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Abstract
A new probabilistic modeling approach is used to describe the transient and
stable stages of growth of a population consisting of viable cells and vegetative cells.
Viable cells are capable of division at the end of a random life-time (generation time) and
when a cell divides it produces exactly two newborn cells. On average, at time t, a(t) of
these two newborn cells are viable cells and 2 - a(t) are vegetative cells, which do not
divide at any time. The model is developed by modifying the integral equation used by
demographers to study the growth of human populations. The solution of the model is
studied using various biologically plausible assumptions concerned with the inputs a(t)
and the probability distribution of the generation time and comparisons made with other
modeling approaches indicate that the new model is easier to formulate and analyze,
provides a more complete analysis, and enables the incorporation of assumptions
concerning environmental and internal cell factors that influence the production rate of

viable cells.

Keywords: age structured generation time distribution, integral (renewal) equation,
transient and stable stages of growth, vegetative parameter, viable and vegetative cells.
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1. Introduction
Consider a population of cells consisting of a mixture of two types: viable

(fissioning or dividing) cells; and vegetative (non viable or quiescent) cells. Viable cells
are capable of division at the end of a random generation time and when a viable cell
divides (dies) it produces exactly two newborn cells. On average, at time t, a(t) of these
two newborn cells are viable cells and 2 - a(t) are vegetative cells, which are not capable
of division.

The construction of mathematical models of the growth of such a population of
cells has early beginnings. Thornley [1] gives expressions for the mean numbers and the
age structures by assuming that the cell division process is initially stable with a constant
generation time for the viable cells. Powell [2] also assumes a stable viable cell
population and working with a variable generation time considers the age structure and
growth rate of only the viable cells. He suggests, on the basis of extensive empirical
evidence, that the generation time distribution is adequately represented by an Erlangian
distribution. This assumption is supported by Kendall [3] who also deals with the
particular case where a(t) = 2 and subsequently developed a generalized Erlangian
model for the generation time distribution [4]. Extensive measurements of the generation
times of individual cells were first published by Kelly and Rahn [5] and subsequently
Rahn [6] proposed the Yule distribution for the generation time and this has support from
other empirical studies [7].

The problem has also been formulated as an age dependent Bellman-Harris
process as a part of the study of branching processes which have their background in
the physical and biological sciences with the major developments being due to Bellman
and Harris [8,9]. This approach developed separately from the models favored by
demographers, such as the integral model of Sharpe and Lotka [10] and the stochastic
models of Kendall [14], and early detailed discussions of branching processes and their
relationship to the other lines of development in population dynamics are given by Jagers
[11] and Bharucha-Reid [12].

The model developed in this article is new and is based on a modification to the
integral (renewal) equation of population dynamics favored by demographers and
attributed to Sharpe and Lotka [10]. A complete age dependent analysis of the transient
and stable stages of the growth of a population can be formulated in both discrete and
continuous forms where discrete formulations typically use matrices and difference
equations and continuous forms use integral equations and various types of differential

equations. These various formulations have their advantages and disadvantages and the
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integral equation formulation gives a superior approximation for the intrinsic rate of
natural increase and provides a simple basis for perturbation analysis ([13]). In addition,
the formulation of the integral equation model is simple, under reasonable assumptions
the solution of the model is amenable to the use of Laplace transforms [14], and
numerical solution techniques are well documented [15-20].

Following definitions and notation the formulation of the new integral equation
model is described. A complete analysis of the transient and stable stages of growth is
presented for the case where the vegetative parameter is constant, which is a common
assumption for a reasonable well nourished population of cells. This is followed by the
incorporation and comparison of biologically plausible assumptions about the generation
time distribution. Next the model is analyzed for the case where the vegetative
parameter is time dependent and two examples are used to illustrate how this
assumption allows time dependent influences internal to the cells or in the external
environment to be accounted for in the model. Throughout the relevant sections
comparisons are made with other modeling approaches in order to illustrate the
advantages of the integral equation model. These are summarized as part of the
conclusion which also indicates how the model may be used if the generation time
distribution is represented in natural forms such as a histogram or a concentrated form.

It is noted that there is an extensive body of literature in recent times concerned
with understanding the complex processes of cell division in both plants and animals.
The focus is on biochemical and genetic mechanisms that operate within and between
cells and influence cell division. In particular, the mechanisms of asymmetric cell division
have been studied extensively. Mathematical models have been developed to describe
these complex micro-level processes and although a detailed consideration of these
findings and models is beyond the scope of this article it is recognized that it may be
possible in the future to extend the meso-level model of the growth of the cell
populations presented in this article to reflect the increasing body of knowledge
concerned with complex micro-level internal cell processes. For a selection of recent
articles related to these processes the reader is referred to Antil et al. [21], Hove and
Heidstra [22], Knoblich [23], Portugal et al. [24], Serakinci et al. [25], Sharma et al. [26],
Steuer [27], Wu et al. [28], Zhang et al. [29], and Zheng et al. [30].

2. Definitions and Notation

The following notation and definitions are used for the population of viable cells:
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a(t) is referred to as the vegetative parameter and 0 < a(t) < 2. If a(t) = 0 then neither of
the two newborn cells are viable and if a(t) = 2 then they are both viable;

M(t) is the expected number of cells in the population at time t, with M(0) = K = 1;

B(t)dt is the expected total number of births due to M(t) cells in the time tto t + df;

D(t)dt is the expected total number of the M(t) cells that divide (die) in time tto t + df;

1 d™m
R(t) is the intrinsic rate of increase and R(t)=————
M(t) dt

a(x,t) is the age density function of cells of age x such that M(t)a(x, t)dx is the expected
number of cells at time t in the age range x to x + dx. In particular, a(0, t) is the crude

birth rate and a(0,t )=E;

M(t)
B(x, t) is the age specific fecundity and B(x, t)dx is the fraction of newborn viable cells at
time t due to the division of mothers (viable cells) of age x to x + dx;
f(x) is the probability density function for the generation time X, which is a random
variable representing the lifetime of a cell timed from the instant it was born, as a result
of the division of its mother, until it divides and f(x)dx is the probability that a newborn
cell will divide between ages x and x + dx ;
I(x) is the survivor function and is the probability that a newborn cell will not have divided
before age x, and is the probability that X > x;
H(x) is age specific fission rate and y(x)dx is the probability that x < X < x + dx given that
X > x.

It is noted that only one of f(x), I(x), and u(x) is independent,
X
fOx) = 1(x)u(x), I(X)=EXp[—(J)#(S)dS} )

and,
Bx,t) = a(t)u(x). @)
Similar definitions hold where subscripts V and T are used to describe the

vegetative and total cell populations, respectively.

3. Formulation of the Integral Equation Model
Based on the definitions viable cells alive at time t must have been born between
time t —x and t — (x + dx) and not divided before reaching age x. Consequently, M(t)a(x,

t)dx = B(t — x)I(x)dx. The birth rate of viable cells at time t of age x to x + dx is B(t)a(x,
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t)dx = B(t — x)a(t)u(x)l(x)dx from (2), which from (1) is B(t — x)a(t)f(x)dx. Similarly, D(t)a(x,
t)dx = B(t — x) I(x)u(x) = B(t — x)f(x)dx. Summing over all ages gives,

M(t) = O(};B(t — X)I(x)dx,

B(t) = a(t)ogB(t — X)f(x)dx, 3)

D(t) = O(I:B(t — X)f(x)dx.

The integral equation for B(t) used by demographers for modeling human

0

population growth has the form B(t) = [B(t — x)I(x)A(x,t)dx [13]. Hence, (3) may be
0

derived from the integral equation used by demographers by using the modifications
represented by (1) and (2).

a(t)-1

dmMm
From (3) it is seen that — = B(t) - D(t) = [a(t) - 1]D(t) = B(t) and if
dt a(t
there are K viable cells initially then,
t -1
Mo = K + 12 e au. )
0 am)

Also, the intrinsic rate of increase of the population of viable cells is,

[a(t) - 1]B(Y) i [a(t) - 1]ac0,1)
a(t)M(t) a(t)

R() =

()

The set of equations (3) requires a full history of the remote past. To overcome this
difficulty it is assumed that the number of viable cells K and the age density a(x,0) at

some time origin are known. Then the birth rate at time t due to viable cells alive at the

0 f(x +t
origin is given by a(t)Kfa(x,O)gdx and the birth rate due to viable cells born since
0

1)

t
the originis a(2)[ B(t — x)f(x)dx and so from (3),
0

t
B() = a(K¥,(H) + a(t) (j) B(t — X)f(X)dx,

©  fx+t) ©)
where, ¥(t) = (I)a(x,O) ,

1(x)

and similarly,
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t
M(t) = K¥ () + (j) B(t — X)I(X)dx,

© x4 1) )
where, ¥5(t) = [a(x0) )
0 1(x)
Considering the number of viable cells alive at time t of age x to x + dx gives,
1(x)
Ka(x —t,0) , X >,
M(t)a(x.t) = I(x 1) ®)
B(t — x)I(x), 0<x<t.

By taking the Laplace transform of M(t) in (4) and in (7) it is easy to show that both
expressions for M(t) are the same. For the purposes of calculation (4) is simpler than (7).

However, (7) is instructive in the sense that it separates the population at time t into

survivors from the initial population (K¥/2(t)) and those produced since the time origin

t
((I]B(t - x)1x)dx).

Using the subscripts V and T for the vegetative and total cell populations,
respectively, the following equations can be derived by arguments similar to those used

in describing the population of viable cells.
2-a(t)
a(t)
My (1) = My, (0) + (})Bv(u)du,

RV (t) = av(o,t),
B MV(O)aV(X—t,O), X 2>t,
My ®ay (8 = [BV (t - x), 0<x<t,

By (= B(v),

(©)

and,
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2B(t)
Br(t) =B(®+By(®) = :
a(t)
M+ () = K+ My, (0) }B(u)d
=K+ + |—du,
T \Y 0 o)
at(0,) (10)
Ry () = -,
Ka(x —t,0) 1) My, (0)ay (x—t0), x>t
—t T —t0), x>t
M (Oag () = -ty Y
B(t — x)I(X) + By (t — x), 0<x<t.

Equations (3)-(10) provide separately a full description of the populations of viable
and vegetative cells as well as the total population of all cells. Furthermore, the model
enables analysis of the transient stage of growth, when viable cells which were present
in the initial population are still present, and analysis of the stable stage of growth when
all the viable cells in the initial population have divided. The following describes the
required inputs and the main outputs for the integral equation model:

Inputs: (a) a(t) the vegetative parameter; (b) K, My(0), a(x, 0), and ay(x, 0) the initial
numbers and age densities of viable and vegetative cells, respectively; and (c) only one
of f(x) (the density function for the generation time), I(x) (the survivor function), or u(x)
(the age specific rate of cell division).

Outputs: (a) the total birth rates B(t), By(t), and B+(t), the mean number of cells M(t),
My(t), and M+(t), and the age density functions a(x, t), av(x, t), and ar(x, t) for the
populations of viable cells, vegetative cells, and the total population of all cells,
respectively, during the transient and stable stages of growth; and (b) other growth

parameters of interest (e.g. crude birth rates and doubling times).

4. A Constant Vegetative Parameter a

To illustrate the use of the integral equation model to analyze both the transient
and stable stages of growth consider the case where the vegetative parameter a(t) is the
constant a with 0 < a < 2. The case where a = 0 is not analyzed here since under this
condition no viable cells are produced as the result of the division of any of the viable
cells present in the initial population and as soon as all of those viable cells have divided
the total population consists entirely of vegetative cells. The analysis of this simple
situation is left for the interested reader. If the cells are at least reasonably well
nourished then 1 < a<2[2].
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4.1 The Transient Stage of Growth

0

*
If G (s)= [exp(-st)G(t)dt is the Laplace transform of G(t) then taking Laplace
0

*

) * * * % ] ) * aKS”l (s)
transforms in (6) B (s) = aK¥{(s)+aB (9)f (s), which gives B (s)=———— and
1-aof (s)

* o0
inversion of B (s) gives B(t) = _ZO Aj exp(rjt) where s = ryis the largest real root of 1 —
J:

af(s) = 0. Complex roots occur in conjugate pairs with real parts less than ry and

Aj = forj=0,1,2,....
[e 0]
[ xf(x)exp ( — rjx)dx
0

Using the solution for B(t) and equations (7)-(10) enables a complete analysis of
the process during the transient stage of growth when there are still viable cells in the

population which were present in the initial population.

4.2 The Stable Stage of Growth
For large values of t when the growth is stable and all of the viable cells in the
initial population have divided B(t) = Agexp(rot) and a is greater than, equal to, less than

unity implies that ro is positive, zero, negative, respectively. Consequently,

(a —1)Ag exp(rgt)

—_——, a#] Aq explr, (tfx)]l(x) 0<x<t,
= and =| "0 0
M(t) ary M(t)a(x.t) [07 K>t
K, a=1,
For the population of vegetative cells:
2 My (0)+ 2L A exp(rt), o <1
—a + My + exp(rpt), a =1,
BV(t):TAoeXp(rot) , My (t)=|a-1 arg 0 0
A0t+ Mv(o), o 21,
2l (t-x)1, 0<x<t
- e fp\t = ) = )
and Mv(t)a(x,t): a 0 &P [ Xl X<
My (0)ay (x-t0), X >t

For the total population:
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27
B (t) = ——exp(ryt)
a

A
0
K+ My (0)+—exp(rpt), a =1
Mt (t)=| a-1 v ary 0 and

Agt + K+ My (0),

a

a=1

Aq explr, (t—x)] I(x)+2_a 0<x<t

Mt (t)ag (x,t) =] ©° 0 oo
My (0)ay (x—t0), X>t.

The crude birth rates are:

ro, (x;tl,
for the viable cells R(t) = a(0,t) =| * 1 ,
Ao
— . a=1
K
for the vegetative cells
i 2—a
— Ag exp(rpt)
o
, az]
o—2 2-a
Ry (1) = ay (0,) =| My (0)+ =K+ == Ag exp(rgt) :
0
A
0 ) o =1,
| My (1)
and for the total population of all of the cells
- 1
— Ag exp(rpt)
[
) 1 , o %1,
at (0,t) o —
RT(t):T—: My (0) + K +——Aq exp(rpt)
- (XVO
AO ) o =1
| M7 (1)

From these results the following observations can be made:
The viable cell population is stationary at K when a = 1. Otherwise, as t increases it
decreases to a limiting value of zero when 0 < a < 1 and it increases without bound for 1
< a<2. If1<a<2then the youngest viable cells are present in the greatest proportion.

As t increases the number of young viable cells increases for 1 < a < 2, decreases for 0
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< a <1, and is constant for a = 1. The viable cell population has a stable age distribution
(i.e. independent of t) for 1 < a < 2. The average age of dividing cells in the stable

0
population is ¢« | xf (x)exp(-rpx)dx where of (x)exp(-ryx)is referred to as the density
0

function for Powell’s [2] carrier distribution.
The vegetative cell population is constant at My(0) for a = 2. Otherwise, as t increases it

2—a

increases to a limiting value of K+ My, (0) for 0 < a < 1 and it increases without

l-a
bound for 1 < a < 2. If a = 1 then vegetative cells are being produced at a constant rate
Ao for large values of t. As t increases the number of young vegetative cells increases for
1 < a < 2, decreases to a limit of zero for 0 < a < 1, and remains constant for a = 1.

Although a(x, t) is independent of t for large values of t this is not generally true for ay(x, t)

o exp(-rgx) l<a <2

and as t — «, ay (x,t) > [0 It is interesting to note that if

) O<a<l.

2—a

My (0) = K , which is only possible if 1 < a < 2, then the age distribution for the

a—-1

o exp(-rgx), l<a <2

vegetative cells produced since the origin is stable at |: Under

0, O<a<l.
these conditions the age distribution for the total population of all the cells produced

2-a

since the origin is stable at ar, [I( X)+ }for l<as2.

a

2—«a

The total cell population increases to a limiting value of K+My (0) forO<a<1

l-«a
and increases without bound otherwise. As t increases the number of young cells in the
total population increases for 0 < a < 2, decreases to a limit of zero for 0 < a< 1, and is

constant for a = 1.

5. The Generation Time Distribution

Before considering plausible choices for the generation time distribution of viable
cells the following simplifying assumptions are made: a(t) = a, as discussed above; and
the initial population consists entirely of K newborn viable cells with K = 1. This means
that: My(0) = 0; a(x, 0) = 6(x), which is the Dirac delta function; and ay(x, t) = 0 for all x
and t when a = 2. Hence, from (4), (6) and (7),
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t
B(t) = aKf(t) + a (J) B(t — X)f(x)dx, (11)

a-1

t t
M(t):KI(t)+(I)B(t—x)I(x)dx=K+ [I)B(u)du. (12)

o
Using these assumptions various plausible choices for the generation time distribution

are considered.

5.1 Constant Generation Time (1)
Under this assumption each viable cell has a fixed lifetime of r which means that
the generation time density function f(x) = &(r - x) and, from (1), I(x) is the Heaviside

1, x<r,

function H(z - x) :[
0, x>r.

For the transient stage of growth using Laplace transforms in (11) gives B(t), which
when substituted in (12) and (8) gives M(t) and M(t)a(x, t), and (9) describes the
vegetative cell population. For the stable stage of growth the equations derived
previously may be applied with Ao = K/t and ro = In(a)/t.

The main results of the analysis for the viable and vegetative cell populations are
displayed in Tablel. These results include those derived by Thornley [1] who only
considered the case where a = 2 (i.e. no vegetative cells are produced) and they provide
a more complete description of the process, particularly during the transient stage of
growth. Thornley [1] notes that at time t, in the stable population, there are twice as many
newborn viable cells as there are viable cells that are about to divide. In the stable
population from the equation for M(t)a(x, t) in Tablel it is seen that the corresponding
ratio is a for the more general process considered here where vegetative and viable cells

are present. Also, it is noted from the equation for M(t) that the doubling time for the

when a # 1.

n2
stable population of viable cells is given by !
In(a)
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Tablel. Summary of results for a fixed generation time 1

Stage

Type of Cell

Viable Cells

o
Fornrst<(n+1)rwhere n=0,12,..:B(t) = K_ZlaJ(S(jr—t); M(t)=anK;
J:

o
KH(r—X)_ZlaJ6(jr+x—t), 0<x<t,
J:

M (t)a(x,t) =
0, X > t.
= Vegetative Cells
()
‘® 2-a © G
S Fornrst<(n+1)1wheren:0,1,2,...:BV(t): KX a 6(jr-t)
= a IS
2_0’|<(1 ”) 1
—_— - a #1,
nkK, a =1
2ra ¥ V(i t), 0 t
e a T+Xx-1) < X<t
My (Da(xt) =] o, =% o
0, X > t.
Viable Cells
-7
t a-1 —
K — ——Ka T, a=#l
B(t):—aT,M(t): |n(a)
T
K, a=1
=x
KHt T 0<x<t
— - X , 0<x<t,
% M(t)a(x.t)=| (t=X)a <
n 0, X >t

Vegetative Cells

t—7
BV(t):Z_aKa T oMy (t) = (@ ~1) In(a)

5.2 Variable Generation Times Involving the Completion of a Fixed Number of

Events

An alternative model of the generation time for viable cells assumes that cell

division occurs at the completion of a fixed number of n events which take place in each
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cell in a specific order at different rates B1, B2, B3, ..., Bn, respectively. This model is
referred to as the Generalized Erlangian Model and was proposed by Kendall [4].

If Px(x) is the probability that exactly k events have been completed by age x then

dPy (x) de(x)
= —p1Py(x): = BP 1 (X)=Pq(x), forj=1,23 .., n-1 and
dP, (x) _ _ * n  Bj _
= BnPy_1(x). Taking Laplace transforms gives sP, (s) = II which
dx =l (s+ Bj)
when inverted gives the generation time density function,
f Mg |2 (13)
X)= ; A exp(—Bix), 1
()= JLAj |2 Aj exe(-jx)
S + ﬂj
where Aj is the limit ofn—ass - —ﬂj forj=1, 2, 3, ..., n, and the expected
I1(s + B
TL(s + fi)
n n Aj
value of the generation time is ( 1 ﬂj )X —F5.
IENS S
J

If it is assumed in the Generalized Erlangian Model (13) that g; = B, for j = 1, 2,
3, ..., nthen the density function for the generation time is,

n_n-1

Bx" T exp(=/X)
0= (h-1)r

which is an Erlangian or Pearson type Il density function with mean generation time n/g.

(14)

This is referred to as the Erlangian Model and was proposed by Kendall [3].
If it assumed in (13) that gj=jBforj=1, 2, 3, ..., n then,

1
£(x) = [1-exp(-px)]" " npexp(-px), (15)

which is the density function for Yule's distribution and the mean generation time

j
_nnl (— 1) n-1 .
is— X 2 Cj . This is referred to as Rahn’s Model [6].
B0 (j +1)
If n =1 in equations (13)-(15) then cell division occurs at the completion of a single
event and the generation time has a simple exponential distribution,
f(x) = pexp(-px), (16)

with mean value 1/6. This is referred to as the simple exponential or Malthusian Model.
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Comparing the mean values of the generation times using equations (14)-(16) it is
seen that,

n
n/B (Erlangian Model) 2 — X,
iz 2

BI=0(j+1)

with equalities when n = 1.

n—lcj (Rahn’s Model) = 1/ (Malthusian Model),

It is noted that Rahn [6] obtained the Yule distribution by assuming that cell division
occurs at the completion of n independent events which are not necessarily completed in
sequence but each has a duration with an exponential density Bexp(-8x). This
assumption is quite different from the assumption that leads to the Yule distribution as
described above in (15) and emphasizes the general principle that a generation time
density function must not be selected only on the basis that it exhibits a reasonable fit to
experimental data. There must also be sound physiological evidence to support the
selection.

The Malthusian, the Erlangian, the Generalized Erlangian, and Rahn’s formulations
for the generation time are now used in the integral equation model for the population of
cells.

The Malthusian Model

The use of the Malthusian Model (16) in the integral equation formulation is
analyzed using the assumptions which lead to (11) and (12) where, from (1), I(x) = exp(-
Bx). For the transient stage of growth substituting (16) in (11) and taking Laplace
transforms gives B(t) and then M(t) and M(t)a(x, t) are obtained from (12) and (8),
respectively. Corresponding expressions for the population of vegetative cells are
obtained from (9). For the stable stage of growth the equations derived in section 4.2 are
applied with Ag = aBK and ro = B(a — 1).

Hence, for the transient stage of growth:

B(t) = K expl Aa — L)t T; M(Y) = K expl B - L1 T;

aK eXp[ﬁ(at — ax —t)], 0<x<t,
0, X2t

M(t)a(x,t) = [

By (1) = (2- a)BK expl Ba — 1)t 1; My, (1) :Z;jK{exp[ﬂ(a —1r] -1
o

X 2>t

and My (t)ay (x,t) = [EZ—a)ﬂK exp[ﬂ(a —1)(t - x), 0<x<t,
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For the stable stage of growth the corresponding expressions are the same as for
the transient stage. From the expression for M(t) it is seen that the doubling time for the

/J’(a—l).

population of viable cells is

The Erlangian Model

The use of the Erlangian Model (14) in the integral equation formulation is analyzed
using the assumptions which lead to (11) and (12). Substituting (14) in (11) and taking

Laplace transforms gives,

. o j—lﬂ(j—l)n
B (s)=oKpg X2 — which on inversion gives,
1= (s + ﬁ)
w ol gingin-t

B(t)=K A ————.
(O =Kepl-m 2= s

and from (12),
o 2 3 jn-1
M(t) = Kq1+ (2 -1) 3 o7t 1—[1+ﬂt+(ﬁ[) +(ﬂt) - Jexp(~At)
=1 2 3 (jn-1)
From (8),
") ajﬂnj j_
M(Da(x.t) = Kexp[ﬁ(x—t)]l(x)jél(jn_1)! (t—x) , 0<x<t,
0, X >,
2 3 n-1
where, from (2.1), I(x):[l+/3’x+(ﬂx) +(ﬁx) +...+(ﬂt) Jexp(—px).
2 a3 (n-1)

For the vegetative cells, from (9),

an
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w )i in-l
Bv(t)—( )exp( ﬁt)Zaﬂt

a = (-1

© 2 3 jn-1
Mv(t):MjélaJ 1—[1+ﬂt+(’3t) (ﬁt) ( )

+

u o N +ot (Jn—l)]exp( ) |
K(2-a) © alp” jn-1

My (D)ay (x,t) = Texp[ﬁt(Xt)]jél(jn_l)!(tX) L 0<x<t,
0,

Equations (17) and (18) provide an analysis of the transient stage of growth

The analysis of the stable stage of growth for the viable cells gives

PK % -

B(Y) = : expl fla" — D],

1 1

n
MO - (a-1)k exlp[ Bla™ —1t] | (19)

an(an -1)
1 1

M(t)a(x,t) =

exp[,b’(t—x)(ozﬁ —DJI(x), 0<x<t,
0, X >t.

For the stable population of vegetative cells the results are most easily expressed in
terms of the results in (19),

Bv(t)—( Vo)

a

My, (t) =

a
a_l[M(t)—K],

(20)

M(t)a(x t), 0<x<t,
My (t)ay (X, 1) =1 a1(x)
0,
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For the stable stage of growth it noted that the average age of a cell that is about

to divide is 1 and the expected lifetime of a newborn viable cell is n/G. Also, from
pa"
(19) the doubling time for the stable population of viable cells is 1
pla" -1

Kendall's [3] analysis using the Erlangian Model uses a different approach and is
restricted to the case where a = 2 (i.e. no vegetative cells are produced) and K = 1. His
analysis considers the population of viable cells at time t and defines P(Nyn, Nn.1, ..., Ni; 1)
as the probability that there are N; cells undergoing the i-th of the n sequential events
where i = 1, 2, 3, ..., n. The probability generating function ®(z,, zn1, ..., z1; t) for the
distribution of cells undergoing the events 1, 2, 3, ..., n is shown to be Z(Bt)exp(-Lt)

n

d Z(u
where Z(u) satisfies # =7 2(u )exp(—u) with the boundary conditions for 0 <i <
du
d'z(u) o .
n — 1 satisfying i =Zjq- Kendall notes that this differential equation for Z(u)
du
u=0

is intractable for values of n = 2. However, it is shown that if Vi is the expected value of

dv dv;
N; then 1 =2vp, -Vi and —- = Vig —vj,forl<i<n,whered = pt. This system is
dé do
i 1
. 2 m gt i) Ny 2z .
solved to give v; =| — _Zow exp[At(2" w” —1)] wherew = exp(—) is the
n J= n

n © n-1 (ﬂ[)mn+j
n™ complex root of unity and so M (t) = _Zlvi = exp(-/4t) ZO M Y L
i= m=

j=0 (mn + j)!

The result for M(t) in (17) reduces to that obtained by Kendall when K =1 and a =
2. It is noted that the integral equation formulation which led to (17) is easier than
Kendall's approach and certainly gives more general results because it accounts for the
possibility of vegetative cells and allows for an initial population size K = 1. Furthermore,
the analysis of the stable stage of growth using (19) and (20) for the integral equation

model carries the generalization of Kendall’s results further.
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The problem may also be formulated as a Bellman-Harris process but for this
approach it is necessary to specify (];fori =0, 1, 2, which is the probability that when a
viable cell divides i viable cells are produced [8]. To relate this to the vegetative

parameter a used in the integral equation formulation it is reasonable to use (,=0, (|, =

2
2-a,and (,= a-1so that Z:iqi = o where itis assumed that 1 < a < 2 and so the
i=0

cells are reasonably well nourished. If N(t) is the number of viable cells in the population

at time t, Pj(t) is the probability that there are j viable cells in the population at time t, and
© .

F(z,t)= '20 Pj (t)z ) |z| <1 is the associated probability generating function then
J:

t
F(z,t)= (J)h(F(z,t —x)f(x)dx + zl(t)with h(u) = (2 - a)u + (a— l)u2 ([12)).

Using the Erlangian Model (14) for f(x) gives,

2 n-1 n
F(th)exp(ﬂl):[1+ﬂt+(ﬂt) +...+(ﬂt) ]z+(27a)ﬂ }F(z,x)exp(ﬁx)(t—X)n_ldx
2! (n-1)r (h-1) o0

(a-1)p

n
+W(})F2(z,x)exp(ﬁx)(t—x)n_ldx.

Differentiating n times gives,

n
o"[F(z.tyexp( )]
ah
Bharucha-Reid [12] shows that if

= " exp(pOF(z.0)[(a —1)F(z,t) + 2 a]. 1)

t t

Mo (1) = 2(@ —1)[M 2 (t)f (x)dx + @] M, (1) f(x)dx then the variance of N({) is given
0 0

by M 2 (t)+M (t)[1+ M (t)] and M o (t ) satisfies the differential equation,

n
‘ [Mz(t)nexp(m] = "ol ~ M2 () + oM (1) ]exp ) (e2)
ot

where M, (0)=0.

In the particular case where n = 1 (Malthusian Model) (21) becomes,
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oF
— = (a —1)ﬁF(F —1) with the initial condition F(z, 0) = z, which corresponds to K = 1.
ot
z, a=1
F(z,t)= ZE‘XD[—(OC—l)ﬁt l<g<p andfort>0

1-[1- exp[—(« 1)}z

) ’

Py (1) :{Sxp[—(a—l)t][l—exp[—(a—1)t]]l_l, J >L \when1<a< 2, and

1 j:]_, © oF
Pi(t)=| | " whena=1Hence, M(t)= X jPj(t)=—] =exp[pla-1k].
0. J=#1, j=0"! ZAPE|

Equation (22) becomes M + /3(1— a)M o(t)= Z,B(a - 1)exp[2ﬂ(a - 1)(] which
ot

gives,

Hence, the variance for N(t)

2exp[ Al 1)1 [expl pla -1k -1) 1<a <2,
Mz(t): 0, a=1.

is

exp[ﬂ(a —1)t[exp[/3(a - l)t - 1], l<a <2,
0, a=1

and the coefficient of variation is

\/1— exp[—ﬁ(a —1)t for 1< a <2, and it approaches 1 for large values of t.
It is seen that by formulating the problem as a Bellman-Harris process with
appropriate values for (; it is possible to determine the distribution for the size of the

viable cell population and obtain the variance of this population size for the Malthusian
Model (n = 1). However, the n" order differential equations (21) and (22) for F(z, t) and
Ma(t), respectively, indicate the extra difficulties in obtaining results for n = 2 by analytic
methods compared to the analysis using the integral equation model. Also, in practice it
seems reasonable to assume that an estimate of the vegetative parameter a would be

easier to obtain than the values of (]; and, from an estimate of a, the integral equation

model provides extensive information without requiring any knowledge of the values for

;-
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The Generalized Erlangian Model and Rahn’s Model

As might be expected it is difficult to obtain analytic results using the Generalized
Erlangian Model (13) for the generation time density and the same is true for the use of
Rahn’s Model (15). For example, using Rahn’s Model (15) and the Generalized
Erlangian Model (13), in (11), and taking Laplace transforms gives,

Aj

n n
aK(IT Bj) X
aknt g = J=1(5+ﬁj )

*
and B (s)= , respectively.

B (s)=

. n
jlll(s+1ﬂ)fn!aﬁ 1_a(ﬁ ﬂj)_g:_ j
=l J_lm

In both cases the inversion is in general a difficult procedure with the results being
dependent on the value of a. However, for each of these models in the case where n = 1
(Malthusian Model), and the case where n = 2 and 1 < a < 2, which corresponds to a
situation where the cells are reasonable well nourished, it is possible to obtain closed
form expressions for B(t) and M(t) for the transient and stable stages of growth. These
results are displayed in Table 2 which also includes for comparative purposes the
corresponding results for the Erlangian Model (14) obtained from the relevant parts of
7).

Other characteristics of the populations of viable and vegetative cells as well as the
total population may be obtained from the results in Table 2 using the descriptions
derived from the integral equation model presented previously. For example, from Table
2 it is seen that for the stable population of viable cells where n=2and 1 <a<2a
comparison of the doubling times for the different models of the generation time density

may be made and,

In2 2In2
T = (Erlangian Model) > T = (Rahn’s Model) >
E R
(Ve 1) pl1+8a -3
In2 . . .
™ = (Malthusian Model). Also, the doubling time for the Generalized
ﬁ(a —1)
. L 2In2 e
Erlangian Model is given by Tgg = and it is seen

\/(/31 - P )2 +4affy ~ (51 + 52)

that,
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o(py

Tee <Tm - D(B1.Br) 21,
17 -3
TM <TGE STR, 1>¢(ﬂ1,ﬁ2)2 y
where,
V17 -3

>Cp(ﬂ1,ﬂ2)2\/5'ly

_TE <TGE, \/E'1>d)(ﬂl,ﬂ2)>0,

\/(’Bl i ﬂz)2 s _(ﬁl N ﬁz)

Bo) = :

2p

Table 2. B(t) and M(t) for the Generalized Erlangian, Rahn’s, and the Erlangian

Stage

Model of the Generation Time Density Function

Transient

Malthusian Model [n =1 in equations (13)-(15)]:

B(t) = afK exp[ Al ~ 111, M(t) = Kexp[ A(ar —1)]

Generalized Erlangian Model [n=2, 1<a<2,in (13)]:

2
B(t) = aKﬂ;ﬁz [exp \}(:B]_ —,32) +4ap) By _('61 +,B2) t
\}(ﬁl_ﬂz) +4aﬂlﬂ2 2
—exp _\/(ﬂl_ﬁZ)z +aapy py —(By+ 1) N ],M(t)zw
2 a

Rahn’'s Model [n=2,1<a<2,in (15)]:

B(t) = \Zi%{exp[g(\/l+8a —3)t] —exp[%<\/1+8a +3)t]},

4(a—1)K exp[g(\/1+8a—3>] exp[%(\/l+8a+3>]
V1+8a { 1+8a -3 : Vv1+8a +3 )

Erlangian Model [n = 2 in (14)]:

M(t) =

K

[ e ) - exp( -l Jexo ),

[(\/; +1)exp[ ﬂ(\/; —1)( +( « —1)exp[—ﬂ(\/; +1)t]

B(t) =

M) = ——
2Va




38 Thailand Statistician, 2009; 8(1):17-45

Malthusian Model [n =1 in equations (13)-(15)]:
B(t) and M(t) are exactly as for the transient stage of growth
Generalized Erlangian Model [n=2,1<a<2,in (13)]:

B(t) = U!K,B;ﬂz exp \/(ﬂl - By )2 +4apy By - (ﬁl + [,72) il
\/(/31 —ﬂg) + dapy By 9
v - 2e-8)

(24
Rahn’s Model [n=2,1<a<2,in (15)]:

Stable

4o -1)K exp[ g(\/l +8a — 3}]
V1+8a(\1+8a —3)

20K yij
B(t) = exp[ —\W1l+8a —3}k], M(t) =
V1+8a 2( ¢ )

Erlangian Model [n =2 in (14)]:

ﬂK\/; (\/; + 1)exp[ﬂ(\/; -Dt]

K
expl f(Var ], M) =

B(t) =

6. A Time Dependent Vegetative Parameter a(t)

So far the discussion has been mainly concerned with the situation where the
vegetative parameter a(t) is constant. It is more realistic to assume that it is time
dependent which may reflect variations in the level of nourishment available, or other
environmental factors, and factors operating within the cell itself which may cause the
production rate of viable cells to vary with time.

As before, it is assumed that the initial population consists entirely of K newborn

viable cells and so (13) becomes,
t
B(t) = a(t)KIf(t) + a(t )(j) B(t — x)f(x)dx, (23)

and f(x) is assumed to be the Erlangian density function (14). Unfortunately, in general
the solution of (23) is no longer amenable to the use of the Laplace transforms as was
the case when a(t) was constant. Instead, the substitution B(t) = a(t)v(t)exp(-Bt) is used
in (23) to give,

n n-1 n t
p K JaCu(x )t -x)" ox. (24)
|

B
AL A R R

Differentiating (24) n times with respect to t gives,

d"v(t)

— " a(t)(t) =0, (25)

dt
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and assuming that a(f) is analytic for t = 0, a series solution may be obtained for v(t) in
(25) as,
o ®© 1
v(t) = K,Bntn 1 + X bitI where
i=n

bj =0,0<i<n-2

n 26
by = KB, ¢0)
n. .
gl i
byi=—— 2 «;,i=0,1,2,..,,
nH (n+i)! j=0 !
and the a; are the coefficients in the series expansion of,
3 ]
a(t)= 2 a;t-. 27
(t)= Za; (27)

Hence, the series solution for B(t) is given by B(t) = a(t)v(t)exp(-8t) where v(t) and
a(t) have the series expansions in (26) and (27), respectively. Substituting the series

expansions for B(t) and a(t) in (4) gives the series expansion for M(t) as,

" Citi+1
M(t)=K +i§0 (i +1)! where
.. . 28
SRS T A
6= 3 daj| ¥ ALy K i,
j=0 k=0 (|—J—k)! k=0 (I—k)!

where the b, a; are given by (26) and (27), respectively.
In the particular case where n =1 (Malthusian Model) the expressions for B(t) and

M(t) are simpler and,

t
B(t) = ﬂKa(t)exp[ﬂ(I)(a(u )—1)du],

8(t) (29)

Ba(t)

M(t) =

t
= Kexp[ﬁ(})(a(u)—l)du].

Consequently, closed form expressions for B(t) and M(t) can usually be obtained for the
case n = 1 for both the transient and stable stages of growth whereas for n = 2 series
expansions are obtained using equations (26)-(28).

In order to illustrate the procedure two examples are considered using the
Erlangian density function (14) for the generation time. In the first example af(t)

decreases exponentially over time which corresponds to a situation where factors
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operating within the cell or its environment lead to a decrease in the production rate of

viable cells over time. The second example illustrates a situation where the change in a(t)

is represented by an S-shaped logistic function where a(t) increases over time to a

limiting value. In both examples expressions for B(t) are found for the transient stage of
growth for the case n = 2 and for the case n = 1 (Malthusian Model) both B(t) and M(t)

are found for the transient and stable stages of growth. The results are presented in

Table 3.

Table 3. Solutions for choices of a(t)

for j=1,2,3,....

Vegetative Transient Solution for Stable Solution
Parameter a(t) B(t) for B(t)
n=1 n=1
nx2 (Malthusian (Malthusian
Model) Model)
B(t) = AKa(t)v(t), B(t) = B(t) =
= @© i
v(t) = g"kt" 1+i§nbit'; a(t) x CAK x
Example 1 _ L L
(Exponential bj =0,for0<i<n-2 /1 c 1)t exp{/{/1 + (c —1)t
Decrease) n exps f
=8 K _
a(t) = n-1=F8 L ol M(t) =
n
¢+ Lexp(—4t), by = (,b’ k!) g P A K x
n+k) j=0 N
A>0,L>0, | M(t) = exp{/{H(c—l)t”
O<c<lL+c<2. fork=0,1,2,... _ K x A
L(-2)
apg =Cc+ L, aj = , L ( )t
exps f
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B(t) = a(t)v(t)exp(-At); B(t) = B(t) =
_F Ma(t)explp(L - 1)1+ A
Example 2. ) igobIt A ﬁ'KL(E) A x
(Logistic) bj =0,for0<i<n-2 ¢ |4 L
a(t) = — explA(L - 1]
by 4 = B"K,by =0 et
Lc n-1- T M(t) =
, n M(t)=
c+(L—c)exp(—ﬂt) . ¢ bkk! (c—L)k! ) (L 1)‘ c pL
= + X - X A
A >0, n+k (n n k)l |_(n + k)! eXp[ﬁﬂ ] K(I) X
l<c<ls<2 () o b-ip [ ] expl AL - 1]
2 : o |Lett)
J=t j!(k— j)'
fork=1,2,3, ...

From Example 1 in Table 3 for the case n = 1 it is seen that in the stable
population of viable cells M(t) is dependent on the value of c. For 0 < ¢ < 1, M(t) — 0 for

large values of t, leaving only vegetative cells in the population. In this case the halving

time for the population of viable cells is .Forc=1,M(t)= Kexp(ﬁ) which
A

In2
pli-c)
corresponds to a constant number of viable cells. For 1 < ¢ < L + ¢ < 2 the number of

viable cells increases without bound as t increases but approaches Kexp(&)as c
A

In2
approaches 1 and the doubling time is ——— .
ﬂ(c - 1)
From Example 2 in Table 3 it is seen that for n = 1 the number of viable cells

increases without bound as t increases. The doubling time for the stable population of

viable cells is

plL-1)

7. Conclusion

The integral (renewal) equation model used by demographers to describe the
growth of human populations has been modified to develop a model which describes the
growth of a population of viable and vegetative cells. The viable cells are capable of
dividing to produce 2 new cells where on average a(t) of these newborn cells are viable

and 2 - a(t) are vegetative cells, which are not capable of division. The model has been
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analyzed using various biologically plausible forms for the inputs a(t) and f(x) which is the
density function for the generation time of the viable cells. Throughout the presentation
the use of the integral equation model is compared to other modeling approaches and
the integral equation approach is shown to have advantages.

The formulation of the model is simple and is based on a modification of the
integral (renewal) equation of population dynamics which has a long history of
importance in the study of many biological and physical phenomena particularly where
the age structure of the population varies with time [13,31]. The outputs from the model
enable a complete analysis of the total population of all of the cells as well as the
subpopulations of viable and vegetative cells during both the transient and stable stages
of growth. In addition, a range of other growth parameters (e.g. doubling times and crude
birth rates) may be determined which in turn may be used to compare the effects of
different assumptions about inputs to the model. Other approaches do not include the
possibility of the production of vegetative cells (e.g. Kendall [3] and Thornley [1]) and
there is a preoccupation among other approaches with only the stable stage of growth
with no analysis of the earlier transient stage when viable cells present in the initial
population have not all divided (e.g. Powell [2] and Thornley [1]). This preoccupation may
not be justified in terms of the variability of environmental and other factors which
influence the growth process.

If the input parameter a(t) is constant, which is a common assumption in other
approaches, the model may be solved easily using Laplace transforms and a rigorous
presentation of the theory of this method of solution has been presented as early as
1941 by Feller [14]. Estimates of a(t) are easier to obtain than the input parameters
needed in other approaches (e.g. a Bellman-Harris process). If a(t) is time dependent
then under plausible assumptions about the generation time distribution series solutions
may be obtained from the model. Also, well established numerical techniques are
available for solving the model [17-20].

Finally, although the details are not presented in this article, in practice values of
the density function for the generation time may be obtained from experimental data
most naturally represented in either histogram or concentrated form. One approach is to
fit theoretical forms (e.g. Erlangian curves) to this empirical data but this is not without
difficulties as indicated in the introductory remarks for section 5.2 and, as noted by Feller
[14], unless the curve fitting is done by the method of moments then the asymptotic
values of B(t) will depend on the method used. Consequently, it is often an advantage to

use the empirical data in its natural form.
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If the data is in histogram form then in (23) may be represented by a system of

a(t)
integro-difference equations and solutions for B(t) can be obtained in each of the
consecutive time intervals used in the histogram. If the data is in concentrated form then
B(t)
a(t)

again solutions for B(t) can be obtained in each of the consecutive time intervals.

in (23) becomes a set of difference equations involving Dirac delta functions and
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