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Abstract 

 This paper presents a new estimator for a Gaussian AR(1) process with an 

unknown drift and additive outliers. We apply the improved recursive median adjustment 

to the weighted symmetric estimator of Park and Fuller [1]. We consider the following 

estimators: the weighted symmetric estimator ( ˆWρ ), the recursive mean adjusted 

weighted symmetric estimator ( ˆR Wρ − ) proposed by Niwitpong [2], the recursive median 

adjusted weighted symmetric estimator ( ˆRMD Wρ − ) proposed by Panichkitkosolkul [3] and 

the improved recursive median adjusted weighted symmetric estimator ( ˆ IRMD Wρ − ). Using 

Monte Carlo simulations, we compare the mean square error (MSE) of estimators. 

Simulation results have shown that the proposed estimator, ˆ IRMD Wρ − , provides a MSE 

lower than those of ˆWρ , ˆR Wρ − and ˆRMD Wρ −  for almost all situations.  
______________________________ 
Keywords: additive outliers, AR(1) model, parameter estimation, recursive median. 

 

1. Introduction 

Time series observations are sometimes influenced by interrupting phenomena, 

such as strikes, outbreaks of war, sudden political or economic crises, unexpected hot or 

cold waves, and even unnoticed errors of typing or recording. Such values are usually 
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referred to as outliers. Because outliers are known to wreck havoc on the parameter 

estimation, it is therefore important to have procedures that will deal such outlier effects. 

Outliers in a time series were first studied by Fox [4], who introduced two statistical 

models for times series contaminated by outliers, namely, additive outliers (AO) and 

innovations outliers (IO). Additive outlier corresponds to the situation in which a gross 

error of observation or recording error affects a single observation [4]. An innovations 

outlier affects not only the particular observation but also subsequent observations [4]. A 

time series that does not contain any outliers is called an outlier-free series. 

Suppose an outlier-free time series { }; 2,3,...,tX t n= follows an AR(1) model: 

1( )t t tX X eµ ρ µ−= + − +            (1) 

where µ  is the population mean, ρ  is an autoregressive parameter, ( 1,1)ρ ∈ − , te   are 

unobservable independent errors and identically 2(0, )eN σ  distributed. For 1ρ = , the 

model (1) is called the random walk model, otherwise it is called a stationary AR(1) 

process when 1ρ < . For ρ  close to one or near a non-stationary process, the mean 

and variance of this model change over time. Let the observed time series be denoted by 

{ }tY . In the simple case when { }tX  has a single additive outlier at time point T  

(1 )T n< < , model (1) can be modified as to 

( )T
t t tY X Iδ= +             (2) 

where δ  represents the magnitude of the additive outlier effect and ( )T
tI  is an indicator 

variable such that 

( ) 1 ,
0 , .

T
t

t T
I

t T
=

=  ≠
 

It is known that the ordinary least squares estimator of ρ , which is denoted by 

ˆOLSρ , for (1) is biased (see e.g., Shaman and Stine [5]). Therefore, statisticians have 

suggested methods to reduce the bias. Park and Fuller [1] proposed the weighted 

symmetric estimator of ρ , which is denoted by ˆWρ . So and Shin [6] applied a recursive 

mean adjustment to the OLS estimator (abbreviated, R-OLS) and they concluded that 

the mean square error of the R-OLS estimator, which is denoted by ˆR OLSρ − , is smaller 

than the OLS estimator for (0,1)ρ ∈ . They also showed that the ˆR OLSρ −  estimator has a 

coverage probability which is close to the nominal value. Niwitpong [2] applied the 

recursive mean adjustment to the weighted symmetric estimator of Park and Fuller [1] 

(abbreviated, R-W). Panichkitkosolkul [3] proposed an estimator for an unknown mean 



Wararit Panichkitkosolkul                                                                                             3 

Gaussian AR(1) process with additive outliers by applying the recursive median 

adjustment to the weighted symmetric estimator (abbreviated, RMD-W). He found that 

the ˆRMD Wρ −  estimator provides mean square error lower than those of ˆWρ  and ˆR Wρ −  for 

almost all situations. We, therefore, apply the improved recursive median adjustment to 

the weighted symmetric estimator (abbreviated, IRMD-W) for model (1) when there are 

additive outliers in time series data. Because the outliers do not affect the median 

values, we replace the recursive mean adjustment with the improved recursive median 

adjustment to the weighted symmetric estimator. Our aim in this paper is to compare four 

estimators, ˆWρ , ˆR Wρ − , ˆRMD Wρ − and ˆ IRMD Wρ − , in terms of mean square error (MSE) of 

estimators. 

The remainder of this paper is organized as follows. Section 2 describes the ˆWρ , 

ˆR Wρ − , ˆRMD Wρ − and ˆ IRMD Wρ −  in detail. Simulation results obtained from Monte Carlo 

simulation are shown in Section 3. In Section 4, all the estimators are illustrated and 

compared through macro-economic real example. A discussion of the results and 

conclusions are presented in Section 5. 

 

2. Detailed Description of the Estimators 
Park and Fuller [1] proposed the weighted symmetric estimator of ρ  given by 

1
2

2 1 2
1

3 1

( )( )
ˆ

( ) ( )

n

t t
t

W n n

t t
t t

Y Y Y Y

Y Y n Y Y
ρ

−
=

−
−

= =

− −
=

− + −

∑

∑ ∑
.           (3) 

Niwitpong [2] replaces Y  by 
1

1 t

t i
i

Y Y
t =

= ∑  in (3). The estimator of ρ  obtained as a 

result of this recursive mean adjustment is 

1 1
2

2 1 2
1 1

3 1

( )( )
ˆ

( ) ( )

n

t t t t
t

R W n n

t t t t
t t

Y Y Y Y

Y Y n Y Y
ρ

− −
=

−
−

− −
= =

− −
=

− + −

∑

∑ ∑
.          (4) 

When there are outliers in time series data, it affects the recursive mean tY  in (4). 

Panichkitkosolkul [3] replaced the recursive mean in (4) by the recursive median. The 

estimator of ρ  obtained as a result of the recursive median adjustment is 
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1 1
2

2 1 2
1 1

3 1

( )( )
ˆ

( ) ( )

n

t t t t
t

RMD W n n

t t t t
t t

Y Y Y Y

Y Y n Y Y
ρ

− −
=

−
−

− −
= =

− −
=

− + −

∑

∑ ∑

 

 
          (5) 

where  1 2( , ,..., )t tY median Y Y Y= . 

We can also reduce the effect of outliers on an estimator of ρ  in model (1) by 

using the improved recursive median adjustment. The improved recursive median values 

are derived from computing the double recursive median. There are two steps for 

computing the improved recursive median. First, we compute the recursive median ( tY ) 

by using time series data tY . Second, we calculate the recursive median again by using 

the recursive median obtained from the first step. Therefore, the recursive median in (5) 

is replaced by the improved recursive median. The proposed estimator of ρ  obtained as 

a result of this improved recursive median adjustment is given by 

1 1
2

2 1 2
1 1

3 1

( )( )
ˆ

( ) ( )

n

t t t t
t

IRMD W n n

t t t t
t t

Y Y Y Y

Y Y n Y Y
ρ

− −
=

−
−

− −
= =

− −
=

− + −

∑

∑ ∑

 

 
           (6) 

where  1 2( , ,..., )t tY median Y Y Y=   
 and  1 2( , ,..., )t tY median Y Y Y= . An R function to compute the 

estimator in (6) is given in the Appendix. 

In the next section, we present the Monte Carlo simulation results from estimating 

the mean square error (MSE) of these estimators, ˆWρ , ˆR Wρ − , ˆRMD Wρ −  and ˆRMD Wρ − . 

 
3. Simulation Results 

In this section we examine−via Monte Carlo simulations−the performance of the 

proposed estimator for a Gaussian AR(1) process with unknown drift and additive 

outliers, with particular emphasis on comparisons between the new and existing 

approaches. Data are generated from an AR(1) process1 with an unknown drift and 

additive outliers. The following parameter values were used; 2( , )eµ σ = (0, 1); ρ = 0.1, 0.2, 

0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9; sample sizes n = 25, 50, 100 and 250; the magnitude 

of the AOs effect 3 eδ σ=  and 5 eσ ; the percentage of additive outliers 5%p =  and 10% . 

                                                           
1  We generate 

2

1 2~ (0, )
1

eY N σ
ρ−

 and simulate the time series of length 50n +  but the time series used in 

calculations are 51 52 50{ , ,..., }nY Y Y + .  
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All simulations were performed using programs written in the R statistical software [7, 8] 

with the number of simulation runs, M  = 10,000. In addition, the additive outliers 

occurred randomly. Tables 1-2 and Figures 1-4 show the estimated MSEs of all 

estimators, ˆWρ , ˆR Wρ − , ˆRMD Wρ − and ˆ IRMD Wρ − . As can be seen from Tables 1-2 and Figures 

1-4, the MSE of ˆWρ  is larger than the MSEs of the other estimators especially when ρ  

is close to one and for small sample sizes. These values decrease as sample sizes get 

larger. ρ̂W  performs well for 50≥n . On the other hand, the new estimator, ˆ IRMD Wρ − , 

provides the lowest MSE in all scenarios except when ρ = 0.1 and small sample sizes 

( n = 25 and 50). Additionally, the ˆ IRMD Wρ −  performs very well with respect to the other 

three estimators. The proposed estimator, ˆ IRMD Wρ −  in (6), dominates all estimators since 

the MSE of the proposed estimator is the lowest for almost all cases. For the rest, the 

MSE of ˆRMD Wρ −  is less than that of ˆR Wρ −  and ρ̂W  for almost all situations. The ˆRMD Wρ −  

often ranks the second best following the proposed estimator. Furthermore, the MSEs 

showed in Table 1 are less than those reported in Table 2 because time series data of 

Table 1 have less outliers. 

 

4. An Example 

In this section we applied a proposed estimator to a macro-economic time series.  

A real data set is the yearly real exchange rates between the USA and Sudan from ERS 

International Macroeconomic Data Set [9]. This series comes from 1970 to 2008 giving a 

total of 39 observations. The time series plot, the ACF and the PACF, as shown in 

Figures 5-6, suggest that an AR(1) model is suitable. We detect the additive outliers of 

this series by using an iterative detecting procedure proposed by Chang et al. [10] via 

the R statistical software (see i.e., Cryer and Chan [11], p.257-259 and p.455). We found 

that the time indices of potential AO are 22t =  and 23  (year 1991 and 1992) and we 

also construct all estimators, ˆWρ , ˆR Wρ − , ˆRMD Wρ −  and ˆ IRMD Wρ −  and the standard errors of 

these estimators. The standard errors formulae are also shown in Figure 7. 

As presented in Table 3, the proposed estimator, ˆ IRMD Wρ − , provides the standard 

error of the estimator less than those of the ˆWρ , ˆR Wρ −  and ˆRMD Wρ −  about 11.6%, 11.1% 

and 10.0%, respectively. The real example in this section confirms that the proposed 

estimator ˆ IRMD Wρ −  is much better than the other estimators. 
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Table1. The estimated mean square error (MSE) of ˆWρ , ˆR Wρ − , ˆRMD Wρ −  and ˆ IRMD Wρ −  

when percentage of additive outliers; 5%p = . 

n  ρ  3 eδ σ=  5 eδ σ=  
W R-W RMD-W IRMD-W W R-W RMD-W IRMD-W 

25 0.1 0.0421 0.0374 0.0353 0.0423 0.0390 0.0343 0.0313 0.0329 
0.2 0.0499 0.0424 0.0400 0.0403 0.0545 0.0461 0.0423 0.0363 
0.3 0.0607 0.0509 0.0474 0.0408 0.0769 0.0650 0.0613 0.0463 
0.4 0.0716 0.0599 0.0570 0.0441 0.1036 0.0886 0.0855 0.0610 
0.5 0.0793 0.0664 0.0641 0.0444 0.1324 0.1141 0.1112 0.0761 
0.6 0.0934 0.0788 0.0771 0.0505 0.1623 0.1420 0.1391 0.0939 
0.7 0.1029 0.0882 0.0874 0.0549 0.1914 0.1688 0.1669 0.1115 
0.8 0.1121 0.0975 0.0979 0.0602 0.2101 0.1873 0.1872 0.1224 
0.9 0.1174 0.1045 0.1054 0.0634 0.2207 0.1984 0.1993 0.1296 

50 0.1 0.0215 0.0200 0.0193 0.0235 0.0229 0.0210 0.0193 0.0196 
0.2 0.0260 0.0233 0.0216 0.0215 0.0341 0.0306 0.0281 0.0232 
0.3 0.0308 0.0275 0.0257 0.0217 0.0491 0.0442 0.0410 0.0304 
0.4 0.0367 0.0325 0.0307 0.0228 0.0683 0.0619 0.0585 0.0412 
0.5 0.0439 0.0391 0.0370 0.0250 0.0878 0.0802 0.0773 0.0529 
0.6 0.0485 0.0435 0.0423 0.0266 0.1062 0.0979 0.0950 0.0640 
0.7 0.0514 0.0468 0.0457 0.0280 0.1180 0.1097 0.1074 0.0701 
0.8 0.0493 0.0454 0.0448 0.0260 0.1170 0.1090 0.1073 0.0683 
0.9 0.0436 0.0412 0.0406 0.0227 0.1063 0.1001 0.0987 0.0606 

100 0.1 0.0114 0.0107 0.0101 0.0112 0.0133 0.0125 0.0111 0.0107 
0.2 0.0149 0.0138 0.0126 0.0113 0.0238 0.0221 0.0191 0.0150 
0.3 0.0199 0.0183 0.0168 0.0128 0.0402 0.0378 0.0337 0.0253 
0.4 0.0258 0.0239 0.0222 0.0151 0.0594 0.0562 0.0516 0.0387 
0.5 0.0317 0.0295 0.0278 0.0181 0.0783 0.0746 0.0701 0.0519 
0.6 0.0353 0.0331 0.0317 0.0198 0.0957 0.0915 0.0875 0.0640 
0.7 0.0361 0.0342 0.0329 0.0203 0.1037 0.0996 0.0958 0.0678 
0.8 0.0320 0.0306 0.0297 0.0171 0.0983 0.0946 0.0920 0.0620 
0.9 0.0235 0.0228 0.0222 0.0123 0.0727 0.0704 0.0685 0.0426 

250 0.1 0.0051 0.0049 0.0045 0.0045 0.0074 0.0071 0.0057 0.0050 
0.2 0.0079 0.0075 0.0067 0.0052 0.0164 0.0158 0.0130 0.0105 
0.3 0.0119 0.0113 0.0103 0.0074 0.0294 0.0285 0.0249 0.0201 
0.4 0.0163 0.0157 0.0146 0.0103 0.0462 0.0450 0.0409 0.0333 
0.5 0.0203 0.0196 0.0185 0.0128 0.0621 0.0608 0.0567 0.0461 
0.6 0.0228 0.0221 0.0212 0.0145 0.0755 0.0740 0.0704 0.0568 
0.7 0.0218 0.0212 0.0205 0.0135 0.0798 0.0784 0.0756 0.0591 
0.8 0.0179 0.0175 0.0169 0.0107 0.0687 0.0675 0.0657 0.0486 
0.9 0.0101 0.0100 0.0097 0.0056 0.0408 0.0402 0.0390 0.0259 
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Table2. The estimated mean square error (MSE) of ˆWρ , ˆR Wρ − , ˆRMD Wρ −  and ˆ IRMD Wρ −  

when percentage of additive outliers; 10%p = . 

n  ρ  3 eδ σ=  5 eδ σ=  
W R-W RMD-W IRMD-W W R-W RMD-W IRMD-W 

25 0.1 0.0435 0.0387 0.0357 0.0408 0.0440 0.0386 0.0337 0.0336 
0.2 0.0552 0.0469 0.0424 0.0399 0.0656 0.0565 0.0489 0.0413 
0.3 0.0717 0.0603 0.0548 0.0436 0.0983 0.0852 0.0754 0.0590 
0.4 0.0928 0.0784 0.0726 0.0527 0.1396 0.1221 0.1118 0.0852 
0.5 0.1129 0.0961 0.0909 0.0623 0.1845 0.1631 0.1516 0.1139 
0.6 0.1362 0.1173 0.1122 0.0748 0.2334 0.2089 0.1970 0.1460 
0.7 0.1553 0.1355 0.1318 0.0864 0.2749 0.2477 0.2371 0.1726 
0.8 0.1672 0.1476 0.1449 0.0939 0.3156 0.2851 0.2748 0.1966 
0.9 0.1740 0.1558 0.1536 0.0982 0.3373 0.3065 0.2990 0.2090 

50 0.1 0.0233 0.0215 0.0196 0.0219 0.0265 0.0244 0.0200 0.0202 
0.2 0.0333 0.0299 0.0265 0.0234 0.0457 0.0415 0.0325 0.0275 
0.3 0.0455 0.0406 0.0358 0.0268 0.0739 0.0678 0.0547 0.0436 
0.4 0.0630 0.0568 0.0514 0.0359 0.1102 0.1022 0.0868 0.0678 
0.5 0.0789 0.0717 0.0664 0.0445 0.1504 0.1402 0.1245 0.0973 
0.6 0.0944 0.0866 0.0810 0.0538 0.1892 0.1778 0.1618 0.1237 
0.7 0.1023 0.0945 0.0903 0.0583 0.2237 0.2110 0.1960 0.1462 
0.8 0.1017 0.0946 0.0910 0.0572 0.2370 0.2238 0.2119 0.1526 
0.9 0.0914 0.0859 0.0835 0.0506 0.2239 0.2120 0.2032 0.1386 

100 0.1 0.0128 0.0120 0.0107 0.0114 0.0160 0.0150 0.0110 0.0110 
0.2 0.0207 0.0192 0.0162 0.0132 0.0322 0.0302 0.0214 0.0179 
0.3 0.0311 0.0289 0.0252 0.0184 0.0575 0.0547 0.0421 0.0344 
0.4 0.0434 0.0406 0.0364 0.0255 0.0892 0.0854 0.0703 0.0576 
0.5 0.0572 0.0541 0.0497 0.0345 0.1241 0.1195 0.1036 0.0843 
0.6 0.0657 0.0624 0.0586 0.0400 0.1567 0.1515 0.1361 0.1091 
0.7 0.0703 0.0671 0.0641 0.0427 0.1840 0.1781 0.1651 0.1291 
0.8 0.0643 0.0617 0.0594 0.0377 0.1823 0.1766 0.1671 0.1239 
0.9 0.0461 0.0446 0.0431 0.0257 0.1435 0.1389 0.1334 0.0899 

250 0.1 0.0063 0.0060 0.0049 0.0047 0.0095 0.0091 0.0052 0.0051 
0.2 0.0127 0.0122 0.0098 0.0076 0.0245 0.0237 0.0154 0.0133 
0.3 0.0220 0.0212 0.0180 0.0138 0.0470 0.0459 0.0338 0.0295 
0.4 0.0333 0.0323 0.0289 0.0223 0.0766 0.0751 0.0605 0.0532 
0.5 0.0444 0.0432 0.0398 0.0308 0.1088 0.1070 0.0915 0.0804 
0.6 0.0515 0.0502 0.0474 0.0362 0.1378 0.1358 0.1214 0.1059 
0.7 0.0525 0.0514 0.0492 0.0365 0.1552 0.1530 0.1410 0.1195 
0.8 0.0451 0.0443 0.0428 0.0301 0.1501 0.1480 0.1402 0.1138 
0.9 0.0254 0.0250 0.0243 0.0153 0.1001 0.0986 0.0953 0.0693 
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Table3. The parameter estimates and the standard error of estimators of the US/Sudan 

of real exchange rates series. 

Methods Estimates Standard Error (SE) 
W 0.6766 0.11871 

R-W 0.6799 0.11820 
RMD-W 0.6860 0.11706 
IRMD-W 0.7435 0.10641 

 

 
Figure 1. The estimated mean square error (MSE) of ˆWρ , ˆR Wρ − , ˆRMD Wρ −  and ˆ IRMD Wρ −  

when percentage of additive outliers; 5%p =  and magnitude of the AOs effect; 3 eδ σ= . 
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Figure 2. The estimated mean square error (MSE) of ˆWρ , ˆR Wρ − , ˆRMD Wρ −  and ˆ IRMD Wρ −  

when percentage of additive outliers; 5%p =  and magnitude of the AOs effect; 5 eδ σ= . 
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Figure 3. The estimated mean square error (MSE) of ˆWρ , ˆR Wρ − , ˆRMD Wρ −  and ˆ IRMD Wρ −  

when percentage of additive outliers; 10%p =  and magnitude of the AOs effect; 3 eδ σ= . 
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Figure 4. The estimated mean square error (MSE) of ˆWρ , ˆR Wρ − , ˆRMD Wρ −  and ˆ IRMD Wρ −  

when percentage of additive outliers; 10%p =  and magnitude of the AOs effect; 5 eδ σ= . 
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Figure 5. The US/Sudan of real exchange rates; annual from 1970 to 2008. 
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Figure 6. ACF and PACF of the US/Sudan of real exchange rates. 
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Figure 7. The standard error of all estimators. 

 

5. Discussion and Conclusion 

We have proposed a new estimator for a Gaussian AR(1) process with an 

unknown drift and additive outliers. This proposed estimator of ρ  is obtained by applying 

the improved recursive median adjustment to the weighted symmetric estimator. The 

improved recursive median values are derived from computing the double recursive 

median. Furthermore, the weighted symmetric estimator ( ˆWρ ), the recursive mean 

adjusted weighted symmetric estimator ( ˆR Wρ − ), the recursive median adjusted weighted 

symmetric estimator ( ˆRMD Wρ − ) and the proposed estimator ( ˆ IRMD Wρ − ) are compared in 

this study. The new estimator ˆ IRMD Wρ − , performs better than ˆWρ , ˆR Wρ − , and ˆRMD Wρ −  in 

terms of the MSE for almost all cases. One reason behind this is that the additive outliers 

do not affect the median values. Moreover, the improved recursive median values 

applied in the formula for ˆ IRMD Wρ −  in (6) can also reduce the mean square error (MSE) of 

the estimator. Therefore, the proposed estimator ( ˆ IRMD Wρ − ) which is based on the 

improved recursive median adjustment is superior to the existing estimators. 

Finally, let us mention a problem for further research, which goes beyond the 

scope of the present paper but is of practical interest. In practice, a statistician or an 

econometrician has one time series set that is contaminated by various kinds of outliers 
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(i.e., additive outliers (AO) and innovations outliers (IO)). Thus, it would be interesting to 

see whether, in this context, the proposed approach still maintains an edge over the 

other methodologies. 

 

Appendix: R function for Proposed Estimator 

rho.irmdw <- function (y) 

 { 

T   <- length(y)  

ss1 <- rep(0,T) 

ss2 <- rep(0,T) 

ss3 <- rep(0,T) 

rmed <- rep(0,T) 

for (j in 1:T) {  rmed[j] <- median(y[1:j])  } 

for(i in 2:T) {  ss1[i] <- (y[i]-median(rmed[1:i]))*(y[i-1]-median(rmed[1:(i-1)]))  } 

for(j in 3:T) {  ss2[j] <- (y[j-1]- median(rmed[1:(j-1)]))^2  } 

for(k in 1:T) { ss3[k] <- (y[k]- median(rmed[1:k]))^2  } 

rho.hat.irmdw <- sum(ss1[2:T])/(sum(ss2[3:T])+(1/T)*sum(ss3)) 

return(rho.hat.irmdw)   

} 

 
Acknowledgements 

The author would like to thank anonymous referees for their suggestions and 

comments which were helpful in improving this paper. The author also acknowledges the 

excellent comments provided by Dr. Gareth Clayton on earlier drafts of this paper. 

 

References 

[1] Park, H.J., and Fuller, W.A., Alternative estimators and unit root tests for the 

autoregressive process. Journal of Time Series Analysis, 1995; 16:415-429. 

[2] Niwitpong, S., Predictive inference for times series. PhD Thesis, La Trobe 

University, Australia, 2007. 

[3] Panichkitkosolkul, W., New estimator for an unknown mean Gaussian AR(1) 

process with additive outliers. Chiang Mai Journal of Science, 2010; 37:14-20. 

[4] Fox, A.J., Outliers in time series. Journal of the Royal Statistical Society, 1972; 

34:350-363. 



Wararit Panichkitkosolkul                                                                                             15 

[5] Shaman, P., and Stine, R.A., The bias of autoregressive coefficient estimators. 

Journal of the American Statistical Association, 1988; 83:842-848.   
[6] So, B.S., and Shin, D.W., Recursive mean adjustment in time series inferences. 

Statistics Probability Letters, 1999; 43:65-73. 

[7] The R Development Core Team. An introduction to R. R Foundation for Statistical 

Computing, Vienna, 2008a. 

[8] The R Development Core Team. R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, 2008b. 

[9] ERS International Macroeconomic. Real historical exchange rates for Baseline 

countries and regions, 1970-2008. Online from 

http://www.ers.usda.gov/Data/Macroeconomics/#HistoricalMacroTables. 

[10] Chang, I., Tiao, G.C., and Chen, C., Estimation of time series parameters in the 

presence of outliers. Technometrics, 1988; 30:193-204.  

[11] Cryer, J.D., and Chan, K.S., Time Series Analysis with Application in R. Springer, 

New York, 2008. 

 

 

 

 
 
 

 

 
 


	Thailand Statistician
	January 2010; 8(1) : 1-15
	www.statassoc.or.th
	Figure 1. The estimated mean square error (MSE) of ,,  and
	Figure 2. The estimated mean square error (MSE) of ,,  and
	Figure 3. The estimated mean square error (MSE) of ,,  and
	Figure 4. The estimated mean square error (MSE) of ,,  and
	[4] Fox, A.J., Outliers in time series. Journal of the Royal Statistical Society, 1972; 34:350-363.
	[5] Shaman, P., and Stine, R.A., The bias of autoregressive coefficient estimators. Journal of the American Statistical Association, 1988; 83:842-848.
	[6] So, B.S., and Shin, D.W., Recursive mean adjustment in time series inferences. Statistics Probability Letters, 1999; 43:65-73.
	[7] The R Development Core Team. An introduction to R. R Foundation for Statistical Computing, Vienna, 2008a.
	[8] The R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 2008b.
	[9] ERS International Macroeconomic. Real historical exchange rates for Baseline countries and regions, 1970-2008. Online from
	http://www.ers.usda.gov/Data/Macroeconomics/#HistoricalMacroTables.
	[10] Chang, I., Tiao, G.C., and Chen, C., Estimation of time series parameters in the presence of outliers. Technometrics, 1988; 30:193-204.
	[11] Cryer, J.D., and Chan, K.S., Time Series Analysis with Application in R. Springer, New York, 2008.

