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Abstract
Two kernel estimators of a density function f(x) are considered. The

measures of errors of the estimates depend on the corresponding kernel functions used
to derive them together with the bandwidths of the kernels. Simulation study is carried
out to compare the AMISE of the estimates with those of uniform, Epanechnikov and
Gaussian kernel functions. The bandwidths used for comparison of the errors of the
estimates are the Silverman rule of thump (SRT), two-stage direct plug-in (DPI) and the
solve-the-equation (STE) method bandwidths. For data from Gaussian, skewed
unimodal, and separated bimodal distributions, the proposed kernel estimates perform
better than the uniform and Gaussian estimates. One of the proposed kernel estimates
with STE bandwidth performs well when the sample data are from a kurtotic unimodal
and trimodal distributions and with samples of sizes 50 and 100. This kernel estimate
also performs better than the others for data from multimodal distribution. Another

proposed kernel estimate also performs better than the uniform and Gaussian estimates.

Keywords: Density estimation, error criteria, kernel estimator, mean squared error,

mean integrated squared error.
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1.Introduction
Density estimation is an interesting problem in statistical inference for a long

time. One well-known method of density estimation is the use of kernel functions

introduced by Rosenblatt [1], and Parzen [2]. Let X =(X,, ..., X,) be a random

sample of size N from a population with an unknown probability density function f (x),
and X=(X,, ..., X,) the sample observations on X . The kernel density estimate of

f(x) atthe point X, is given by
- 1 X, — X
f(x,X)=—7)» K(-~—Y), 1
(%, X) nh; =) ()

where K(u) is a real valued kemel function, u = (x— X;)/h is in its support, and h a

positive real number, called the bandwidth or window width of X, [1, 2]. The properties
of a kernel density estimate depend on the properties of the kernel function K (u) and

the bandwidth h used. If K(u)is a probability density function, then the estimates

f(x, X ) of the form (1) are also density functions. Usually, but not always, K (u) will be

a symmetric unimodal density function. A kernel is said to be of order p for some p> 2

if
1L j=0,
_fqu(u)du= 0, j=1..p-1 )
Hyy  J=P

If the kernel is of order greater than 2, then the density estimate may be negative at

some points. The kernel function K(u) should satisfy the properties:

i) K(u)is a nonnegative real valued function and continuous on its support,
i) jK(u)du =1,
iii) K(u)is symmetric about 0, which implies g4 = JuK(u)du =0,

) 4, = [UK(u)du <o ie. , is finite.
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There are many kernel functions which satisfy the above properties such as uniform,

Ky (u) = 0.51;_11(u) , Epanechnikov, K (u)= 0.75(1—u?)I_;;,(u) , Gaussian,
Ke (u)=e'“2/2/\/ﬂ. Also, there are many criteria of measuring the errors of the
kernel estimates. These include the mean squared error ( MSE(f(x, X))) and the mean
integrated squared error ( MISE(f)).The mean squared error, MSE of f(xo, X) ., is the
error at a point X, of the density.

MSE(f (%, X)) = E[f (%, X) = f (%)
or

MSE(f (%, X)) =V (f (%, X)) + B (f (%, X)), ©)
where V(f(xo, X)) is the variance of f(XO, X)and B( f(xo, X)) is its bias. Assume

that f (X) is continuous and squared integrable, having second derivative with respect to

X at X,. The kernel density estimator with K(u) is asymptotically unbiased having

bandwidth h =h(n) — 0 as N — . In such a case, the bias of fA(XO, X) is
~ h?
B(f(Xo,Z())=7f”(><o)ﬂz+0(h2), (4)
where /4, is the kernel variance, (Hardle [3]). Also, the variance of fA(XO, )S) is

V(01 X) =VE- Y KR

:_{jth A X¢ (x)dx - [j K& ®)
By Taylor series expansion of f(X) about X, and let X = Xy — hu, we have
. 2
V(f(XO,Z())_ f(X )R(K) (f();o)) +0(n’1), 6)
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where R(K):IKZ(u)du is the squared L, norm of K(u). L, is the set of all

Lebesque measurable real valued functions, g(t), such that J'gz(t)dt exists and is

finite, or “the roughness of K (u)~ [4]. So

MSE( 0, X)) = O gy - O™ g
+o(n™)+o(h"). @)
The mean integrated squared error (MISE) of f(x, X)), obtained by integrating
the MISE of f(x, X, is an error measure over the real line, i.e.
MISE(f) = [ MSE(f (x, X))dx

_R(K) 1

j f2(x)dx + M+o((nh) y+o(h*). (®)
nh 4

The notation AMISE of fA(X,)~() is used to represent asymptotic MISE of

f(x, X) (ignoring higher order in the expansion of MISE of fA(X, X)), ie.

AMISE (f) =

R(K) _R(f) | h* s R(1") _ ©
nh

n 4
The AMISE(f) depends on its bandwidth, R(f)and R(f"). R(f") is a
measure of total curvature which is increasing with its skewness, kurtosis and
multimodality [5]. A numerical method for comparing the AMISE(f) in various

populations are needed.

2. New Kernel Functions
In this study we give two new kernel functions K;(u) and K, (u) that yield

“good” estimates of a density function in the sense that the bias and the variance of each

density estimator are small. A symmetric kernel function with small variance, g, , is used
to decrease the bias B(f (X,, X)) . To decrease the variance of f(x,, X)), we need to

minimize the roughness of K(u). To decrease the sum of ‘B(fA(XO,)S))‘ and the
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variance of ]:(XO, X)) the kernel function is found to minimize A (K)=R(K)+ 4, .
the sum of the squared L, norm of K(u)and the kernel variance. MSE(f(XO,)S)),

MISE(]:) and AMISE(]?) depend on the sum of the squared bias and the variance.
So the kernel function that minimizes the sum of R(K) and ,uzz are chosen, i.e. we
choose the kernel function that minimizes, the sum of the squared L, norm of K(u)and

the squared kernel variance, A,(K)=R(K)+ 2.

A kernel function with compact support expressed in the form of polynomials
can be found in Muller [6], Gasser, Muller & Mammitzsch [7], Granovsky & Muller [8],
Muller & Wang [9], Horova [10], Delaigle & Hall [11], and Mammitzsch [12]. Horova [10]

presented the construction of kernel functions that minimize the squared L, norm of

K (u) under the condition that the moments of K(u) are polynomials of certain degrees.

Hence, in this paper we need to find the coefficients of the new kernel functions

in the form of second degree polynomial with support [-1, 1];
2
K(u)=>cu', (10)
i=0

where ¢, are the coefficients to be determined in order to minimize A (K) or A,(K)
subject to the constraint that K (U)is a symmetric density function. To derive the kernel
functions K, (u),K,(u) we use Lagrange multipliers. To obtain the kernel function
K, (u) under the constraints that minimizes A (K)let

LK) = A (K)+ A0~ ) + 4 (1) )

where 4,1, are Lagrange multipliers. The result is

u2

Kl (U) = (g - 7) I[71,1] (u) . 12)

To minimize A,(K) under the constraints, construct the corresponding
Lagrange function
L, (K) = A, (K) + A (0= ) + 4, (14) (13)

where 4,4, are Lagrange multipliers. The result is
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63 15u°
K, (u)= (m - ?) I[-1,1] (u). (14)

The kernel density estimates using the proposed two kernel functions Kl(u)

and Kz(u) are then obtained from equation (1) at the given sample observations

3. Simulation Study

In order to study the AMISE of the kernel estimates of a density function, a
simulation study is carried out under various kernel functions and bandwidths. The
effects of the kernels and bandwidths of the estimates of f (x) for different sample sizes
are considered. The simulations are performed using programs written in R. Symmetric
and asymmetric multimodal populations of size 50,000 are generated for each of the
populations which are built from normal mixtures [13]. In this study, nine different

normal mixture distributions are simulated, namely Gaussian N(0,1), skewed

1

. 1 1,2 3.13 5
unimodal =N(0,1) +=N(=,(2)*) +=N
s 0,9 c (2 (3)) 5 (

. . 2 1 1
—= (5)?), kurtotic unimodal =N (0,1) + =N(0,(=)?),
12 (9) ) 3 (0,3 3 ( (10) )

. 1 3,1 1..,3,1 . 9 6 ,3 9 6 ,3
separated bimodal =N(-=,(2)?)+=N(=,(2)?), trimodal —N(-=,(9)?%) +—N(=, (5)?
p 2 ( 2(2))+2 (2 (2)) 20 ( 5(5))+20 (5 (5))+

1 1 49 2 49 2
—N(0,(%)?), double claw —N(-1(2)*)+—N@LE)?)+
0 ( (4) ) 100 ( (3) ) ( (3) )

1 (-3 ,1,
100 —N( (=)

6
=0 350 2 100

21—i
31

2 —i
asymmetric  claw %N(0,1)+z N((i+1/2),(i—0)2), asymmetric double claw
i=-2

y ﬁN(2i—1(g)2)+23:iN(—l (i)z)vuiiN(l (L)Z) and smooth comp
<100 "3 <300 ° 2'°100 300 2100 °’
5 o5-i _QR* o

2 N(65 %672 ( 32 _)?). Random samples of sizes 50, 100, 200 and 500 are
= 63 21 63*2'

drawn from the generated population, each repeats 1,000 times. The bandwidths used in
the simulation studies are the Silverman rule of thump (SRT) bandwidth (the commonly
used quick and simple idea for selecting the bandwidth, most popular and easy to
implement [14], two-stage direct plug-in bandwidth (DPI) [5] (it provides a good
estimates for a data-based bandwidth [15], and the solve-the-equation method bandwidth
(STE) ([5]) (the solve-the-equation method bandwidth is the best in term of overall

performance [14,16]. The AMISE of the kernel estimates are computed. From 1,000
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samples with specified sizes, the mean of AMISE(f), AMISE(f), of kernel

estimates are computed and compared.

4. Results of the Simulation

The values of AM_ISE(fA) and the estimated standard deviation (SD) by
distributions, bandwidths, and various sample sizes with 1,000 replications are shown in
Tables 1-7. The bold number is the smallest AmE(f) for each bandwidths and

various sample sizes.

For data from Gaussian or skewed unimodal distribution, the kernel estimates
using the proposed K; and K, perform better than the uniform and Gaussian estimates
as shown in Tables 1, 2. For samples of any sizes the AMISE of f(X,Z() with DPI
bandwidth is lower than the AMISE of f(x,g) with SRT and STE bandwidth for data
with Gaussian distribution. For data from skewed unimodal distribution the AMISE of

f (X, X) with SRT bandwidth is lower than the AMISE of f(X,X) with DPI or STE

bandwidth. The AMISE of f(x, X) is close to zero as the sample size gets larger.
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Table 1. AMISE( 1?) of kernel estimates for Gaussian distribution.

hsrr hoey hsre
n Kernel functions . . —
AMISE(f) SD AMISE(f) SD AMISE(f) SD

Uniform 0.010929 | 0.001674 || 0.010241 | 0.001624 || 0.010878 | 0.002721
Epanechnikov 0.009978 | 0.001575 || 0.009336 | 0.001529 || 0.009936 | 0.002561
50 Gaussian 0.010616 0.00164 0.009948 | 0.001591 || 0.010572 | 0.002665
K1 0.010027 | 0.001583 || 0.009377 | 0.001536 |[ 0.009979 | 0.002573
Ko 0.010231 | 0.001604 || 0.009573 | 0.001556 [ 0.010183 | 0.002606
Uniform 0.006476 | 0.000627 || 0.006076 | 0.000556 || 0.006304 0.00101
Epanechnikov 0.005943 | 0.000589 || 0.005569 | 0.000522 || 0.005784 | 0.000949
100 Gaussian 0.006301 | 0.000613 || 0.005912 | 0.000544 || 0.006135 | 0.000988
k1 0.00597 0.000593 || 0.005592 | 0.000526 || 0.005807 | 0.000955
k2 0.006085 0.0006 0.005701 | 0.000533 0.00592 0.000967
Uniform 0.003834 | 0.000223 || 0.003603 | 0.000202 || 0.003666 | 0.000342
Epanechnikov 0.003533 | 0.000209 || 0.003317 | 0.000189 || 0.003377 | 0.000322
200 Gaussian 0.003735 | 0.000218 || 0.003511 | 0.000197 || 0.003573 | 0.000335
K1 0.003549 | 0.000211 0.00333 0.000191 0.00339 0.000324
K, 0.003613 | 0.000213 || 0.003392 | 0.000193 [ 0.003453 | 0.000328
Uniform 0.001925 | 6.17E-05 || 0.001814 | 4.24E-05 0.001825 | 6.66E-05
Epanechnikov 0.001783 | 5.79E-05 || 0.001679 3.97E-05 0.001689 | 6.24E-05
500 Gaussian 0.001878 | 6.03E-05 0.00177 4.13E-05 0.001781 | 6.49E-05
K1 0.00179 5.83E-05 || 0.001685 | 4.01E-05 0.001695 6.3E-05
Ko 0.00182 5.91E-05 || 0.001714 | 4.06E-05 0.001724 | 6.38E-05

Table 2. AMISE( f) of kernel estimates for skewed unimodal distribution.

. hsrr hoey hste
n Kernel functions . . —
AMISE(f) sD AMISE(f) SD AMISE(f) SD

Uniform 0.016285 | 0.002614 |[ 0.019509 | 0.006874 || 0.019624 | 0.007043
Epanechnikov 0.014942 0.00248 0.018003 | 0.006519 || 0.018108 | 0.006678
50 Gaussian 0.01586 0.002582 || 0.019046 | 0.006785 || 0.019156 0.00695
K1 0.014989 | 0.002472 || 0.018037 0.0065 0.018147 0.00666
Ko 0.015283 | 0.002504 || 0.018371 | 0.006585 [ 0.018482 ] 0.006747
Uniform 0.009645 0.00096 0.011203 | 0.002628 || 0.011129 0.00267
Epanechnikov 0.008889 | 0.000913 || 0.010369 | 0.002494 || 0.010297 | 0.002533
100 Gaussian 0.009406 0.00095 0.010946 | 0.002596 || 0.010872 | 0.002637
k1 0.008915 | 0.000908 || 0.010388 | 0.002486 || 0.010318 | 0.002525
k2 0.00908 0.00092 0.010573 ] 0.002518 || 0.010502 | 0.002558
Uniform 0.005712 | 0.000368 || 0.006431 | 0.000935 || 0.006355 | 0.000943
Epanechnikov 0.005284 0.00035 0.005967 | 0.000887 || 0.005895 | 0.000895
200 Gaussian 0.005577 | 0.000364 || 0.006288 | 0.000924 || 0.006212 | 0.000932
K1 0.005299 | 0.000348 || 0.005979 | 0.000884 || 0.005907 | 0.000892
Ko 0.005392 | 0.000352 || 0.006081 | 0.000895 ][ 0.006008 ] 0.000903
Uniform 0.002861 | 0.000112 || 0.003138 | 0.000294 || 0.003109 | 0.000299
Epanechnikov 0.002657 | 0.000107 0.00292 0.000279 || 0.002893 | 0.000284
500 Gaussian 0.002797 | 0.000111 0.00307 0.000291 || 0.003042 ] 0.000295
K1 0.002664 | 0.000106 || 0.002926 | 0.000278 |[ 0.002899 | 0.000283
K, 0.002709 | 0.000107 J| 0.002974 | 0.000282 [ 0.002947 ] 0.000286
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For sample data from a population distributed as kurtotic unimodal,

the AMISE of f(x, X) with STE bandwidth is lower than the AMISE of the other kernel
estimates and fA(X, X) using K; performs well when sample sizes are 50 and 100 as in
Table 3. For data from separated bimodal distribution, from Table 4, the f(x, )~() using K
and the SRT bandwidth give lower AmE(f)than the other kernel estimates. From
Table 4, the AMISE of f(x,X)with STE bandwidth is lower than the AMISE of
f?(x,)N() with SRT or DPI bandwidth. For data from kurtotic unimodal and separated

bimodal distributions, the fA(X, X) using K, perform better than the fA(x, X) with uniform

and Gaussian kernel functions.

Table 3. AMISE( f) of kernel estimates for kurtotic unimodal distribution.

hsrr Nop) hste

n Kernel functions — . .
AMISE(f) SD AMISE(f) SD AMISE(f) SD
Uniform 1.708632 | 2.436767 || 1.221782 | 3.575027 || 0.675117 | 3.409776
Epanechnikov 1.617245 | 2.307618 || 1.156175 | 3.385528 || 0.638445 | 3.229033
50 Gaussian 1.683792 | 2.401856 || 1.203893 | 3.523785 0.66502 3.360899
K1 1.615013 | 2.304207 || 1.154648 | 3.380546 || 0.637721 | 3.224283
Ko 1.636223 | 2.334239 || 1.169857 | 3.424607 || 0.646194 | 3.266308
Uniform 0.76216 0.742883 || 0.261676 | 0.296474 || 0.108328 | 0.091476
Epanechnikov 0.721346 | 0.703517 || 0.247366 | 0.280776 || 0.102119 | 0.086647
100 Gaussian 0.751055 | 0.732247 || 0.257719 | 0.292242 || 0.106541 | 0.090186
k1 0.720364 0.70247 0.247106 | 0.280345 || 0.102101 0.0865
k2 0.729833 | 0.711626 || 0.250407 | 0.283999 || 0.103512 | 0.087627
Uniform 0.369239 | 0.280356 || 0.080956 | 0.055355 || 0.042642 0.01631
Epanechnikov 0.349454 | 0.265501 0.07643 0.05243 0.040131 | 0.015455
200 Gaussian 0.36385 0.276343 || 0.079677 | 0.054571 || 0.041896 | 0.016086
K1 0.348985 | 0.265105 || 0.076385 | 0.052343 || 0.040155 | 0.015422
Ko 0.353573 0.26856 0.07742 0.053025 || 0.040719 | 0.015623
Uniform 0.155967 | 0.078679 || 0.023782 | 0.006618 || 0.016641 | 0.002169
Epanechnikov 0.147611 | 0.074511 || 0.022418 0.00627 0.015648 | 0.002057
500 Gaussian 0.153689 | 0.077554 || 0.023383 | 0.006527 || 0.016337 | 0.002141
K1 0.147415 | 0.074399 || 0.022421 | 0.006258 || 0.015669 | 0.002051
K, 0.149353 | 0.075369 0.02273 0.006339 || 0.015889 | 0.002077
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Table 4. AMISE( 1?) of kernel estimates for separated bimodal distribution.

hsrr hoey hsre

n Kernel functions . . —
AMISE(f) SD AMISE(f) SD AMISE(f) SD
Uniform 0.160904 | 0.029481 || 0.030682 | 0.005448 || 0.022796 | 0.002676
Epanechnikov 0.152033 | 0.027921 || 0.028687 | 0.005164 || 0.021205 | 0.002541
50 Gaussian 0.158472 | 0.029061 || 0.030089 | 0.005375 |[ 0.022301 | 0.002645
K1 0.151844 | 0.027878 || 0.028706 | 0.005152 || 0.021249 0.00253
Ko 0.153897 | 0.028241 || 0.029154 | 0.005219 || 0.021599 | 0.002563
Uniform 0.092554 0.01118 0.015327 | 0.001445 || 0.012937 | 0.000843
Epanechnikov 0.087474 | 0.010588 || 0.014322 | 0.001371 || 0.012052 | 0.000802
100 Gaussian 0.091162 0.01102 0.015022 | 0.001427 0.01266 0.000834
k1 0.087366 | 0.010572 0.01434 0.001367 0.01208 0.000797
k2 0.088541 | 0.010709 || 0.014563 | 0.001385 || 0.012274 | 0.000808
Uniform 0.053486 | 0.004379 || 0.008215 | 0.000449 || 0.007457 | 0.000287
Epanechnikov 0.050561 | 0.004147 || 0.007679 | 0.000426 || 0.006958 | 0.000274
200 Gaussian 0.052684 | 0.004316 0.00805 0.000443 0.0073 0.000285
K1 0.050499 0.00414 0.007691 | 0.000424 || 0.006975 | 0.000272
K, 0.051176 | 0.004194 0.00781 0.00043 0.007084 | 0.000275
Uniform 0.025703 | 0.001405 || 0.003792 | 0.000105 || 0.003622 | 7.04E-05
Epanechnikov 0.024304 | 0.001331 || 0.003547 0.0001 0.003386 | 6.73E-05
500 Gaussian 0.02532 0.001385 || 0.003715 | 0.000104 || 0.003547 7E-05
K1 0.024274 | 0.001329 || 0.003555 9.96E-05 0.003394 | 6.66E-05
Ko 0.024598 | 0.001346 J| 0.003608 | 0.000101 ][ 0.003446 | 6.75E-05

From Table 5, the data from trimodal distribution, fA(X,)N() using K; with the
STE bandwidth gives a smaller AMISE(f)than the others f(x,)N() with the SRT or

DPI bandwidth for samples of sizes 50 and 100. The AMISE of f(x,)~() are close to
zero as the sample size gets large.

For data from double claw distribution, the AMISE of f(x,)~() using K; with

the SRT bandwidth is lower than the AMISE( f) of the others fA(X, X) with the STE or
DPI bandwidth for sample of size 50. For samples of sizes between 100 and 500,

the AMISE of f(x,)~() using K; with STE bandwidth is lower than the AMISE(f)of

the others f(X:Z() with the SRT or DPI bandwidth. The AMISE of all f(x,)N()

decrease as the sample size increase.
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Table 5. AMISE(f)of kernel estimates for trimodal distribution.
Rsrr hop hste
n Kernel functions . . .
AMISE(f) SD AMISE(f) SD AMISE(f) SD
Uniform 0.06103 | 0.01464 || 0062204 | 0.03317 || 0.050482 | 0.036083
Epanechnikov 0057503 | 0.013867 || 0.058613 | 0.031419 || 0.047505 | 0.034181
50 Gaussian 0.060036 | 0.014433 || 0.061191 | 0.032702 || 0.049629 | 0.035577
Ky 0.057464 | 0.013843 || 0.058575 | 0.031365 || 0.047491 | 0.03412
Ko 0058272 | 0.014024 || 0.059397 | 0.031774 || 0.048168 | 0.034564
Uniform 0.035266 | 0.005868 || 0.029997 | 0.012964 || 0.02421 | 0.013325
Epanechnikov 0.033247 | 0.005558 || 0.028255 | 0.01228 || 0.022771 | 0.012624
100 Gaussian 0.034697 | 0.005785 || 0.029501 | 0.012782 || 0.023793 | 0.01314
k1 0033225 | 0.005549 || 0.028243 | 0.012258 || 0.022771 | o0.0126
k2 0.033687 | 0.005621 || 0.02864 | 0.012418 || 0.023097 | 0.012765
Uniform 0.020294 | 0.002268 || 0.014262 | 0.004484 || 0.011583 | 0.004342
Epanechnikov 0019142 | 0.002148 || 0.013427 | 0.004248 || 0.010887 | 0.004114
200 Gaussian 0019969 | 0.002236 || 0.014021 | 0.004422 || 0.011378 | 0.004282
Ky 0019129 | 0.002145 || 0.013425 | 0.00424 || 0.010891 | 0.004106
K, 0.019393 | 0.002173 || 0.013615 | 0.004296 || 0.011048 | 0.004159
Uniform 0.009795 | 0.000696 || 0.005635 | 0.001005 || 0.004759 | 0.000926
Epanechnikov 0.009244 | 0.000659 || 0.005302 | 0.000053 || 0.004472 | 0.000877
500 Gaussian 0.00964 | 0.000686 || 0.005537 | 0.000992 || 0.004673 | 0.000913
Ky 0.009238 | 0.000658 || 0.005304 | 0.000951 || 0.004476 | 0.000875
Ko 0.009364 | 0.000667 || 0.005379 | 0.000963 || ©0.00454 | 0.000887
Table 6. AMISE(f)of kernel estimates for double claw distribution.
hSRT I“'DF’I hSTE
n Kernel functions . . .
AMISE(f) sD AMISE(f) sD AMISE(f) sD
Uniform 1864231 | 561.3389 || 2316.902 | 1541.768 || 1877.222 | 1757.202
Epanechnikov 1765.401 | 531.5801 || 2194.074 | 1460.032 || 1777.702 | 1664.046
50 Gaussian 1837.496 | 553.2886 || 2283675 | 1519.657 || 18503 | 1732.002
Ky 1762.817 | 530.802 || 2190.862 | 1457.895 || 1775.1 1661.61
Ks 1785.793 | 537.7203 || 2219.417 | 1476.897 || 1798.236 | 1683.267
Uniform 1062.739 | 217.1984 || 1116.853 | 660.1903 || 902.1075 | 715.8835
Epanechnikov 1006.399 | 205.6838 || 1057.644 | 625.1000 || 854.283 | 677.9317
100 Gaussian 1047.498 | 214.0835 || 1100.836 | 650.7224 || 889.1701 | 705.6169
k1 1004.926 | 205.3828 || 1056.006 | 624.2759 || 853.0326 | 676.9394
k2 1018.024 | 208.0597 || 1069.861 | 632.4125 || 864.1508 | 685.7624
Uniform 609.0593 | 88.11598 || 501.7934 | 246.2819 || 397.1231 | 256.8389
Epanechnikov 577.6228 | 83.4446 || 475.1912 | 233.2255 || 376.0699 | 243.2228
200 Gaussian 601.2117 | 86.85229 || 4945071 | 242.7490 || 391.4278 | 253.1555
Ky 576.7774 | 83.32246 || 474.4957 | 232.8842 || 375.5195 | 242.8668
Ko 584.2949 | 84.40846 || 480.6802 | 235.9195 || 380.4139 | 246.0323
Uniform 293.7504 | 27.15246 || 184.725 | 62.10136 || 151.6257 | 61.42863
Epanechnikov 2781775 | 25.713 174932 | 58.80011 || 1435873 | 58.17205
500 Gaussian 2895377 | 26.76306 || 182.0758 | 61.21075 || 149.4511 | 60.54767
Ky 277.7704 | 25.67537 || 174.6759 | 58.72304 || 143.3772 | 58.08601
Ko 2813907 | 26.01001 || 176.9526 | 59.48841 || 145.2450 | 58.84399
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For data from asymmetric claw distribution and samples of sizes 50 and 100,

the AMISE of f(x,)~() with the SRT bandwidth is lower than the AMISE(fA) of the
others f(x,)N() with the STE or DPI bandwidth. For samples of sizes 200 and 500, the
AMISE of fA(X,)N() with the STE bandwidth is lower than the AMISE of the

others f(x, X) with the SRT or DPI bandwidth.

Table 7. AMISE( 1?) of kernel estimates for asymmetric claw distribution.

hSRT hDF’I hSTE
n Kernel functions . . —_
AMISE(f) SD AMISE(f) SD AMISE(f) SD

Uniform 25.274 10.56433 || 41.96607 | 26.00978 || 36.83363 | 29.79249
Epanechnikov 23.93366 | 10.00428 || 39.74082 24.6309 34.88047 | 28.21308
50 Gaussian 2491137 | 10.41283 || 41.36406 | 25.63678 || 36.30522 | 29.36524
K1 23.89868 | 9.989625 39.6827 2459484 || 34.82947 | 28.17177
Ko 24.21027 | 10.11983 || 40.20001 24.9154 35.28352 | 28.53895
Uniform 14.60458 | 3.988819 || 22.67927 | 10.76772 || 19.32426 | 13.21801
Epanechnikov 13.8301 3.777358 || 21.47672 | 10.19688 || 18.29957 | 1251728
100 Gaussian 14.39504 | 3.931617 || 22.35393 10.6133 19.04704 | 13.02846
k1 13.80988 | 3.771827 || 21.44531 | 10.18196 || 18.27282 | 12.49895
k2 13.98993 | 3.820988 || 21.72487 | 10.31466 || 18.51103 | 12.66186
Uniform 8517721 1.56352 11.23 4.42696 8.163123 | 6.054571
Epanechnikov 8.066043 | 1.480633 || 10.63453 4.19227 7.730241 | 5.733599
200 Gaussian 8.395519 | 1.541098 11.0689 4.363474 || 8.046004 | 5.967746
K1 8.054254 | 1.478465 || 10.61898 | 4.186133 || 7.718946 | 5.725202
Ko 8.159255 | 1.497734 || 10.75741 | 4.240693 [ 7.819577 | 5.799822
Uniform 4101475 | 0.476412 || 3.211195 | 1.168112 || 1.024393 | 0.978196
Epanechnikov 3.88399 0.451156 || 3.040906 | 1.106186 || 0.970031 0.92634
500 Gaussian 4.042634 0.46958 3.165121 | 1.151361 || 1.009676 0.96417
K1 3.878313 | 0.450495 || 3.036464 | 1.104566 || 0.968625 | 0.924982
Ko 3.928872 | 0.456367 3.07605 1.118963 || 0.981259 | 0.937038

For data from a population distributed as asymmetric double claw and smooth
comp, the f(x,)~() with the STE bandwidth gives lower AMISE(f)than f(x,)~() with

the SRT or DPI bandwidth as shown in Tables 8 and 9, respectively.
For data from asymmetric claw, asymmetric double claw and smooth comp

distributions, the f(x,g) using the proposed K; performs well. The f(x,)~() with the

proposed K, performs better than the f(x,)~() with uniform, Gaussian functions as

shown in Tables 7-9.
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Table 8. AMISE( fA) of kernel estimates for asymmetric double claw distribution.

Rsrr hop hste
n Kernel functions — —_— -
AMISE(f) sD AMISE(f) sD AMISE(f) sD
Uniform 1064.488 | 329.0727 || 1207.742 | 809.28 | 963.3038 | 893.6315
Epanechnikov 1008.055 | 311.6272 || 1143.715 | 766.3768 || 912.2349 | 846.2565
50 Gaussian 1049.222 | 324.3534 || 1190.421 | 797.6739 || 949.4887 | 880.8158
Ky 1006579 | 311.1711 || 1142.041 | 7652551 || 910.8997 | 845.0179
Kz 1019.699 | 315.2268 || 1156.926 | 775.2002 || 922.7722 | 856.0316
Uniform 605.3458 | 127.3865 || 5514556 | 328.0383 || 428.9463 | 350.8718
Epanechnikov 573.2538 | 120.6332 || 5222206 | 3106477 || 406.206 | 3322707
100 Gaussian 596.6643 | 1255596 || 543547 | 323.3339 || 422.7946 | 345.8399
kL 572.4148 | 1204566 || 5214562 | 31003 | 4056115 | 331.7844
k2 579.8755 | 122.0266 || 528.2528 | 314236 || 410.8981 | 336.1088
Uniform 3485102 | 5131864 || 247.881 | 121.2693 || 1931326 | 1226449
Epanechnikov 330.0342 | 4859803 || 234.7398 | 114.8404 | 182.8938 | 116.143
200 Gaussian 3435121 | 5058267 || 2443261 | 1195302 || 190.3628 | 120.886
K 3205512 | 485269 || 2343962 | 1146723 || 1826261 | 115.973
Ka 333.8464 | 49.15038 || 237.4512 | 116.1669 || 185.0064 | 117.4845
Uniform 167.9083 | 15.01381 || 87.99997 | 27.26422 || 69.85181 | 2567868
Epanechnikov 150.0067 | 14.21787 || 833347 | 2581883 || 66.14865 | 2431735
500 Gaussian 1655003 | 14.7985 | 86.73793 | 26.87322 || €8.85003 | 25.31042
Ky 158.774 | 1419706 || 83.21274 | 25.78104 || 66.05184 | 24.28176
Kz 160.8434 | 14.3821 | 8420731 | 26.11706 || 66.91274 | 2450824
Table 9. AMISE(f)of kernel estimates for smooth comp distribution.
Nsrr Nop hste
n Kernel functions — . .
AMISE() sD AMISE() sD AMISE(f) sD
Uniform 3287.642 | 796.9182 || 8534582 | 405.0623 || 225.7792 | 149.1765
Epanechnikov 311335 | 7546704 || 808.2126 | 383.5883 || 213.8093 | 141.2681
50 Gaussian 3240493 | 78548904 || 8412184 | 3992532 || 222.5411 | 147.0372
Ky 3108.794 | 7535658 || 807.0297 | 383.0269 || 2134965 | 141.0613
Kz 3149.313 | 763.3875 || 817.5483 | 388.0101 || 216.2792 | 142.8999
Uniform 1863589 | 318.6248 || 278.9935 | 99.16704 | 76.31698 | 33.59005
Epanechnikov 1764.793 | 301.7332 || 264.2027 | 93.9008 | 72.27001 | 31.80931
100 Gaussian 1836.863 | 314.0554 || 274.9923 | 97.74487 || 75.22241 | 33.10834
kL 176221 | 3012016 || 2638161 | 93.77234 || 7216518 | 31.76275
k2 1785.178 | 305.2185 || 267.2546 | 04.99454 || 73.10579 | 3217674
Uniform 1070634 | 129.5253 || 97.80193 | 22.71941 || 27.78746 | 9.245328
Epanechnikov 1013875 | 122.6586 || 9261695 | 2151497 || 26.31423 | 8.755199
200 Gaussian 105528 | 127.6677 || 96.39928 | 22.39359 || 27.3889 | 9.112742
K 1012391 | 122.4791 || 9248142 | 2148347 || 26.27575 | 8.742382
Ke 1025586 | 124.0754 || 93.68681 | 2176348 || 26.61823 | 8.856327
Uniform 513.0715 | 37.13692 || 26.1958 | 3.752915 || 7.347895 | 1.504265
Epanechnikov 4858715 | 35.16814 || 24.80702 | 3.553958 || 6.958305 | 1.424519
500 Gaussian 505.7135 | 36.60433 | 258201 | 3.699004 || 7.24249 | 1.482693
Ky 4851604 | 35.11667 || 24.77072 | 3.548756 || 6.948138 | 1.422433
Kz 491.4838 | 3557437 || 25.09358 | 3.595000 || 7.038705 | 1.440073
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5.Conclusions
When sample sizes are 50 and 100, the f(x, X) using K; with STE bandwidth
performs well for sample data from populations distributed as kurtotic unimodal or

trimodal. For data from multimodal distributions, the f(x,)~() using the proposed K;

performs well, and the f(x X) using the proposed K, perform better than the f(x X)

with uniform, Gaussian functions.

The estimates with DPI bandwidth perform well when the sample data are from
Gaussian distribution. For data withfrom skewed unimodal distributions, the estimates
with SRT bandwidth perform well which is the same as data from asymmetric claw

population with samples of sizes 50 and 100. For sample from populations distributed as

kurtotic unimodal, separated bimodal or multimodal, the AMISE of f(x,)~() with STE

bandwidth is lower than the AMISE of the other kernel estimates except for data with
double claw distribution and the sample sizes are small.

For sample from unimodal (Gaussian, skewed, kurtotic), separated bimodal or

trimodal distributions, the AMISE of f(x,gg) are closed to zero as the sample size
gets larger. For large sample size, AMISE of the estimates f(x,)N() using

Epanechnikov, K; or K, functions become closer. The AMISE(f ) becomes smaller as

the sample sizes increase which implies that the kernel estimate is becoming more

accurate.

The AMISE(f), when the sample data are form highly skewed, kurtosis and

multimodal populations, is large because the bandwidth is far from the optimal bandwidth
which is consistent with the degree of estimation difficulty which increases with skewness,

kurtosis and multimodality of the distributions [5].
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