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Abstract

This study concentrates on the construction of weights for the estimation of
regression coefficients in multiple linear regression with outliers using a new
proposed influence function. Set of weights, modified weights one (MW1) are
obtained from newly modified influence function. The proposed estimates are
applied in the M-estimator of the regression coefficients with outliers and compared
to ordinary least-squares (OLS) and other M-estimates by simulation. Results of the
estimates indicate that the new weights out perform the least squares estimates and
the other M-estimates. As for X-outliers and XY-outliers, it is found that the proposed
estimates using MW out perform the least squares estimates for all sample sizes. It

also gives high values of R” and low MSE at different percentages of outliers as well.

Keywords: influence functions, M-estimates, multiple linear regression, outliers, robust
regression, weighted least-squares.
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1. Introduction
Linear regression models are commonly used to study the relationship between
a response variable and independent variables. A linear model is one of the form

y=XpB+¢& where y is an nx1 vector of observed values of the dependent variable,

X =(§l,52,...,5n)', an nx p matrix with row vector x,’ =(xi1,xi2,....xip) of components x;
of the regressors, i=12,..,n, j=12,..,p, B a pxl vector of unknown parameters,

and ¢ an nx1 vector of errors. If ¢ follows a normal N(0,o°l) distribution, then the

ordinary least-squares (OLS) estimate of S turn-out to be the best linear unbiased
estimates (BLUE) of gaccording to the Gauss-Markov theorem. The OLS estimate is

BLUE also without residual value of A which minimizes the sum of squares of the

n R 2
residuals, MjnZ(yi—xiﬂ) . In many situations, the sample data violate the above
L -

assumptions. In particular, outliers have effects on the OLS estimate. In several cases,
the OLS estimate may not be appropriate and not sensitive to the presence of outliers.
When the sample data contain some outliers, they may have strong influence on
regression analysis. Robust regression is an alternative to find estimates of the

coefficient g for data with outliers. Robust regression reduces the effects of outliers

instead of ignoring them. In addition to insensitivity to outliers, a robust estimation
procedure should produce essentially the same results as OLS when the underlying
assumption is true with no outliers. One of the three types of outliers may exist with the
sample data in regression. There are X-outliers, Y-outliers and XY-outliers. They are
explained in many textbooks on robust estimations such as, Thomas [1], Draper [2],
Montgomery et al. [3]. It is important to have some special treatment for the analysis of the

data with outliers. This study focuses on a modification of the p - function and the

estimation of the regression coefficients with outliers. Robust estimates of regression
coefficients were introduced by many authors. They are in the class of M-estimators, high
breakdown estimators, bounded-influence estimators and others. Some of the most
widely known regression estimators are the least median squares estimator (LMS), the
least timmed square estimator (LTS) , the S-estimators [4], the MM-estimator [5], the
generalized M-estimator (GM) [6], Krasker and Welsch [7] handled all X-outliers by
replacing the least squares errors by studentized residuals, standardized residuals, or
DEFFITi and PRESS residuals. Simpson Ruppert and Carroll [8] used the compound
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estimator. In this paper, we focus on finding proper weights from a nearly proposed

p — function for the estimation of regression coefficients with outliers using M-estimates

as numerical example shows the idea of weight construction and the weight application in
the estimates of regression coefficients with outliers. A simulation study is carried out to
compare the R? and MSE with those from the OLS and other M-estimates.

2. Weight Construction

A p— function is used to derive weights for the sample data so that the outliers
will be less important. Several p— functions have been proposed by many authors.

Some of these are Andrew’s, Hampel’s, Huber's, Tukey’'s and Winsorized’s functions.

The p - functions are symmetric, bounded and nondecreasing with uniqgue minimum at
zero. The p— functions should have the following properties™: if O<u<v,

then0< p(u) < p(v),, where uand v are some real numbers and if a:supp(g) then

O<a<oo, where n:yi—g’ié, X, :(x,l,xiz,...,x,p)'for i=12,..,n and y, by least-squares

based on the whole data set of n observations. The M-estimators use weights which
minimize the sum of , M ,i.e. Mjnzn:p w where p— function is a
o [y (o2

symmetric, bounded and nondecreasing function with minimum at 0. The most popular

choice for & is an estimate of the median absolute deviation defined as
& =(median|r, —med(r;)|)/0.6745. The constant 0.6745 makes & an approximately

unbiased estimate of o, if n is large and error distribution is normal. Taking the first and
second partial derivatives of the sum of residuals with respect to the regression

coefficients Bj, for j=1,2,..,p, setting them equal to zero and solving leads for pto

desired results. This gives two systems of equations:

d Z i A
Azpyi

! p — functions with these properties yield the proper weights to be applied in the estimation in the class of M-
estimators. See Yohai, 1987: 642.
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u ’ yi—X'iA

Hence, ilp[ 5 J(—xij)_o. ........... @)
d (e [vi-XB) dle [vi-XB] dar
........... )

=1

Hence, Zp[y' Xiﬂ]( )>O where p[ AxﬂJand p[ AXﬂJ are
o o o

nonlinear, satisfying the properties is Montgomery et al. [3] and Maronna, Martin and

Yohai [9]. The estimates of ﬁ is the solution of (1) and (2) obtained by iteratively

reweighted least squares. Suppose that ,é and & are the initial estimates by least

squares. Instead of (1) and (2), we can equivalently write

or anzplw(_ ;
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where w; = . . Y (5)
”[in'iﬂ] Y, X,
P = = =0.
O O
w, 0
. . . L 0 W,, .
which, matrix weight function is W =| . . , 0<w,; <1 and W =0with
0 0 w,

i=] for i=12,...,n and j=12,...,p. Construction of weights depends on the current

residuals. The weights needed in the M-estimates can be derived by the following steps:

1) Choose a p - function with the desirable properties where ¢ is a constant

chosen to be 3as suggested by many authors.
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2) Take the first partial derivatives of the p— function with respect to g,

5 G

X\ 3 X 3
(j=12,...,p) and equate them to zero, giving p'[y' ,ﬂ]/[y, A'ﬂJ.
3) Take the second partial derivatives of the p— function with respect to B,

(j =12,..., p) and equate them to zero, giving p{yi—x,ﬂ}

4) Solve the equations for the estimation of regression coefficients with outliers
by iteratively reweighted least squares and find a weight function from 2) and 3). We get

the modified weights function.

3. Estimation of Regression Coefficients with Outliers

A new influence function p in (6) is introduced to obtain proper weights for the

residuals so that the outliers will be less important. It is
ry nY I
[a(i} /2}{[1] /(30“]”i <c ,
I. o o o2
pl(—jj = e (6)
o r j r
Ic /|

‘Li>c ,
o

- . ~ ! -
where the i"residuals, 1=y, -X,8, X;=(XuXX,) for i=12,...n., a and ¢ are

constants. The constant cis chosen to be 3 as suggested by many authors., when the
estimates of regression coefficients with outliers approach these weighted least squares
estimates of g, and & is an estimate of o. The function in (6) is used to obtain a
diagonal weight matrix W whose diagonal elements are nonincreasing. Outlying

observations will receive smaller weights by this process. Construction of weights

needed in the M-estimates depends on the current residuals r,.

Theorem 1 The proposed p, — function (6) gives a diagonal weight matrix, called

modified weight one (MW 1) with diagonal elements,

2 Different values of C are suggested in the literature; Rousseeuw and Leroy used C = 2.5 (Rousseeuw and
Leroy [4]), while Huber gave C = 2.0 (Montgomery et al. [3]), Andrews suggested C = 3.14 (Huber [10]) and
Tukey gave C =1.0 (Tukey [11]).
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' r
1/2+([—1j /c“J | <c
o o
r\! r
W, = 1+[5 —jj /c“] J={=0, e 7
o o
[1/ch ‘rj >C.
o o
Proof  Take the first and second partial derivatives of the p, — function (6) with

respect to the coefficients ﬁj ,for j=1,2,.., p. Setting the first partial derivatives equal to
0 and a is a constant 0.5, produces a system of p estimating equations for the

estimates of the coefficients.

PRI (o )(E =) £ e ®
[o] dﬂj[ (an (sign(gjlcj AN

The second derivative of p, — function with respect to ﬂA,-: j=12,..,p and a is

a constant 1.0, as follow,

A8 )

The weight function in (7) is obtained by iteratively reweighted least squares.

4
1/2+[(ij /c“] ‘L
o o

=0 . e, 9)

5
¢

<c,

4
The weight function has elements is = 1+{5[L1] /c“] L: =0,. So the MW1
o O
[1/0 LL] , LL >C.
o o

gives the weight function (7) using (5).

Theorem 2 If the p - function is symmetric, bounded and nondecreasing with unique

minimum at zero, then weight matrix W has diagonal elements w; :p'[—i]/(ij , Which
o o2

is bounded and monotone decreasing for ;>0 and & >0.
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Proof To simplify the proof we assume 6 =1.

Let u(r)=U (yi —g'i[f) S (10)
where U (r,) is a quadratic function of a variable k; as X =(xil,xi2,...,xip)' and replace
p — function by U(k)=a+ck 4—%ki2 P (11)
with a and c to be determined such that, assume U (k)= p(k ), for all k, and

U (r)=p(r) where the vector of residual r =(r,,r,,...,1,) , forall i=12..n.

These conditions imply that U and p have acommonat r, =y, —g’ié .

U'(r)=c+r=p'(r)-

F(k)=U(k)-p(k) =p(ﬁ)—np’(n)+%rﬁ+(p’(n)—n)ki+%kf—p(ki)

Since element of weight function matrix w; = is bounded and monotone

decreasing for k;>0 and the same holds for k, <0 because satisfies the assumption

symmetry, as F(r)=F(-r)=0and F'(r,)=F'(-r)=0.

Finally, F'(r)=p'(r)-r+k-p'(k) -
<0
It follows that F’(ri)_{>O . pere e (12)

Finally, F'(r)=p'(r)-r+k —p'(k;) . Since element of weight function matrix

W, _p(lEk)l) is bounded and monotone decreasing for k >0 as F'(k)>F(r)=0, the

same holds for k; <0 because symmetry.

4. Applying the Modified Influence Function

The robust estimate of S are the iteratively reweighted least squares. The

weights will change the effects of outliers in a data set. The outlier detection methods in

multiple linear regression models have been studied and compared by Ampanthong and
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Suwattee ([12], [13], [14] and [15]). Applying the modified influence function, the normal
equations may be written in matrix form, (XWX )é* =XWy, with W a diagonal matrix of
weights. Given a data set, we can compute the estimated values of é by a one step

regression following the steps:

1) Find initial estimates fof 8 and &* of o by least-squares.

2) Compute the residualsr, =y, —g’ié , for i=1,2,...,n, and find the weights as

described earlier.
3) Find the estimates of the regression coefficients with outliers by the
generated weighted least-squares method.

4) Continue 2), 3) until the maximum difference of two successive pairs of

estimates are arbitrarily small, i.e. max
1<i<p

B —,Bj“| <&, where p’'and g are two
successive estimates of g, of all regression coefficientsand &> 0. This guarantees that

the two successive estimates almost agree with each other.

5. Properties of the New Estimators
The M-estimators applied as iteratively reweighted least squares transform the

weight matrix of diagonal elements w,;,W,,,..,W,,. The new solution of weighted least-

squares estimators of g are

Ak

B =(xwx)’1(xwx) ........... (13)

The weight function are calculated from the given p— function in order to find

the estimates é of B as in (13). There are a number of possible estimates in the form

of MW1 as in (7), which are equivalent to the best linear unbiased estimators of the
regression coefficients. The estimatorin (13) is in class of M-estimators. The M-estimator

applied as iteratively reweighted least squares problem of set p — function transform the

weight function matrix of diagonal element w,,,w,,...,w,,, then the new solution of

W
weighted least-squares. A statisticsis equivariance if it has the following three properties
According to Rousseeuw, et. al.[4] @ the M-estimators are regression, scale, and affine

equivariant.

@ Equivariance. A statistics T is send to be equivariant if it has the following three properties
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Lemma If a p - function is location equivariant, scale equivariant and affine equivariant,

then the estimating weight function has the same properties

The estimating weight function matrix has the same properties

Proof
1) If p— function is the location equivariant then
r y,-XB Y +u-x.f Y -X.f
p(—lj—p —|=p — | =p —=|+U e (14)
o o o

where ", =y, —g’l,/} , ¥, =Yy,+u as u is any constant. The first and second derivative

of p— function with respect to /§j, j=12,..,p.are
) )] A )] 8
6 ) dp"\6)) di("(6))dp

and ,,[r*i]_ d ,r;i _d4 'L*i dr respectively
PUs ) ap ")) Tan\ " s ), '

The resulting weight function matrix W has diagonal elements

yi"’“‘l/iﬁ* yi*’“‘fi/é* ‘yl+u_x'”ﬁ*
' —=1/ —= , — #0,
o o o ‘
W; = - -
" Yi“'ufl!iﬁ yi+u751iﬁ
pl|— J|J—————=—=0.
o o

1) T islocation equivariant, i.e. T(Z'i,yi +u) :T((Xilr'--xxlp,leru)

r
(X X0 Yo #U) oo (Xygrooss Xog Y +U) for 1=1,2,...,1 where X = (X5, X,, ) and U is any

constant.
2) T is scale equivariant, i.e. T(g'i,cyi) :T((xu,...,xip,cyl)) ,(x21,...,x2p,cy2) ,...,(an,...,an,Cyn)

’
for i=12,...,n where Xi =(§i1,...,5ip) and C is any constant.

3) T is affined equivariant, i.e.T(g'i,cyi +u) :T((xu,...,xlp,cleru) ,(x21,...,x2p,cy2+u)

’
, ..,(an,...,an,Cyn +u) for 1 =1,2,...,n where Xi =(§i1,...,§ip) , C and U are any constants.



Thailand Statistician, 2010; 8(2):183-205

192

2) If p— function is scale equivariant then

r v _Xiﬁ: Cy; _Xiﬁ: Z Ié
P = = |=p —=|=cp &— s e,

=p =
o o2

where " =y,"-x B, v, =cy,as cis any constant.

The first and second derivative of p - function with respectto 5;, j=12

A5 S e

dﬁ
" L _d ! L _dp L dr respectivel
716 _dﬁj 4% ~dr Pls B, P g

o
The resulting weight function matrix W has diagonal elements

festfes]

W = -
,,[Cyi *lliﬂ J
p —i
(o2

3) If p— function is the affined equivariant then

e Y, =X\ oy, +u-xp Y, — X\
Pl |=p —=|=p = | =cp| —=
(o2 (o2 (X

Cyi— X'ié

and

where ™" =y X', , " =cy,+u as cand u are any constants.

The first and second derivative of p - function with respectto g;, j=1,2

L U I Y O B O O A
o5 g A5 a5 o

o
e ) d e o9 e AR respectively
6 ) dp\" 6 )) dil"(6)/dp '

The resulting weight function matrix W has diagonal elements

v pLare

+u,

.. p.aIE
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CY; +u_§’i[}* CY;i +U_X.ﬁ* CYi +U_Xi,é*
ol —=/ —= , —=1#0,
o (o2 o ‘
W; = - o
" Cyi+U—X’iﬂ Cyi+U—Xiﬂ
p| ————— J——={=0.
o O

The weight function is calculated from the given p — function in order to find the

estimates ﬁ’ of B asin (13). The estimates, depending on the normalized of residuals
iterative method is needed. Initial values of regression coefficients are chosen as the first
estimates. The residuals and scale estimate, &, are computed. This procedure is

repeated using the residuals and scale estimate of regression coefficients with outliers
from the previous iteration at each stage until stable convergence of the estimates is
achieved. The weights are obtained from the data and the large residuals will be
minimized. There are a number of possible estimatesin the form of MW1 as in (7), which

are equivalent to the best linear unbiased estimators of the regression coefficients. They

also have the unbiased and the mean squares error for £. So[f also have the above

properties. Besides [7 have the tendency to give small MSE and larger R” than other M-

estimators and OLS estimators in multiple linear regression with outliers. The coefficient

WX )( XWX )™
of determination is given by R® :w
(ywy)

model builders prefer to use an adjusted R?,denoted R?

. Some the estimate of 2 in regression

with

adj

(wa)(xwx )’

R? . = (p) . Thus two way to assess the overall adequacy of

the model are R*and the adjusted R’ ;.

6. An Example
Data come from the Coleman data set given in Rousseeuw, P.J. and Leroy,
A.M., (1987: 79). It is the six different variables and one response of verbal mean test

score (Y) There are 20 cases from the Mid-Atlantic and New England states. There are

five different independent variables, the staff salaries per pupil (X1), the percent of
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white-collar fathers (X2), the socioeconomic status composite deviation (X3), the
mean teacher’s verbal test score (x4) and the mean mother’s educational level (x5) .

In the data, so p=6, n=20, and it is well known that the observations 3, 11, 17 and 18 are
outliers. Scatter plot is an important tool in analyzing the relationship between dependent

against independent variables. That is show the scatter plot of Y againstX;,

for j=12,..,5.

x1 x x3

(a) Scatter Plot of Y vs. X1 (b) Scatter Plot of Y vs. X2 (c) Scatter Plot of Y vs. X3

-

x5
x4

(d) Scatter Plot of Y vs. X4 (e) Scatter Plot of Y vs. X5

Figure 1. Scatter Plots of Dependent versus Independent Variables by Original

Observations.

From the scatter plots in the Fig 1, there might be some outliers. There might be
some outliers. The estimation of regression coefficients may depend on these points.
When the sample contains outliers, the outliers may have large effects on the estimates
and alternative approach to the problem should be applied to obtain better fit of the model or

more precise estimate of . The robust estimates of g are the iteratively reweighted least

squares. The weight functions will change the effects of outliers in a data set. To apply

the proposed modified influence function, we first compute the estimated values of g

and o’ by estimate least-squares. The least-squares fit of the regression model is

§, =19.9485 —1.7933x,,+0.0436X,, +0.5556X,,+1.1101x,,-1.8109x,, .
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After obtaining the least-squares fit, we compute the standardized residuals
ri/&:(yi —g'ié)/c}, for i=1,2,...,20. The most popular choice for & is an estimate of
the median of the absolute deviations of o defined as, & :(median\ri —med(ri)\)/0.6745.

From our data & =(median|r, —-106.4956/)/0.6745 = 0.0350 . Using MW 1 the weights w,

are found as follows:

12+{(034877) 13 ) (g g0y |0.34877| <3,
w, ={1+(5(0.34877)'/(3)') , ={1.009L 0348770,
(1/(3)*|0.34877]) 1.7071 ,]0.34877|>3.
1/2:+((01808)"/(3) (55000 |0.1906| <3,
w,, = 11+(5(0.1906)"/(3)) | {10000  [0.1906|0,
(1/(3)*[0.1908]) ~ |16961 ,|0.1906|> 3.
1/2:+((02476)"1(3)’) 0.5000 ,|0.1476|<3,
- owy =11+(5(0.1476)'/(3)) . ={1.0009 ,[0.1476] =0,
0.2582 ,[0.1476|> 3.

(1/(3)*[0.1476|)

The weights obtained from MW 1is given in the Table 1 which also containing some

other weights.

Table 1 illustrates the different weights function. It is interesting to compare the
modified weight function and some M-estimators. The effects of outliers in the
observation are downweight by proposed weights function. The value of reduce residuals
is better than the other existing, but the other weight function does not differ from the
value of weight MW 1 in summary four of the downweight residuals in points 3, 11, 17
and 18 are not outliers. The value is 0.0844, 0.5088 and 0.0666 in point three, seventeen
and eighteen, respectively. It is interesting to compare the modified weight function,
MW 1 with some others in term of MSE or R?. The effects of outliers are downweighted
by these weight functions. These 20 weights are used to transform the sample data

before weighted least squares is applied to get the estimates of regression coefficients.
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Table 1. Weights Obtained from the Coleman Data Set.

Weight Function
Mw1 AND HAM HUB TUR WIN

Observation

1 0.5000 0.3326 0.2552 1.0000 0.0608 0.0405
2 0.5000 0.3326 0.2573 1.0000 0.0612 0.0408
3 0.0844 0.2450 0.9382 1.0000 0.6121 0.2001
4 0.5001 0.3320 0.4868 1.0000 0.1122 0.0748
5 0.5008 0.3296 0.0572 1.0000 0.3054 0.2033
6 0.5000 0.3333 0.2331 1.0000 0.0037 0.0024
7 0.5005 0.3302 0.9418 1.0000 0.2586 0.1722
8 0.5001 0.3322 0.4138 1.0000 0.0943 0.0629
9 0.5003 0.3309 0.7667 1.0000 0.1951 0.1300
10 0.5000 0.3331 0.0017 1.0000 0.0221 0.0148
11 0.5489 0.3040 0.7058 1.0000 0.6762 0.6251
12 0.5191 0.3148 0.8492 1.0000 0.5835 0.0167
13 0.5025 0.3266 0.5542 1.0000 0.5526 0.3666
14 0.5000 0.3326 0.2494 1.0000 0.0597 0.0398
15 0.5206 0.3141 0.9093 1.0000 0.6474 0.0548
16 0.5058 0.3230 0.0158 1.0000 0.8515 0.5611
17 0.5088 0.3207 0.2801 1.0000 0.0549 0.6910
18 0.0666 0.1990 0.8907 1.0000 0.7268 0.3392
19 0.5033 0.3256 0.6913 1.0000 0.6343 0.4201
20 0.5000 0.3329 0.0956 1.0000 0.0345 0.0230

Mwzy

MwLY

o
om @ 1 1% 20 2% W 3 4w

MwIXL MWL MW

(a) Scatter Plot of MW1Y vs. MW1X1 (b) Scatter Plot of MW1Y vs. MW1X2 (c) Scatter Plot of MW1Y vs. MW1X3

»-

Mwty

(d) Scatter Plot of MW1Y vs. MW1X4 (e) Scatter Plot of MW1Y vs. MW1X5
Figure 2. Scatter Plots of Transform Dependent versus Independent Variables by MW 1.
From the scatter plots in the Fig 2, it is seen that the 20 observations are more

clustered when MW1 is applied to the original data. The effects of outliers are
downweighted by the proposed MW 1.
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Table 2. Estimates of Regression Coefficients to Coleman Data Set.

Estimates oLS MW1 AND HAM HUB TUR WIN
g
) 19.9486 12.9230 22.9935 20.0533 19.9486 -2.9302 3.6342
/}*
1 -1.7933 -1.7650 -1.7640 -1.7928 -1.7933 1.3206 0.6985
,‘g B
2 0.0436 -0.0346 0.0557 0.0435 0.0436 -0.3011 -0.2340
B 0.5558 0.3656 0.5869 0.5557 0.5558 0.5582 0.5595
B 1.1102 0.7789 1.1277 1.1085 1.1102 -0.3568 -0.1616
o %
bs -1.8109 1.1868 -2.4846 -1.8087 -1.8109 8.4603 6.4865
MSE 4.3027 1.0452 2.1904 7.9839 4.3027 15.9984 8.9065
R? 0.8728 0.9028 0.7368 0.8723 0.8728 0.7366 0.7233

197

Table 2 displays the fitted values, the mean squares error and the coefficients

of determination. The estimates regression coefficients with outliers will increase

estimates of intercept(,éo*) and decrease estimates slope (,él* , ,32* , ,33*, ﬁ’[ and BS*).

The result of the estimates of MW are g, = 12.9230, j = -1.7650, 3,

-0.0346, B, =

0.3656, ,34* =0.7789 and ,és*z 1.1868. The property of R? in MW1 is the highest value

from all methods. It is 0.9028. This example is a good model. The result of MSE of MW 1

is the lowest value from all methods. There is 1.0452, which means the proposed

modified weights are performed to reduce influential observations.

Residuals

4000

3000

2000

1000

-1000

° g, BT
o Tagmto. B
e By o

| 154

2o
58

5, e

3000

o
4000

Fitted Value

5000

Figure 3. Plots of Residuals versus Fitted Values by Ordinary Least-Squares and MW 1.

From the residual plot in Fig 3, the proposed MW1 is good performance to

reduce influential observations.
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7. Comparison of Estimates

Consider the model y=Xg+¢ where y is an nx1 vector of responses,

’
X :(511521---’5,)) ,an nx p matrix of row vector x,’ =(Xi1,xi2,...,xip)and x; the i" value of

the j" regressors, i=1,2,...n. , j=12,...p, B a px1 vector of regression coefficients
and &£ an nx1 vector of errors. The proposed estimated are interest in value of three

regressors. The sample sizes also vary from small (n=10), medium (n=30) to large

(n=50). We can generate the residuals ¢ from a normal N(O,l)distribution.

Chosenxil,xiz,...,xip, for i=12,..,n. each form generated at random from

N (0,100) distribution. Fixed the values of 4, 4,..., 3, is one. Replace the linear model of

p

Yi =X, B+ for X, =(LX;X;...%,) and £=(ﬂ0,ﬂ1,...,ﬂp)’as chosen. For samples size

of n with percentages 10%,20% and 30% of X-outliers, Y-outliers and XY-outliers.
From each sample so obtained, find the estimates of regression coefficients, R* and
MSE using MW, AND, HAM, HUB, TUR and WIN. The averages of R?and MSE form the

5,000 samples are then computed and compared. The results for three regressors

appear in Tables 3-8 and Figures 4-9.

Table 3. Coefficients of Determination for Different Estimates by Sample Sizes and

Percentages of X-Outliers.

% of X- Coefficients of Determination
Sample Sizes Outliers oLs MW1 AND HAM HUB TUR WIN
10 0.9869 0.9874 0.9862 0.8609 0.9864 0.9290 0.9871
10 20 0.9985 0.9986 0.9980 0.9668 0.9982 0.9899 0.9985
%0 0.9996 0.9997 0.9996 0.9982 0.9995 0.9990 0.9996
10 0.9986 0.9988 0.9985 0.9965 0.9984 0.9980 0.9986
%0 20 0.9997 0.9997 0.9997 0.9997 0.9996 0.9997 0.9997
80 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
10 0.9993 0.9993 0.9992 0.9990 0.9992 0.9993 0.9993
%0 0 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 0.9997
30 0.9998 0.9998 0.9998 0.9998 0.9998 0.9999 0.9998

With X-outliers, Table 3 shows that for all samples. MW 1 estimates are the best

in terms of R values. The performance of MW 1 has the highest value of R? (0.9998) in
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other sample sizes and percentages of outliers. The next best estimates are HUB and
WIN in term of R? with high percentages of X-outliers [Fig. 4].

OUTLIERS IM ¥-CUTLIERS

VALUES OF COEFFICIENTS OF DETERMINATION

SAMPLE SIZES

Figure 4. Graph of Coefficients of Determination for Different Estimates by Sample

Sizes and Percentages of X-Outliers.

From the graph of coefficients of determination in Fig 4, the proposed MW 1 has

the highest value of R?in other sample sizes and percentages of X-outliers.

Table 4. Coefficients of Determination for Different Estimates by Sample Sizes and

Percentages of Y-Outliers.

% of Y- Coefficients of Determination
Sample Sizes Outliers oLS MW1 AND HAM HUB TUR WIN
10 0.9800 0.9789 0.9809 0.8960 0.9778 0.9430 0.9801
10 20 0.9787 0.9073 0.9072 0.8865 0.9074 0.8928 0.9069
30 0.8399 0.8947 0.8426 0.8789 0.8547 0.8378 0.8402
10 0.8386 0.8831 0.8390 0.8340 0.8390 0.8385 0.8385
%0 2 0.7210 0.7224 0.7083 0.7103 0.7054 0.7170 0.7065
30 0.7093 0.8248 0.7154 0.7110 0.7102 0.7283 0.7111
10 0.7594 0.8465 0.7616 0.7571 0.7593 0.7637 0.7599
%0 20 0.6913 0.7060 0.6918 0.6925 0.6888 0.7010 0.6904
%0 0.6913 0.8286 0.6977 0.6970 0.6908 0.7187 0.6927

With Y-outliers, Table 4 shows that for all sample sizes. MW 1 estimates also
give higher value of R? when the percentages of Y-outliers and sample sizes are small
[Fig. 5].
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QUTLIERS IN Y-OUTLIERS

EiiEgic

Figure 5. Graph of Coefficients of Determination for Different Estimates by Sample Sizes

and Percentages of Y-Outliers.

From the graph of coefficients of determination in Fig 5, the proposed MW 1 has
the highest value of R?in other sample sizes and percentages of Y-outliers.

Table 5. Coefficients of Determination for Different Estimates by Sample Sizes and

Percentages of XY-Outliers.

Coefficients of Determination

% of XY-
Sample Sizes Outliers oLS MW1 AND HAM HUB TUR WIN
10 0.2512 0.3074 0.2604 0.2355 0.2514 0.2480 0.2535
10 2 0.2246 0.2797 0.2320 0.2117 0.2250 0.2196 0.2252
30 0.2209 0.2803 0.2314 0.2191 0.2205 0.2312 0.2237
10 0.0746 0.2229 0.0771 0.0668 0.0743 0.0777 0.0748
30 20 0.0710 0.1879 0.0724 0.0648 0.0708 0.0727 0.0708
% 0.0695 0.1926 0.0717 0.0660 0.0690 0.0747 0.0694
10 0.0452 0.2432 0.0462 0.0402 0.0450 0.0490 0.0450
%0 20 0.0431 0.2312 0.0440 0.0388 0.0429 0.0453 0.0429
30 0.0428 0.2166 0.0439 0.0395 0.0426 0.0440 0.0429

QUTLIERS IN X-Y-OUTLIERS
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Figure 6. Graph of Coefficients of Determination for Different Estimates by Sample Sizes

and Percentages of XY-Outliers.
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With XY-outliers, Table 5 shows that for all samples. MW 1 estimates are the
best in terms of R? values. The performance of MW1 has the highest value of R?
(0.9824) for all sample sizes and percentages of outliers with medium and large sizes,
[Fig. 6]. From the graph of coefficients of determination in Fig 5, the proposed MW 1 has

the highest value of R? in other sample sizes and percentages of XY-outliers.

Table 6. Mean Squares of Error for Different Estimates by Sample Sizes and

Percentages of X-Outliers.

Mean Squares Error

Sample Sizes % of X-Outliers oLS MW1 AND HAM HUB TUR WIN

10 1.0001 0.3279 0.5032 3.1601 0.9983 0.4933 0.3336

10 20 1.0132 0.3318 0.5234 3.1390 1.0117 0.5034 0.3379
%0 1.0147 0.3345 0.5099 3.1088 1.0074 0.4988 0.3393
10 0.9979 0.3272 0.5028 3.0162 0.9966 0.4971 0.3330

%0 20 0.9968 0.3269 0.5026 3.0105 0.9957 0.4959 0.3327
%0 0.9932 0.3257 0.5006 3.0068 0.9921 0.4941 0.3315
10 0.9870 0.3233 0.7555 2.9639 0.9865 0.4927 0.3292

50 20 0.9876 0.3235 0.4975 2.9641 0.9871 0.4930 0.3294
30

0.9864 0.3231 0.4969 2.9641 0.9859 0.4924 0.3290

With X-outliers, Table 6 shows that for all sample sizes. MW 1 estimates give
the lowest of MSE (0.3231) for all sample sizes and percentages of X-outliers. The next
best estimates are AND and WIN in term of MSE with percentages of X-outliers [Fig. 7].

Figure 7. Graph of Mean Squares of Error for Different Estimates by Sample Sizes and

Percentages of X-Outliers.
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From the graph of mean squares of error in Fig 7, the proposed MW 1 has the

highest value of MSE in other sample sizes and percentages of X-outliers.
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Table 7 Mean Squares of Error for Different Estimates by Sample Sizes and

Percentages of Y-Outliers.

Mean Squares Error

Sample Sizes % of Y-

Outliers oLS MW 1 AND HAM HUB TUR WIN
10 1.4787 0.8475 1.0483 2.5388 1.4764 1.0376 0.8546

10 20 4.0596 1.9263 2.4201 5.6291 3.3061 2.3187 1.9311
%0 28.7810 17.1638 19.5727 63.0058 24,7333  19.1582  16.5928
10 15.2936 8.8489 12.6273 31.5189 15.0549  10.6970 8.8595

%0 20 30.0146 14.8782 18.5803 47.0704 258850  18.2231  14.9845
80 48.0682 27.8164 36.2041 112.8139  46.6765  33.5606  27.7576
10 22.3703 12.8859 16.6498 45.3387 221525  15.7284  12.9419

%0 20 34.0150 16.7428 21.0546 52.6560 29.1862  20.6266  16.8752
30

50.4750 29.0860 41.8833 111.4511  49.6787  35.4542  29.1553

With Y-outliers, Table 7 shows that for all sample sizes. MW 1 estimates give
the lowest MSE (0.8475) for all sample sizes and percentages of Y-outliers. The next

best estimates are AND and WIN in term of MSE with percentages of Y-outliers [Fig. 8].

OUTLIERS IN Y-DUTLIERS
120,00 L2

2 100,00 >

-~
1
H

£0.00

€000

VALUES OF MEAN SQUARES ER®

SAMPLE SIZES

Figure 8. Graph of Mean Squares of Error for Different Estimates by Sample Sizes and

Percentages of Y-Oultliers.

From the graph of mean squares of error in Fig 8, the proposed MW 1 has the

highest value of MSE in other sample sizes and percentages of Y-outliers.

With XY-outliers, Table 8 shows MW 1 estimates give the lowest MSE (0.8477)
for all sample sizes and percentages of XY-outliers. The next best estimates are AND
and WIN in term of MSE with percentages of XY-Outliers [Fig. 9].
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Table 8. Mean Squares of Error

Percentages of XY-Outliers.

203

for Different Estimates by Sample Sizes and

Sample Sizes % of XY-

Mean Squares Error

Outliers oLS MwW1 AND HAM HUB TUR WIN
10 25.2228 14.6314 17.8273 48.5600 24.9207  17.4544  14.6389
10
2 39.1387 22.6894 27.6909 73.4637 38.6834  27.1021  22.7111
% 49.5984 28.7021 35.1211 92.3356 49.0558  34.4156  28.7358
10 28.4817 16.4049 20.2929 52.7601 28.3542  19.9945  16.4841
30
20 42.5516 24.4894 30.4059 77.7482 42,3836 29.9101  24.6149
%0 53.0639 30.5290 37.8719 96.6856 52.8583  37.3218  30.6869
10 29.6836 17.0488 21.1494 54.2209 29.6117  20.9249  17.1590
50
20 42.8752 24.6304 31.0211 78.1280 42,7571  30.2160  24.7782
30 53.3872 30.6606 38.1572 96.4851 53.2451  37.6390  30.8478
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Figure 9. Graph of Mean Squares of Error for Different Estimates by Sample Sizes and

Percentages of XY-Oultliers.

From the graph of mean squares of error in Fig 9, the proposed MW 1 has the highest

value of MSE in other sample sizes and percentages of XY-outliers.

8. Conclusions

An influence function or a p- function is given to constructs proper weights for

residual in multiple linear regression. The new weights are used in the estimation of

regression coefficients with outliers. The weights so constructed downweight the outliers

observations. Study this explains the process of derivation of weights for the

proposed influence function and shows better results by simulation in terms of the
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coefficient of determination and mean squares error comparing to the ordinary least
squares and the other M-estimators. However, MW 1 perform better than other, which

is show the best criterion in the fit model
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