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Abstract 

This study concentrates on the construction of weights for the estimation of 

regression coefficients in multiple linear regression with outliers using a new 

proposed influence function. Set of weights, modified weights one (MW1) are 

obtained from newly modified influence function. The proposed estimates are 

applied in the M-estimator of the regression coefficients with outliers and compared 

to ordinary least-squares (OLS) and other M-estimates by simulation. Results of the 

estimates indicate that the new weights out perform the least squares estimates and 

the other M-estimates. As for X-outliers and XY-outliers, it is found that the proposed 

estimates using MW out perform the least squares estimates for all sample sizes. It 

also gives high values of R2 and low MSE at different percentages of outliers as well. 

______________________________ 
Keywords: influence functions, M-estimates, multiple linear regression, outliers, robust 

regression, weighted least-squares. 
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1.  Introduction 

Linear regression models are commonly used to study the relationship between 

a response variable and independent variables. A linear model is one of the form 

y X β ε= +  where y  is an 1n×  vector of observed values of the dependent variable, 

( )1 2, ,..., nX x x x ′= , an n p×  matrix with row vector ( )1 2, ,...,i i ipix x x x ′′ = of components ijx  

of the regressors, 1,2,..., .,i n=  1,2,...,j p= , β  a 1p×  vector of unknown parameters, 

and ε  an 1n×  vector of errors. If ε  follows a normal 2(0, )N Iσ distribution, then the 

ordinary least-squares (OLS) estimate of β
 
turn-out to be the best linear unbiased 

estimates (BLUE) of β according to the Gauss-Markov theorem. The OLS estimate is 

BLUE also without residual value of β  which minimizes the sum of squares of the 

residuals, ( )
2

ˆ
1

ˆ
n

i i
i

Min y x
β

β
=

′−∑ . In many situations, the sample data violate the above 

assumptions. In particular, outliers have effects on the OLS estimate. In several cases, 

the OLS estimate may not be appropriate and not sensitive to the presence of outliers. 

When the sample data contain some outliers, they may have strong influence on 

regression analysis. Robust regression is an alternative to find estimates of the 

coefficient β  for data with outliers. Robust regression reduces the effects of outliers 

instead of ignoring them. In addition to insensitivity to outliers, a robust estimation 

procedure should produce essentially the same results as OLS when the underlying 

assumption is true with no outliers. One of the three types of outliers may exist with the 

sample data in regression. There are X-outliers, Y-outliers and XY-outliers. They are 

explained in many textbooks on robust estimations such as, Thomas [1], Draper [2], 

Montgomery et al. [3]. It is important to have some special treatment for the analysis of the 

data with outliers. This study focuses on a modification of the functionρ −  and the 

estimation of the regression coefficients with outliers. Robust estimates of regression 

coefficients were introduced by many authors. They are in the class of M-estimators, high 

breakdown estimators, bounded-influence estimators and others. Some of the most 

widely known regression estimators are the least median squares estimator (LMS), the 

least trimmed square estimator (LTS) , the S-estimators [4], the MM-estimator [5], the 

generalized M-estimator (GM) [6], Krasker and Welsch [7] handled all X-outliers by 

replacing the least squares errors by studentized residuals, standardized residuals, or 

DEFFITi and PRESS residuals. Simpson Ruppert and Carroll [8] used the compound 
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estimator. In this paper, we focus on finding proper weights from a nearly proposed 

functionρ −  for the estimation of regression coefficients with outliers using M-estimates 

as numerical example shows the idea of weight construction and the weight application in 

the estimates of regression coefficients with outliers. A simulation study is carried out to 

compare the R2 and MSE with those from the OLS and other M-estimates. 

 

2.  Weight Construction 

A functionρ −  is used to derive weights for the sample data so that the outliers 

will be less important. Several functionsρ −  have been proposed by many authors. 

Some of these are Andrew’s, Hampel’s, Huber’s, Tukey’s and Winsorized’s functions. 

The functionsρ −  are symmetric, bounded and nondecreasing with unique minimum at 

zero. The functionsρ −  should have the following properties1: if  0 u v≤ ≤ , 

then 0 ( ) ( )u vρ ρ≤ ≤ , where u and v  are some real numbers and if ( )supa rρ=  then 

0 a< < ∞ , where ˆ
i i ir y x β′= − , ( )1 2, ,...,i i ipix x x x ′′ = for 1,2,...,i n=  and iy  by least-squares 

based on the whole data set of n  observations. The M-estimators use weights which 

minimize the sum of 
ˆ

ˆ
i iy x β

ρ
σ

 ′−
 
 
 

, i.e. 
ˆ

1

ˆ

ˆ

n
i i

i

y x
Min
β

β
ρ

σ=

 ′−
 
 
 

∑  where functionρ −  is a 

symmetric, bounded and nondecreasing function with minimum at 0 . The most popular 

choice for σ̂  is an estimate of the median absolute deviation defined as 

( )ˆ ( ) / 0.6745i imedian r med rσ = − . The constant 0.6745 makes σ̂  an approximately 

unbiased estimate of σ , if n  is large and error distribution is normal. Taking the first and 

second partial derivatives of the sum of residuals with respect to the regression 

coefficients ˆ
jβ , for 1,2,...,j p= , setting them equal to zero and solving leads for β  to 

desired results. This gives two systems of equations:  

 
1 1

ˆ ˆ
. 0ˆ ˆˆ ˆ

n n
i ii i i

i iij j

y x y xd d dr
drd d

β β
ρ ρ

σ σβ β= =

      ′ ′− −      = =               
∑ ∑ . 

                                                           
1 functionsρ −  with these properties yield the proper weights to be applied in the estimation in the class of M-
estimators. See Yohai, 1987: 642. 
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Hence,  ( )
1

ˆ
0

ˆ

n
i i

ij
i

y x
x

β
ρ

σ=

 ′− ′ − =
 
 

∑ .   .………. (1)  

Also  
1 1

ˆ ˆ
. 0ˆ ˆˆ ˆ

n n
i ii i i

i iij j

y x y xd d dr
drd d

β β
ρ ρ

σ σβ β= =

      ′ ′− −      ′ ′= >               
∑ ∑ .

  .………. (2) 

Hence, ( )
1

ˆ
0

ˆ

n
i i

ij
i

y x
x

β
ρ

σ=

 ′− ′′ − >
 
 

∑ , where 
ˆ

ˆ
i iy x β

ρ
σ

 ′− ′
 
 

and 
ˆ

ˆ
i iy x β

ρ
σ

 ′− ′′
 
 

 are 

nonlinear, satisfying the properties is Montgomery et al. [3] and Maronna, Martin and 

Yohai [9]. The estimates of β  is the solution of (1) and (2) obtained by iteratively 

reweighted least squares. Suppose that β̂
 
and σ̂  are the initial estimates by least 

squares. Instead of (1) and (2), we can equivalently write 

  
( )

1 1

ˆ ˆ ˆ
/ 0

ˆ ˆ ˆ

pn
i i ii i i

ij
i j

y x y x y x
x

β β β
ρ

σ σ σ= =

     ′ ′ ′− − −     ′ − =
     
     

∑∑  , .………. (3) 

or ( ) ( )
1 1

ˆ ˆ/ 0
pn

ij i i
i j

W x y x β σ
= =

 ′− − = 
 ∑∑ ,for 1,2, ,j p=   , .………. (4) 

where  

ˆ ˆ ˆ
/ , 0,

ˆ ˆ ˆ

ˆ ˆ
, 0.

ˆ ˆ

i i ii i i

ii

i ii i

y x y x y x

w
y x y x

β β β
ρ

σ σ σ

β β
ρ

σ σ

    ′ ′ ′− − −    ′ ≠
    
    = 

 ′ ′ − − ′′ =
   

 , .………. (5) 

which, matrix weight function is 

11

22

0 0
0 0

0 0 nn

w
w

W

w

 
 
 =
 
 
  





   



, 0 1iiw≤ ≤  and 0ijw = with 

i j≠  for 1,2, ,i n=   and 1,2, ,j p=  . Construction of weights depends on the current 

residuals. The weights needed in the M-estimates can be derived by the following steps: 

1) Choose a functionρ −  with the desirable properties where c  is a constant 

chosen to be 3 as suggested by many authors. 
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2) Take the first partial derivatives of the functionρ −  with respect to jβ  

( 1,2, ,j p=  ) and equate them to zero, giving 
ˆ ˆ

/
ˆ ˆ

i ii iy x y xβ β
ρ

σ σ

   ′ ′− −
′   
   
   

. 

3) Take the second partial derivatives of the functionρ −  with respect to jβ  

( )1,2, ,j p=   and equate them to zero, giving
ˆ

ˆ
i iy x β

ρ
σ

 ′−
′′ 
 
 

. 

4) Solve the equations for the estimation of regression coefficients with outliers 

by iteratively reweighted least squares and find a weight function from 2) and 3). We get 

the modified weights function. 

 

3.  Estimation of Regression Coefficients with Outliers 

 A new influence function ρ  in (6) is introduced to obtain proper weights for the 

residuals so that the outliers will be less important. It is  

 

2 6
4

1

/ 2 / 6 , ,
ˆ ˆ ˆ

ˆ
/ , ,

ˆ ˆ

i i i

i

i i

r r ra c c
r

r rc c

σ σ σ
ρ

σ

σ σ

      + ≤                 =  
   

> 
 

 ,.………. (6) 

where the thi residuals, ˆ
i i ir y x β′= − , ( )1 2, ,...,i i ipix x x x ′′ = for 1,2,..., .i n= , a  and c  are 

constants. The constant c is chosen to be 3  as suggested by many authors2., when the 

estimates of regression coefficients with outliers approach these weighted least squares 

estimates of β , and σ̂  is an estimate of σ . The function in (6) is used to obtain a 

diagonal weight matrix W  whose diagonal elements are nonincreasing. Outlying 

observations will receive smaller weights by this process. Construction of weights 

needed in the M-estimates depends on the current residuals ir . 

 

Theorem 1 The proposed 1 functionρ − (6) gives a diagonal weight matrix, called 

modified weight one (MW1) with diagonal elements, 

                                                           
2 Different values of c  are suggested in the literature; Rousseeuw and Leroy used 2.5c =  (Rousseeuw and 

Leroy [4]), while Huber gave 2.0c = (Montgomery et al. [3]), Andrews suggested 3.14c =  (Huber [10]) and 

Tukey gave 1.0c = (Tukey [11]). 
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4
4

4
4

1/ 2 / , ,
ˆ ˆ

1 5 / , 0,
ˆ ˆ

1/ , .
ˆ ˆ

i i

i i
ii

i i

r rc c

r rw c

r rc c

σ σ

σ σ

σ σ

     + ≤     
     = + =      

  >  

 ,.………. (7) 

Proof  Take the first and second partial derivatives of the 1 functionρ −  (6) with 

respect to the coefficients ˆ
jβ , for 1,2,...,j p= . Setting the first partial derivatives equal to 

0  and a  is a constant 0.5, produces a system of p  estimating equations for the 

estimates of the coefficients. 

 1 1ˆˆ ˆ
i i

j

r d r
d

ρ ρ
σ σβ

    ′ = =    
    

( )
5

40.5 / , ,
ˆ ˆ ˆ

/ , .
ˆ ˆ

i i i

i i

r r rc c

r rsign c c

σ σ σ

σ σ

      + ≤             
   >  

  

 ,.………. (8)

 

The second derivative of 1 functionρ −  with respect to ˆ
jβ , 1,2,...,j p=  and a  is 

a constant 1.0, as follow, 

 1 1ˆˆ ˆ
i i

j

r d r
d

ρ ρ
σ σβ

    ′′′ =     
    

4
41 5 / , 0 .

ˆ ˆ
i ir rc
σ σ

    = + =       
 , ………. (9)

 The weight function in (7) is obtained by iteratively reweighted least squares. 

The weight function has elements is

4
4

4
4

1/ 2 / , ,
ˆ ˆ

1 5 / , 0,
ˆ ˆ

1/ , .
ˆ ˆ

i i

i i

i i

r rc c

r rc

r rc c

σ σ

σ σ

σ σ

     + ≤     
     = + =      

  >  

. So the MW1 

gives the weight function (7) using (5). 

 

Theorem 2 If the functionρ −  is symmetric, bounded and nondecreasing with unique 

minimum at zero, then weight matrix W  has diagonal elements /
ˆ ˆ
i i

ii
r rw ρ
σ σ
   ′=    
   

, which 

is bounded and monotone decreasing for 0ir >  and ˆ 0σ > . 
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Proof   To simplify the proof we assume ˆ 1σ = .  

Let ( ) ( )
1

ˆ
n

i i i
i

U r U y x β
=

′= −∑     ,.………. (10) 

where ( )iU r  is a quadratic function of a variable ik  as ( )1 2, ,...,i i ipix x x x ′′ = and replace 

functionρ −  by     ( ) 21
2i i iU k a ck k= + +    ,….…..…. (11) 

with a  and c  to be determined such that, assume ( ) ( )i iU k kρ≥ , for all ik , and 

( ) ( )i iU r rρ= ,where the vector of residual ( )1 2, ,...,i nr r r r ′′ = , for all 1,2,..., .i n=   

These conditions imply that U  and ρ  have a common at ˆ
i i ir y x β′= − . 

 ( ) ( )i i iU r c r rρ′ ′= + = . 

Hence 
( ) 1i i

ii
i i i

rc r w
r r r

ρ′
= − = −  and ( ) ( ) 21

2i i i ia r r r rρ ρ′= − + . The difference of functions  

 ( ) ( ) ( )i i iF k U k kρ= − ( ) ( ) ( )( ) ( )2 21 1
2 2i i i i i i i i ir r r r r r k k kρ ρ ρ ρ′ ′= − + + − + −  

 Since element of weight function matrix ( )
( )

i
ii

i

k
w

k
ρ′

=  is bounded and monotone 

decreasing for 0ik ≥  and the same holds for 0ik ≤  because satisfies the assumption 

symmetry, as ( ) ( ) 0i iF r F r= − = and ( ) ( ) 0.i iF r F r′ ′= − =  

Finally, ( ) ( ) ( )i i i i iF r r r k kρ ρ′ ′ ′= − + −  . 

It follows that ( )
0
0iF r

≤′ = ≥
.  ,.………. (12) 

Finally, ( ) ( ) ( )i i i i iF r r r k kρ ρ′ ′ ′= − + − . Since element of weight function matrix 

( )
( )

i
ii

i

k
w

k
ρ′

=  is bounded and monotone decreasing for 0ik ≥  as ( ) ( ) 0i iF k F r′ ≥ = , the 

same holds for 0ik ≤  because symmetry. 

 
4.  Applying the Modified Influence Function 

The robust estimate of β  are the iteratively reweighted least squares. The 

weights will change the effects of outliers in a data set. The outlier detection methods in 

multiple linear regression models have been studied and compared by Ampanthong and 
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Suwattee ([12], [13], [14] and [15]). Applying the modified influence function, the normal 

equations may be written in matrix form, 
*ˆ( )X WX X W yβ′ ′= , with W  a diagonal matrix of 

weights. Given a data set, we can compute the estimated values of β  by a one step 

regression following the steps: 

1) Find initial estimates β̂ of β  and 2σ̂  of 2σ  by least-squares. 

2) Compute the residuals ˆ
i i ir y x β′= − , for 1,2,...,i n= , and find the weights as 

described earlier. 

3) Find the estimates of the regression coefficients with outliers by the 

generated weighted least-squares method. 

4) Continue 2), 3) until the maximum difference of two successive pairs of 

estimates are arbitrarily small, i.e. * **

1
ˆ ˆmax j ji p
β β δ

≤ ≤
− < , where *ˆ

jβ and **ˆ
jβ are two 

successive estimates of jβ  of all regression coefficients and 0δ > . This guarantees that 

the two successive estimates almost agree with each other. 

 
5.  Properties of the New Estimators 

The M-estimators applied as iteratively reweighted least squares transform the 

weight matrix of diagonal elements 11 22, ,..., nnw w w . The new solution of weighted least-

squares estimators of β  are 

 ( ) ( )* 1ˆ X WX X W yβ −′ ′=    .………. (13) 

The weight function are calculated from the given functionρ − in order to find 

the estimates 
*

β̂ of β  as in (13). There are a number of possible estimates in the form 

of MW1 as in (7), which are equivalent to the best linear unbiased estimators of the 

regression coefficients. The estimator in (13) is in class of M-estimators. The M-estimator 

applied as iteratively reweighted least squares problem of set functionρ −  transform the 

weight function matrix of diagonal element 11 22, ,..., nnw w w , then the new solution of 

weighted least-squares. A statistics is equivariance if it has the following three properties 

According to Rousseeuw, et. al.[4] 〈3, the M-estimators are regression, scale, and affine 

equivariant. 

                                                           
〈3 Equivariance. A statistics T  is send to be equivariant if it has the following three properties  
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Lemma If a functionρ −  is location equivariant, scale equivariant and affine equivariant, 

then the estimating weight function has the same properties 

 
Proof The estimating weight function matrix has the same properties 

1)  If functionρ − is the location equivariant then

  * *** ˆ ˆ

ˆ ˆ ˆ
i ii ii

y x y u xr β β
ρ ρ ρ

σ σ σ

   ′ ′− + −     = =             

*ˆ

ˆ
i iy x

u
β

ρ
σ

 ′− = +  
 

  ………. (14) 

where 
** * ˆ

i i ir y x β′= − , *
i iy y u= +  as u  is any constant. The first and second derivative 

of functionρ −  with respect to ˆ
jβ , 1,2,...,j p= .are

  
* *

ˆˆ ˆ
i i

j

r d r
d

ρ ρ
σ σβ

    
′ =          

*

. 0ˆˆ
i i

i j

d r dr
dr d

ρ
σ β

  
= =     

 

and
* *

ˆˆ ˆ
i i

j

r d r
d

ρ ρ
σ σβ

    ′′′ =          

*

. ˆˆ
i i

i j

d r dr
dr d

ρ
σ β

  
′=      

, respectively.

 The resulting weight function matrix W
 
has diagonal elements 

 

* * *

* *

ˆ ˆ ˆ
/ , 0,

ˆ ˆ ˆ

ˆ ˆ
, 0.

ˆ ˆ

i i ii i i

ii

i ii i

y u x y u x y u x

w
y u x y u x

β β β
ρ

σ σ σ

β β
ρ

σ σ

    ′ ′ ′+ − + − + −    ′ ≠
    
    = 

 ′ ′ + − + − ′′ =
   

 

                                                                                                                                              

 1) T  is location equivariant, i.e.
 ( ), iiT x y u′ + ( )( 11 1 1,..., ,pT x x y u= +

 

( )21 2 2, ,..., ,px x y u+ ( )1,..., ,..., ,n np nx x y u+  for 1,2,...,i n=  where ( )1,...,i i ipx x x ′′ =  and u is any 

constant.  

2) T  is scale equivariant, i.e.
 ( ), iiT x cy′ ( )( )11 1 1,..., ,pT x x cy= ( )21 2 2, ,..., ,px x cy  ( )1,..., ,..., ,n np nx x cy , 

for 1,2,...,i n=  where ( )1,...,i i ipx x x ′′ = and c is any constant. 

 3) T  is affined equivariant, i.e. ( ), iiT x cy u′ + ( )( 11 1 1,..., ,pT x x cy u= +
 
( )21 2 2, ,..., ,px x cy u+  

( )1,..., ,..., ,n np nx x cy u+ , for 1,2,...,i n=  where ( )1,...,i i ipx x x ′′ = , c  and u  are any constants. 
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 2)  If functionρ − is scale equivariant then 

* * ***** ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
i i ii i ii

y x cy x y xr c
β β β

ρ ρ ρ ρ
σ σ σ σ

     ′ ′ ′− − −       = = =                   

,    ………. (15) 

where 
*** ** ˆ

i i ir y x β′= − , **
i iy cy= as c is any constant. 

The first and second derivative of functionρ −  with respect to ˆ
jβ , 1,2,...,j p= .are 

** ** **

. 0ˆ ˆˆ ˆ ˆ
i i i i

ij j

r d r d r dr
drd d

ρ ρ ρ
σ σ σβ β

        
′ = = =                   

and 

** **

ˆˆ ˆ
i i

j

r d r
d

ρ ρ
σ σβ

    ′′′ =          

**

. ˆˆ
i i

i j

d r dr
dr d

ρ
σ β

  
′=      

, respectively. 

The resulting weight function matrix W
 
has diagonal elements 

* * *

* *

ˆ ˆ ˆ
/ , 0,

ˆ ˆ ˆ

ˆ ˆ
, 0.

ˆ ˆ

i i ii i i

ii

i ii i

cy x cy x cy x

w
cy x cy x

β β β
ρ

σ σ σ

β β
ρ

σ σ

    ′ ′ ′− − −    ′ ≠
    
    = 

 ′ ′ − − ′′ =
   

 

and  3)  If functionρ −  is the affined equivariant then
 

* ******* ˆ ˆ

ˆ ˆ ˆ
i ii ii

y x cy u xr β β
ρ ρ ρ

σ σ σ

   ′ ′− + −     = =             

*ˆ

ˆ
i iy x

c u
β

ρ
σ

 ′− = +  
 

,   ………. (16) 

where 
**** *** ˆ

i i ir y x β′= − , ***
i iy cy u= +  as c and u are any constants. 

The first and second derivative of functionρ −  with respect to ˆ
jβ , 1,2,...,j p= .are 

*** *** ***

. 0ˆ ˆˆ ˆ ˆ
i i i i

ij j

r d r d r dr
drd d

ρ ρ ρ
σ σ σβ β

        
′ = = =                   

and 

*** ***

ˆˆ ˆ
i i

j

r d r
d

ρ ρ
σ σβ

    ′′′ =          

***

. ˆˆ
i i

i j

d r dr
dr d

ρ
σ β

  
′=      

, respectively. 

The resulting weight function matrix W
 
has diagonal elements 
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* * *

* *

ˆ ˆ ˆ
/ , 0,

ˆ ˆ ˆ

ˆ ˆ
, 0.

ˆ ˆ

i i ii i i

ii

i ii i

cy u x cy u x cy u x

w
cy u x cy u x

β β β
ρ

σ σ σ

β β
ρ

σ σ

    ′ ′ ′+ − + − + −    ′ ≠
    
    = 

 ′ ′ + − + − ′′ =
   

 

 The weight function is calculated from the given functionρ −  in order to find the 

estimates 
*

β̂ of β  as in (13). The estimates, depending on the normalized of residuals 

iterative method is needed. Initial values of regression coefficients are chosen as the first 

estimates. The residuals and scale estimate, σ̂ , are computed. This procedure is 

repeated using the residuals and scale estimate of regression coefficients with outliers 

from the previous iteration at each stage until stable convergence of the estimates is 

achieved. The weights are obtained from the data and the large residuals will be 

minimized. There are a number of possible estimates in the form of MW1 as in (7), which 

are equivalent to the best linear unbiased estimators of the regression coefficients. They 

also have the unbiased and the mean squares error for β . So
*

β̂ also have the above 

properties. Besides 
*

β̂ have the tendency to give small MSE and larger R2 than other M-

estimators and OLS estimators in multiple linear regression with outliers. The coefficient 

of determination is given by 
( )( )

( )
1

2
yWX X WX

R
yW y

−′ ′
=

′
. Some the estimate of β  in regression 

model builders prefer to use an adjusted 2R ,denoted 2
adjR  with

 

( )( )
( )

( )
( )

1

2

1

adj

yWX X WX
p

R
yW y

n

−′ ′

=
′

−

. Thus two way to assess the overall adequacy of 

the model are 2R and the adjusted 2
adjR . 

 
6.  An Example 

 Data come from the Coleman data set given in Rousseeuw, P.J. and Leroy,  

A.M., (1987: 79). It is the six different variables and one response of verbal mean test 

score ( )Y . There are 20 cases from the Mid-Atlantic and New England states. There are 

five different independent variables, the staff salaries per pupil ( )1X , the percent of 
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white-collar fathers ( )2X , the socioeconomic status composite deviation ( )3X , the 

mean teacher’s verbal test score ( )4X  and the mean mother’s educational level ( )5X . 

In the data, so p=6, n=20, and it is well known that the observations 3, 11, 17 and 18 are 

outliers. Scatter plot is an important tool in analyzing the relationship between dependent 

against independent variables. That is show the scatter plot of Y against jX , 

for 1,2,...,5j = . 
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(a) Scatter Plot of Y  vs. 1X   (b) Scatter Plot of Y  vs. 2X  (c) Scatter Plot of Y  vs. 3X  
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 X5
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Y
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20

 
 (d) Scatter Plot of Y  vs. 4X  (e) Scatter Plot of Y  vs. 5X  

Figure 1. Scatter Plots of Dependent versus Independent Variables by Original 

Observations. 

From the scatter plots in the Fig 1, there might be some outliers. There might be 

some outliers. The estimation of regression coefficients may depend on these points. 

When the sample contains outliers, the outliers may have large effects on the estimates 

and alternative approach to the problem should be applied to obtain better fit of the model or 

more precise estimate of β . The robust estimates of β  are the iteratively reweighted least 

squares. The weight functions will change the effects of outliers in a data set. To apply 

the proposed modified influence function, we first compute the estimated values of β  

and 2σ  by estimate least-squares. The least-squares fit of the regression model is  

1 2 3 4 5ˆ 19.9485 1.7933 +0.0436 +0.5556 +1.1101 -1.8109i i i i i iy x x x x x= − .  
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After obtaining the least-squares fit, we compute the standardized residuals 

( )ˆˆ ˆi i ir y xσ β σ′= − , for 1,2,...,20i = . The most popular choice for σ̂  is an estimate of 

the median of the absolute deviations of σ  defined as, ( )ˆ ( ) / 0.6745i imedian r med rσ = − . 

From our data ( )ˆ -106.4956 / 0.6745imedian rσ = −  0.0350= . Using MW1 the weights iiw  

are found as follows:

 

 

( ) ( )( )
( ) ( )( )

( )( )

4 4

4 4
11

1/ 2 0.34877 / 3 ,

1 5 0.34877 / 3 ,

1/ 3 * 0.34877 .

w

 +
= +




0.5001 , 0.34877 3,

1.0091 , 0.34877 0,

1.7071 , 0.34877 3.

 ≤


= =
 >

 

 

( ) ( )( )
( ) ( )( )

( )( )

4 4

4 4
22

1/ 2 0.1906 / 3 ,

1 5 0.1906 / 3 ,

1/ 3 * 0.1906 .

w

 +
= +




 

0.5000 , 0.1906 3,

1.0000 , 0.1906 0,

1.6961 , 0.1906 3.

 ≤
= =


>

 

  ,

( ) ( )( )
( ) ( )( )

( )( )

4 4

4 4
20

1/ 2 0.1476 / 3 ,

1 5 0.1476 / 3 ,

1/ 3 * 0.1476 .

w

 +
= +




     

0.5000 , 0.1476 3,

1.0009 , 0.1476 0,

0.2582 , 0.1476 3.

 ≤


= =
 >

. 

The weights obtained from MW1is given in the Table 1 which also containing some 

other weights. 

Table 1 illustrates the different weights function. It is interesting to compare the 

modified weight function and some M-estimators. The effects of outliers in the 

observation are downweight by proposed weights function. The value of reduce residuals 

is better than the other existing, but the other weight function does not differ from the 

value of weight MW1 in summary four of the downweight residuals in points 3, 11, 17 

and 18 are not outliers. The value is 0.0844, 0.5088 and 0.0666 in point three, seventeen 

and eighteen, respectively. It is interesting to compare the modified weight function, 

MW1 with some others in term of MSE or 2R . The effects of outliers are downweighted 

by these weight functions. These 20 weights are used to transform the sample data 

before weighted least squares is applied to get the estimates of regression coefficients. 
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Table 1. Weights Obtained from the Coleman Data Set. 

Observation 
Weight Function 

MW1 AND HAM HUB TUR WIN 

1 0.5000 0.3326 0.2552 1.0000 0.0608 0.0405 

2 0.5000 0.3326 0.2573 1.0000 0.0612 0.0408 

3 0.0844 0.2450 0.9382 1.0000 0.6121 0.2001 

4 0.5001 0.3320 0.4868 1.0000 0.1122 0.0748 

5 0.5008 0.3296 0.0572 1.0000 0.3054 0.2033 

6 0.5000 0.3333 0.2331 1.0000 0.0037 0.0024 

7 0.5005 0.3302 0.9418 1.0000 0.2586 0.1722 

8 0.5001 0.3322 0.4138 1.0000 0.0943 0.0629 

9 0.5003 0.3309 0.7667 1.0000 0.1951 0.1300 

10 0.5000 0.3331 0.0017 1.0000 0.0221 0.0148 

11 0.5489 0.3040 0.7058 1.0000 0.6762 0.6251 

12 0.5191 0.3148 0.8492 1.0000 0.5835 0.0167 

13 0.5025 0.3266 0.5542 1.0000 0.5526 0.3666 

14 0.5000 0.3326 0.2494 1.0000 0.0597 0.0398 

15 0.5206 0.3141 0.9093 1.0000 0.6474 0.0548 

16 0.5058 0.3230 0.0158 1.0000 0.8515 0.5611 

17 0.5088 0.3207 0.2801 1.0000 0.0549 0.6910 

18 0.0666 0.1990 0.8907 1.0000 0.7268 0.3392 

19 0.5033 0.3256 0.6913 1.0000 0.6343 0.4201 

20 0.5000 0.3329 0.0956 1.0000 0.0345 0.0230 
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(a) Scatter Plot of 1MW Y vs. 1 1MW X  (b) Scatter Plot of 1MW Y vs. 1 2MW X  (c) Scatter Plot of 1MW Y  vs. 1 3MW X  
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(d) Scatter Plot of 1MW Y  vs. 1 4MW X         (e) Scatter Plot of 1MW Y  vs. 1 5MW X  

Figure 2. Scatter Plots of Transform Dependent versus Independent Variables by MW1. 

From the scatter plots in the Fig 2, it is seen that the 20 observations are more 
clustered when MW1 is applied to the original data. The effects of outliers are 
downweighted by the proposed MW1. 
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Table 2.  Estimates of Regression Coefficients to Coleman Data Set. 

Estimates OLS MW1 AND HAM HUB TUR WIN 

*
0β̂  

19.9486 12.9230 22.9935 20.0533 19.9486 -2.9302 3.6342 

*
1̂β  

-1.7933 -1.7650 -1.7640 -1.7928 -1.7933 1.3206 0.6985 

*
2β̂  

0.0436 -0.0346 0.0557 0.0435 0.0436 -0.3011 -0.2340 

*
3β̂  

0.5558 0.3656 0.5869 0.5557 0.5558 0.5582 0.5595 

*
4β̂  

1.1102 0.7789 1.1277 1.1085 1.1102 -0.3568 -0.1616 

*
5β̂  

-1.8109 1.1868 -2.4846 -1.8087 -1.8109 8.4603 6.4865 

MSE  4.3027 1.0452 2.1904 7.9839 4.3027 15.9984 8.9065 

2R  0.8728 0.9028 0.7368 0.8723 0.8728 0.7366 0.7233 

Table 2 displays the fitted values, the mean squares error and the coefficients 

of determination. The estimates regression coefficients with outliers will increase 

estimates of intercept ( )*
0β̂  and decrease estimates slope ( *

1̂β , *
2β̂ , *

3β̂ , *
4β̂  and *

5β̂ ).
 

The result of the estimates of MW are *
0β̂ = 12.9230, *

1̂β = -1.7650, *
2β̂ = -0.0346, *

3β̂ = 

0.3656, *
4β̂ = 0.7789 and *

5β̂ = 1.1868.
 
The property of 2R  in MW1 is the highest value 

from all methods. It is 0.9028. This example is a good model. The result of MSE  of MW1 

is the lowest value from all methods. There is 1.0452, which means the proposed 

modified weights are performed to reduce influential observations. 
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Figure 3. Plots of Residuals versus Fitted Values by Ordinary Least-Squares and MW1. 

From the residual plot in Fig 3, the proposed MW1 is good performance to 

reduce influential observations. 
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7.  Comparison of Estimates 

Consider the model y X β ε= +  where y  is an 1n×  vector of responses, 

( )1 2, ,..., pX x x x ′= ,an n p×  matrix of row vector ( )1 2, ,...,i i ipix x x x′ = and ijx  the thi  value of 

the thj regressors, 1,2,..., .i n=  , 1,2,...,j p= , β  a 1p×  vector of regression coefficients 

and ε  an 1n×  vector of errors. The proposed estimated are interest in value of three 

regressors. The sample sizes also vary from small ( 10n = ), medium ( 30n = ) to large 

( 50n = ). We can generate the residuals iε  from a normal ( )0,1N distribution. 

Chosen 1 2, ,...,i i ipx x x , for 1,2,..., .i n=  each form generated at random from 

( )0,100N distribution. Fixed the values of 0 1, ,..., pβ β β  is one. Replace the linear model of 

i iiy x β ε′= +  for ( )1 21, , ,...,i i ipix x x x′ =  and ( )0 1, ,..., pβ β β β ′= as chosen. For samples size 

of n  with percentages 10%,20%  and 30%  of X-outliers, Y-outliers and XY-outliers. 

From each sample so obtained, find the estimates of regression coefficients, R2, and 

MSE using MW, AND, HAM, HUB, TUR and WIN. The averages of R2 and MSE form the 

5,000 samples are then computed and compared. The results for three regressors 

appear in Tables 3-8 and Figures 4-9. 

 

Table 3. Coefficients of Determination for Different Estimates by Sample Sizes and 

Percentages of X-Outliers. 

Sample Sizes 
% of X-
Outliers 

Coefficients of Determination 

OLS MW1 AND HAM HUB TUR WIN 

10 

10 0.9869 0.9874 0.9862 0.8609 0.9864 0.9290 0.9871 
20 0.9985 0.9986 0.9980 0.9668 0.9982 0.9899 0.9985 
30 0.9996 0.9997 0.9996 0.9982 0.9995 0.9990 0.9996 

30 

10 0.9986 0.9988 0.9985 0.9965 0.9984 0.9980 0.9986 
20 0.9997 0.9997 0.9997 0.9997 0.9996 0.9997 0.9997 
30 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 

50 

10 0.9993 0.9993 0.9992 0.9990 0.9992 0.9993 0.9993 
20 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 0.9997 
30 0.9998 0.9998 0.9998 0.9998 0.9998 0.9999 0.9998 

With X-outliers, Table 3 shows that for all samples. MW1 estimates are the best 

in terms of R2 values. The performance of MW1 has the highest value of R2 (0.9998) in 



Pimpan Ampanthong                                               199 

other sample sizes and percentages of outliers. The next best estimates are HUB and 

WIN in term of R2 with high percentages of X-outliers [Fig. 4]. 

 

Figure 4.  Graph of Coefficients of Determination for Different Estimates by Sample 

Sizes and Percentages of X-Outliers. 

 From the graph of coefficients of determination in Fig 4, the proposed MW1 has 

the highest value of R2 in other sample sizes and percentages of X-outliers. 
 

Table 4. Coefficients of Determination for Different Estimates by Sample Sizes and 

Percentages of Y-Outliers. 

Sample Sizes 
% of Y-
Outliers 

Coefficients of Determination 

OLS MW1 AND HAM HUB TUR WIN 

10 

10 0.9800 0.9789 0.9809 0.8960 0.9778 0.9430 0.9801 
20 0.9787 0.9073 0.9072 0.8865 0.9074 0.8928 0.9069 
30 0.8399 0.8947 0.8426 0.8789 0.8547 0.8378 0.8402 

30 

10 0.8386 0.8831 0.8390 0.8340 0.8390 0.8385 0.8385 
20 0.7210 0.7224 0.7083 0.7103 0.7054 0.7170 0.7065 
30 0.7093 0.8248 0.7154 0.7110 0.7102 0.7283 0.7111 

50 

10 0.7594 0.8465 0.7616 0.7571 0.7593 0.7637 0.7599 
20 0.6913 0.7060 0.6918 0.6925 0.6888 0.7010 0.6904 
30 0.6913 0.8286 0.6977 0.6970 0.6908 0.7187 0.6927 

With Y-outliers, Table 4 shows that for all sample sizes. MW1 estimates also 

give higher value of R2 when the percentages of Y-outliers and sample sizes are small 

[Fig. 5]. 
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Figure 5. Graph of Coefficients of Determination for Different Estimates by Sample Sizes 

and Percentages of Y-Outliers. 

 

 From the graph of coefficients of determination in Fig 5, the proposed MW1 has 

the highest value of R2 in other sample sizes and percentages of Y-outliers. 

Table 5.  Coefficients of Determination for Different Estimates by Sample Sizes and 

Percentages of XY-Outliers. 

Sample Sizes 
% of XY-
Outliers 

Coefficients of Determination 

OLS MW1 AND HAM HUB TUR WIN 

10 

10 0.2512 0.3074 0.2604 0.2355 0.2514 0.2480 0.2535 
20 0.2246 0.2797 0.2320 0.2117 0.2250 0.2196 0.2252 
30 0.2209 0.2803 0.2314 0.2191 0.2205 0.2312 0.2237 

30 
 
  

10 0.0746 0.2229 0.0771 0.0668 0.0743 0.0777 0.0748 
20 0.0710 0.1879 0.0724 0.0648 0.0708 0.0727 0.0708 
30 0.0695 0.1926 0.0717 0.0660 0.0690 0.0747 0.0694 

50 

10 0.0452 0.2432 0.0462 0.0402 0.0450 0.0490 0.0450 
20 0.0431 0.2312 0.0440 0.0388 0.0429 0.0453 0.0429 
30 0.0428 0.2166 0.0439 0.0395 0.0426 0.0440 0.0429 

 

Figure 6. Graph of Coefficients of Determination for Different Estimates by Sample Sizes 

and Percentages of XY-Outliers. 
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With XY-outliers, Table 5 shows that for all samples. MW1 estimates are the 

best in terms of R2 values. The performance of MW1 has the highest value of R2 

(0.9824) for all sample sizes and percentages of outliers with medium and large sizes, 

[Fig. 6]. From the graph of coefficients of determination in Fig 5, the proposed MW1 has 

the highest value of R2 in other sample sizes and percentages of XY-outliers. 

Table 6.  Mean Squares of Error for Different Estimates by Sample Sizes and 

Percentages of X-Outliers. 

Sample Sizes % of X-Outliers 

Mean Squares Error 

OLS MW1 AND HAM HUB TUR WIN 

10 

10 1.0001 0.3279 0.5032 3.1601 0.9983 0.4933 0.3336 
20 1.0132 0.3318 0.5234 3.1390 1.0117 0.5034 0.3379 
30 1.0147 0.3345 0.5099 3.1088 1.0074 0.4988 0.3393 

30 

10 0.9979 0.3272 0.5028 3.0162 0.9966 0.4971 0.3330 
20 0.9968 0.3269 0.5026 3.0105 0.9957 0.4959 0.3327 
30 0.9932 0.3257 0.5006 3.0068 0.9921 0.4941 0.3315 

50 

10 0.9870 0.3233 0.7555 2.9639 0.9865 0.4927 0.3292 
20 0.9876 0.3235 0.4975 2.9641 0.9871 0.4930 0.3294 
30 0.9864 0.3231 0.4969 2.9641 0.9859 0.4924 0.3290 

With X-outliers, Table 6 shows that for all sample sizes. MW1 estimates give 

the lowest of MSE (0.3231) for all sample sizes and percentages of X-outliers. The next 

best estimates are AND and WIN in term of MSE with percentages of X-outliers [Fig. 7]. 

Figure 7.  Graph of Mean Squares of Error for Different Estimates by Sample Sizes and 

Percentages of X-Outliers. 

 

 From the graph of mean squares of error in Fig 7, the proposed MW1 has the 

highest value of MSE in other sample sizes and percentages of X-outliers. 
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Table 7 Mean Squares of Error for Different Estimates by Sample Sizes and 

Percentages of Y-Outliers. 

Sample Sizes 
 

% of Y-
Outliers 

Mean Squares Error 

OLS MW1 AND HAM HUB TUR WIN 

10 

10 1.4787 0.8475 1.0483 2.5388 1.4764 1.0376 0.8546 
20 4.0596 1.9263 2.4201 5.6291 3.3061 2.3187 1.9311 
30 28.7810 17.1638 19.5727 63.0058 24.7333 19.1582 16.5928 

30 

10 15.2936 8.8489 12.6273 31.5189 15.0549 10.6970 8.8595 
20 30.0146 14.8782 18.5803 47.0704 25.8850 18.2231 14.9845 
30 48.0682 27.8164 36.2041 112.8139 46.6765 33.5606 27.7576 

50 

10 22.3703 12.8859 16.6498 45.3387 22.1525 15.7284 12.9419 
20 34.0150 16.7428 21.0546 52.6560 29.1862 20.6266 16.8752 
30 50.4750 29.0860 41.8833 111.4511 49.6787 35.4542 29.1553 

With Y-outliers, Table 7 shows that for all sample sizes. MW1 estimates give 

the lowest MSE (0.8475) for all sample sizes and percentages of Y-outliers. The next 

best estimates are AND and WIN in term of MSE with percentages of Y-outliers [Fig. 8]. 

 

Figure 8. Graph of Mean Squares of Error for Different Estimates by Sample Sizes and 

Percentages of Y-Outliers.  

 From the graph of mean squares of error in Fig 8, the proposed MW1 has the 

highest value of MSE in other sample sizes and percentages of Y-outliers. 

With XY-outliers, Table 8 shows MW1 estimates give the lowest MSE (0.8477) 

for all sample sizes and percentages of XY-outliers. The next best estimates are AND 

and WIN in term of MSE with percentages of XY-Outliers [Fig. 9]. 
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Table 8. Mean Squares of Error for Different Estimates by Sample Sizes and 

Percentages of XY-Outliers. 

Sample Sizes 
 

% of XY-
Outliers 

Mean Squares Error 

OLS MW1 AND HAM HUB TUR WIN 

10 

10 25.2228 14.6314 17.8273 48.5600 24.9207 17.4544 14.6389 
20 39.1387 22.6894 27.6909 73.4637 38.6834 27.1021 22.7111 
30 49.5984 28.7021 35.1211 92.3356 49.0558 34.4156 28.7358 

30 

10 28.4817 16.4049 20.2929 52.7601 28.3542 19.9945 16.4841 
20 42.5516 24.4894 30.4059 77.7482 42.3836 29.9101 24.6149 
30 53.0639 30.5290 37.8719 96.6856 52.8583 37.3218 30.6869 

50 

10 29.6836 17.0488 21.1494 54.2209 29.6117 20.9249 17.1590 
20 42.8752 24.6304 31.0211 78.1280 42.7571 30.2160 24.7782 
30 53.3872 30.6606 38.1572 96.4851 53.2451 37.6390 30.8478 

 

 

Figure 9.  Graph of Mean Squares of Error for Different Estimates by Sample Sizes and 

Percentages of XY-Outliers. 

 From the graph of mean squares of error in Fig 9, the proposed MW1 has the highest 

value of MSE in other sample sizes and percentages of XY-outliers. 
 

8.  Conclusions 

An influence function or a functionρ −  is given to constructs proper weights for 

residual in multiple linear regression. The new weights are used in the estimation of 

regression coefficients with outliers. The weights so constructed downweight the outliers 

observations. Study this explains the process of derivation of weights for the 

proposed influence function and shows better results by simulation in terms of the 
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coefficient of determination and mean squares error comparing to the ordinary least 

squares and the other M-estimators. However, MW1 perform better than other, which 

is show the best criterion in the fit model 
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