikov 1765.401 531.5801 2194.074 1460.032 1777.702 1664.046 

Gaussian 1837.496 553.2886 2283.675 1519.657 1850.3 1732.002 
K1 1762.817 530.802 2190.862 1457.895 1775.1 1661.61 
K2 1785.793 537.7203 2219.417 1476.897 1798.236 1683.267 

 
100 

Uniform 1062.739 217.1984 1116.853 660.1903 902.1075 715.8835 
Epanechnikov 1006.399 205.6838 1057.644 625.1909 854.283 677.9317 

Gaussian 1047.498 214.0835 1100.836 650.7224 889.1701 705.6169 
k1 1004.926 205.3828 1056.096 624.2759 853.0326 676.9394 
k2 1018.024 208.0597 1069.861 632.4125 864.1508 685.7624 

200 

Uniform 609.9593 88.11598 501.7934 246.2819 397.1231 256.8389 
Epanechnikov 577.6228 83.4446 475.1912 233.2255 376.0699 243.2228 

Gaussian 601.2117 86.85229 494.5971 242.7499 391.4278 253.1555 
K1 576.7774 83.32246 474.4957 232.8842 375.5195 242.8668 
K2 584.2949 84.40846 480.6802 235.9195 380.4139 246.0323 

500 

Uniform 293.7504 27.15246 184.725 62.10136 151.6257 61.42863 
Epanechnikov 278.1775 25.713 174.932 58.80911 143.5873 58.17205 

Gaussian 289.5377 26.76306 182.0758 61.21075 149.4511 60.54767 
K1 277.7704 25.67537 174.6759 58.72304 143.3772 58.08691 
K2 281.3907 26.01001 176.9526 59.48841 145.2459 58.84399 
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For data from asymmetric claw distribution and samples of sizes 50 and 100, 

the AMISE of ˆ ( , )f x x


 with the SRT bandwidth is lower than the ˆ( )AMISE f of the 

others ˆ ( , )f x x


 with the STE or DPI bandwidth. For samples of sizes 200 and 500, the 

AMISE of ˆ ( , )f x x


 with the STE bandwidth is lower than the AMISE of the 

others ˆ ( , )f x x


 with the SRT or DPI bandwidth.  

 
 

Table 7. ˆ( )AMISE f of  kernel estimates for asymmetric claw distribution. 
 
 

n Kernel functions 
hSRT hDPI hSTE 

ˆ( )AMISE f  SD ˆ( )AMISE f  SD ˆ( )AMISE f  SD 

50 

Uniform 25.274 10.56433 41.96607 26.00978 36.83363 29.79249 
Epanechnikov 23.93366 10.00428 39.74082 24.6309 34.88047 28.21308 

Gaussian 24.91137 10.41283 41.36406 25.63678 36.30522 29.36524 
K1 23.89868 9.989625 39.6827 24.59484 34.82947 28.17177 
K2 24.21027 10.11983 40.20001 24.9154 35.28352 28.53895 

 
100 

Uniform 14.60458 3.988819 22.67927 10.76772 19.32426 13.21801 
Epanechnikov 13.8301 3.777358 21.47672 10.19688 18.29957 12.51728 

Gaussian 14.39504 3.931617 22.35393 10.6133 19.04704 13.02846 
k1 13.80988 3.771827 21.44531 10.18196 18.27282 12.49895 
k2 13.98993 3.820988 21.72487 10.31466 18.51103 12.66186 

200 

Uniform 8.517721 1.56352 11.23 4.42696 8.163123 6.054571 
Epanechnikov 8.066043 1.480633 10.63453 4.19227 7.730241 5.733599 

Gaussian 8.395519 1.541098 11.0689 4.363474 8.046004 5.967746 
K1 8.054254 1.478465 10.61898 4.186133 7.718946 5.725202 
K2 8.159255 1.497734 10.75741 4.240693 7.819577 5.799822 

500 

Uniform 4.101475 0.476412 3.211195 1.168112 1.024393 0.978196 
Epanechnikov 3.88399 0.451156 3.040906 1.106186 0.970031 0.92634 

Gaussian 4.042634 0.46958 3.165121 1.151361 1.009676 0.96417 
K1 3.878313 0.450495 3.036464 1.104566 0.968625 0.924982 
K2 3.928872 0.456367 3.07605 1.118963 0.981259 0.937038 

 
 

For data from a population distributed as asymmetric double claw and smooth 

comp, the ˆ ( , )f x x


 with the STE bandwidth gives lower ˆ( )AMISE f than ˆ ( , )f x x


 with 

the SRT or DPI bandwidth as shown in Tables 8 and 9, respectively.  

For data from asymmetric claw, asymmetric double claw and smooth comp 

distributions, the ˆ ( , )f x x


using the proposed K1 performs well. The ˆ ( , )f x x


 with the 

proposed K2 performs better than the ˆ ( , )f x x


 with uniform, Gaussian functions as 

shown in Tables 7-9.  
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Table 8. ˆ( )AMISE f of  kernel estimates for asymmetric double claw distribution. 
 

n Kernel functions 
hSRT hDPI hSTE 

ˆ( )AMISE f  SD ˆ( )AMISE f  SD ˆ( )AMISE f  SD 

50 

Uniform 1064.488 329.0727 1207.742 809.28 963.3038 893.6315 
Epanechnikov 1008.055 311.6272 1143.715 766.3768 912.2349 846.2565 

Gaussian 1049.222 324.3534 1190.421 797.6739 949.4887 880.8158 
K1 1006.579 311.1711 1142.041 765.2551 910.8997 845.0179 
K2 1019.699 315.2268 1156.926 775.2292 922.7722 856.0316 

 
100 

Uniform 605.3458 127.3865 551.4556 328.0383 428.9463 350.8718 
Epanechnikov 573.2538 120.6332 522.2206 310.6477 406.206 332.2707 

Gaussian 596.6643 125.5596 543.547 323.3339 422.7946 345.8399 
k1 572.4148 120.4566 521.4562 310.193 405.6115 331.7844 
k2 579.8755 122.0266 528.2528 314.236 410.8981 336.1088 

200 

Uniform 348.5102 51.31864 247.881 121.2693 193.1326 122.6449 
Epanechnikov 330.0342 48.59803 234.7398 114.8404 182.8938 116.143 

Gaussian 343.5121 50.58267 244.3261 119.5302 190.3628 120.886 
K1 329.5512 48.5269 234.3962 114.6723 182.6261 115.973 
K2 333.8464 49.15938 237.4512 116.1669 185.0064 117.4845 

500 

Uniform 167.9083 15.01381 87.99997 27.26422 69.85181 25.67868 
Epanechnikov 159.0067 14.21787 83.3347 25.81883 66.14865 24.31735 

Gaussian 165.5003 14.7985 86.73793 26.87322 68.85003 25.31042 
K1 158.774 14.19706 83.21274 25.78104 66.05184 24.28176 
K2 160.8434 14.3821 84.29731 26.11706 66.91274 24.59824 

 

 

Table 9. ˆ( )AMISE f of  kernel estimates for smooth comp distribution. 
 

n Kernel functions 
hSRT hDPI hSTE 

ˆ( )AMISE f  SD ˆ( )AMISE f  SD ˆ( )AMISE f  SD 

50 

Uniform 3287.642 796.9182 853.4582 405.0623 225.7792 149.1765 
Epanechnikov 3113.35 754.6704 808.2126 383.5883 213.8093 141.2681 

Gaussian 3240.493 785.4894 841.2184 399.2532 222.5411 147.0372 
K1 3108.794 753.5658 807.0297 383.0269 213.4965 141.0613 
K2 3149.313 763.3875 817.5483 388.0191 216.2792 142.8999 

 
100 

Uniform 1863.589 318.6248 278.9935 99.16704 76.31698 33.59005 
Epanechnikov 1764.793 301.7332 264.2027 93.9098 72.27091 31.80931 

Gaussian 1836.863 314.0554 274.9923 97.74487 75.22241 33.10834 
k1 1762.21 301.2916 263.8161 93.77234 72.16518 31.76275 
k2 1785.178 305.2185 267.2546 94.99454 73.10579 32.17674 

200 

Uniform 1070.634 129.5253 97.80193 22.71941 27.78746 9.245328 
Epanechnikov 1013.875 122.6586 92.61695 21.51497 26.31423 8.755199 

Gaussian 1055.28 127.6677 96.39928 22.39359 27.3889 9.112742 
K1 1012.391 122.4791 92.48142 21.48347 26.27575 8.742382 
K2 1025.586 124.0754 93.68681 21.76348 26.61823 8.856327 

500 

Uniform 513.0715 37.13692 26.1958 3.752915 7.347895 1.504265 
Epanechnikov 485.8715 35.16814 24.80702 3.553958 6.958305 1.424519 

Gaussian 505.7135 36.60433 25.8201 3.699094 7.24249 1.482693 
K1 485.1604 35.11667 24.77072 3.548756 6.948138 1.422433 
K2 491.4838 35.57437 25.09358 3.595009 7.038705 1.440973 
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5. Conclusions  

When sample sizes are 50 and 100, the ˆ ( , )


f x x using K1 with STE bandwidth 

performs well for sample data from populations distributed as kurtotic unimodal or 

trimodal. For data from multimodal distributions, the ˆ ( , )f x x


using the proposed K1 

performs well, and the ˆ ( , )f x x


 using the proposed K2 perform better than the ˆ ( , )f x x


 

with uniform, Gaussian functions.  
The estimates with DPI bandwidth perform well when the sample data are from 

Gaussian distribution. For data withfrom skewed unimodal distributions, the estimates 

with SRT bandwidth perform well which is the same as data from asymmetric claw 

population with samples of sizes 50 and 100. For sample from populations distributed as 

kurtotic unimodal, separated bimodal or multimodal, the AMISE of ˆ ( , )


f x x  with STE 

bandwidth is lower than the AMISE of the other kernel estimates except for data with 

double claw distribution and the sample sizes are small. 

For sample from unimodal (Gaussian, skewed, kurtotic), separated bimodal or 

trimodal distributions, the AMISE  of ˆ ( , )


f x x  are closed to zero as the sample size 

gets larger. For large sample size, AMISE  of the estimates ˆ ( , )f x x


 using 

Epanechnikov, K1 or K2 functions become closer. The ˆ( )AMISE f becomes smaller as 

the sample sizes increase which implies that the kernel estimate is becoming more 

accurate.  

The ˆ( )AMISE f , when the sample data are form highly skewed, kurtosis and 

multimodal populations, is large because the bandwidth is far from the optimal bandwidth 

which is consistent with the degree of estimation difficulty which increases with skewness, 

kurtosis and multimodality of the distributions [5]. 
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