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Abstract 

A new probabilistic modeling approach is used to describe the transient and 

stable stages of growth of a population consisting of viable cells and vegetative cells. 

Viable cells are capable of division at the end of a random life-time (generation time) and 

when a cell divides it produces exactly two newborn cells. On average, at time t, α(t) of 

these two newborn cells are viable cells and 2 - α(t) are vegetative cells, which do not 

divide at any time. The model is developed by modifying the integral equation used by 

demographers to study the growth of human populations. The solution of the model is 

studied using various biologically plausible assumptions concerned with the inputs α(t) 

and the probability distribution of the generation time and comparisons made with other 

modeling approaches indicate that the new model is easier to formulate and analyze, 

provides a more complete analysis, and enables the incorporation of assumptions 

concerning environmental and internal cell factors that influence the production rate of 

viable cells.  

______________________________ 

Keywords: age structured generation time distribution, integral (renewal) equation, 
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1. Introduction 
         Consider a population of cells consisting of a mixture of two types: viable 

(fissioning or dividing) cells; and vegetative (non viable or quiescent) cells. Viable cells 

are capable of division at the end of a random generation time and when a viable cell 

divides (dies) it produces exactly two newborn cells. On average, at time t, α(t) of these 

two newborn cells are viable cells and 2 - α(t) are vegetative cells, which are not capable 

of division. 

         The construction of mathematical models of the growth of such a population of 

cells has early beginnings. Thornley [1] gives expressions for the mean numbers and the 

age structures by assuming that the cell division process is initially stable with a constant 

generation time for the viable cells. Powell [2] also assumes a stable viable cell 

population and working with a variable generation time considers the age structure and 

growth rate of only the viable cells. He suggests, on the basis of extensive empirical 

evidence, that the generation time distribution is adequately represented by an Erlangian 

distribution. This assumption is supported by Kendall [3] who also deals with the 

particular case where α(t) = 2 and subsequently developed a generalized Erlangian 

model for the generation time distribution [4]. Extensive measurements of the generation 

times of individual cells were first published by Kelly and Rahn [5] and subsequently 

Rahn [6] proposed the Yule distribution for the generation time and this has support from 

other empirical studies [7].  

         The problem has also been formulated as an age dependent Bellman-Harris 

process as a part of the study of branching processes which have their background in 

the physical and biological sciences with the major developments being due to Bellman 

and Harris [8,9]. This approach developed separately from the models favored by 

demographers, such as the integral model of Sharpe and Lotka [10] and the stochastic 

models of Kendall [14], and early detailed discussions of branching processes and their 

relationship to the other lines of development in population dynamics are given by Jagers 

[11] and Bharucha-Reid [12].  

         The model developed in this article is new and is based on a modification to the 

integral (renewal) equation of population dynamics favored by demographers and 

attributed to Sharpe and Lotka [10]. A complete age dependent analysis of the transient 

and stable stages of the growth of a population can be formulated in both discrete and 

continuous forms where discrete formulations typically use matrices and difference 

equations and continuous forms use integral equations and various types of differential 

equations. These various formulations have their advantages and disadvantages and the 
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integral equation formulation gives a superior approximation for the intrinsic rate of 

natural increase and provides a simple basis for perturbation analysis ([13]). In addition, 

the formulation of the integral equation model is simple, under reasonable assumptions 

the solution of the model is amenable to the use of Laplace transforms [14], and 

numerical solution techniques are well documented [15-20]. 

         Following definitions and notation the formulation of the new integral equation 

model is described. A complete analysis of the transient and stable stages of growth is 

presented for the case where the vegetative parameter is constant, which is a common 

assumption for a reasonable well nourished population of cells. This is followed by the 

incorporation and comparison of biologically plausible assumptions about the generation 

time distribution. Next the model is analyzed for the case where the vegetative 

parameter is time dependent and two examples are used to illustrate how this 

assumption allows time dependent influences internal to the cells or in the external 

environment to be accounted for in the model. Throughout the relevant sections 

comparisons are made with other modeling approaches in order to illustrate the 

advantages of the integral equation model. These are summarized as part of the 

conclusion which also indicates how the model may be used if the generation time 

distribution is represented in natural forms such as a histogram or a concentrated form. 

         It is noted that there is an extensive body of literature in recent times concerned 

with understanding the complex processes of cell division in both plants and animals. 

The focus is on biochemical and genetic mechanisms that operate within and between 

cells and influence cell division. In particular, the mechanisms of asymmetric cell division 

have been studied extensively. Mathematical models have been developed to describe 

these complex micro-level processes and although a detailed consideration of these 

findings and models is beyond the scope of this article it is recognized that it may be 

possible in the future to extend the meso-level model of the growth of the cell 

populations presented in this article to reflect the increasing body of knowledge 

concerned with complex micro-level internal cell processes. For a selection of recent 

articles related to these processes the reader is referred to Antil et al. [21], Hove and 

Heidstra [22], Knoblich [23], Portugal et al. [24], Serakinci et al. [25], Sharma et al. [26], 

Steuer [27], Wu et al. [28], Zhang et al. [29], and Zheng et al. [30]. 

 

2. Definitions and Notation 

         The following notation and definitions are used for the population of viable cells: 
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α(t) is referred to as the vegetative parameter and 0 ≤ α(t) ≤ 2. If α(t) = 0 then neither of 

the two newborn cells are viable and if α(t) = 2 then they are both viable; 

M(t) is the expected number of cells in the population at time t, with M(0) = K ≥ 1; 

B(t)dt is the expected total number of births due to M(t) cells in the time t to t + dt; 

D(t)dt is the expected total number of the M(t) cells that divide (die) in time t to t + dt;  

R(t) is the intrinsic rate of increase and
dt

dM

M(t)
R(t)=

1
; 

a(x,t) is the age density function of cells of age x such that M(t)a(x, t)dx is the expected 

number of cells at time t in the age range x to x + dx. In particular, a(0, t) is the crude 

birth rate and 
M(t)

B(t)
=ta ),( 0 ; 

β(x, t) is the age specific fecundity and β(x, t)dx is the fraction of newborn viable cells at 

time t due to the division of mothers (viable cells) of age x to x + dx;   

f(x) is the probability density function for the generation time X, which is a random 

variable representing the lifetime of a cell timed from the instant it was born, as a result 

of the division of its mother, until it divides and  f(x)dx is the probability that a newborn 

cell will divide between ages x and x + dx ;  

l(x) is the survivor function and is the probability that a newborn cell will not have divided 

before age x, and is the probability that X > x; 

μ(x) is age specific fission rate and μ(x)dx is the probability that x < X ≤  x + dx given that 

X > x. 

         It is noted that only one of f(x), l(x), and μ(x) is independent, 

                      



 ∫−==

x
dssxlxxlxf

0
)(exp)()()()( µµ ,       (1)                                                        

and, 

                  )()(),( xttx µαβ = .                                                                                     (2) 

         Similar definitions hold where subscripts V and T are used to describe the 

vegetative and total cell populations, respectively.  

 

3. Formulation of the Integral Equation Model 
         Based on the definitions viable cells alive at time t must have been born between 

time t – x and t – (x + dx) and not divided before reaching age x. Consequently, M(t)a(x, 

t)dx = B(t – x)l(x)dx. The birth rate of viable cells at time t of age x to x + dx is B(t)a(x, 
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t)dx = B(t – x)α(t)μ(x)l(x)dx from (2), which from (1) is B(t – x)α(t)f(x)dx. Similarly, D(t)a(x, 

t)dx = B(t – x) l(x)μ(x) = B(t – x)f(x)dx. Summing over all ages gives,  
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                                         (3)                                          

         The integral equation for B(t) used by demographers for modeling human 

population growth has the form ∫
∞

−=
0

dxtxxx)lB(tB(t) ),()( β  [13]. Hence, (3) may be 

derived from the integral equation used by demographers by using the modifications 

represented by (1) and (2).  

         From (3) it is seen that [ ] B(t)
t

t
D(t)tD(t)B(t)

dt

dM

)(
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)(

α

α
α

1
1
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=−=−=  and if 

there are K viable cells initially then,  
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t
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−
+=
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                                      (4)                                        

Also, the intrinsic rate of increase of the population of viable cells is, 
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         The set of equations (3) requires a full history of the remote past. To overcome this 

difficulty it is assumed that the number of viable cells K and the age density a(x,0) at 

some time origin are known. Then the birth rate at time t due to viable cells alive at the 

origin is given by dx
l(x)

t)f(x
)a(x,α(t)K ∫

∞ +

0
0  and the birth rate due to viable cells born since 

the origin is dx
t

x)f(x)B(tα(t) ∫ −
0

and so from (3), 
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and similarly,  
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Considering the number of viable cells alive at time t of age x to x + dx gives, 
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         By taking the Laplace transform of M(t) in (4) and in (7) it is easy to show that both 

expressions for M(t) are the same. For the purposes of calculation (4) is simpler than (7). 

However, (7) is instructive in the sense that it separates the population at time t into 

survivors from the initial population ( (t)KΨ 2 ) and those produced since the time origin 

( ∫ −
t

x)l(x)dxB(t
0

). 

         Using the subscripts V and T for the vegetative and total cell populations, 

respectively, the following equations can be derived by arguments similar to those used 

in describing the population of viable cells. 
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   and, 
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         Equations (3)-(10) provide separately a full description of the populations of viable 

and vegetative cells as well as the total population of all cells. Furthermore, the model 

enables analysis of the transient stage of growth, when viable cells which were present 

in the initial population are still present, and analysis of the stable stage of growth when 

all the viable cells in the initial population have divided.  The following describes the 

required inputs and the main outputs for the integral equation model:  

Inputs: (a) α(t) the vegetative parameter; (b) K, MV(0), a(x, 0), and aV(x, 0) the initial 

numbers and age densities of viable and vegetative cells, respectively; and (c) only one 

of f(x) (the density function for the generation time), l(x) (the survivor function), or μ(x) 

(the age specific rate of cell division). 
Outputs: (a) the total birth rates B(t), BV(t), and BT(t), the mean number of cells M(t), 

MV(t), and MT(t), and the age density functions a(x, t), aV(x, t), and aT(x, t) for the 

populations of viable cells, vegetative cells, and the total population of all cells, 

respectively, during the transient and stable stages of growth; and (b) other growth 

parameters of interest (e.g. crude birth rates and doubling times). 

 

4. A Constant Vegetative Parameter α 

         To illustrate the use of the integral equation model to analyze both the transient 

and stable stages of growth consider the case where the vegetative parameter α(t) is the 

constant α with 0 < α ≤ 2. The case where α = 0 is not analyzed here since under this 

condition no viable cells are produced as the result of the division of any of the viable 

cells present in the initial population and as soon as all of those viable cells have divided 

the total population consists entirely of vegetative cells. The analysis of this simple 

situation is left for the interested reader. If the cells are at least reasonably well 

nourished then 1 < α ≤ 2 [2].  
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4.1 The Transient Stage of Growth 

         If G(t)dtst(s)*G ∫
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         Using the solution for B(t) and equations (7)-(10) enables a complete analysis of 

the process during the transient stage of growth when there are still viable cells in the 

population which were present in the initial population. 

 

4.2 The Stable Stage of Growth  
         For large values of t when the growth is stable and all of the viable cells in the 

initial population have divided B(t) = A0 exp(r0 t) and α is greater than, equal to, less than 

unity implies that r0 is positive, zero, negative, respectively. Consequently, 
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         For the total population: 
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         The crude birth rates are: 

for the viable cells 
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and for the total population of all of the cells 
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         From these results the following observations can be made: 

The viable cell population is stationary at K when α = 1. Otherwise, as t increases it 

decreases to a limiting value of zero when 0 < α < 1 and it increases without bound for 1 

< α ≤ 2. If 1 < α ≤ 2 then the youngest viable cells are present in the greatest proportion. 

As t increases the number of young viable cells increases for 1 < α ≤ 2, decreases for 0 
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< α <1, and is constant for α = 1. The viable cell population has a stable age distribution 

(i.e. independent of t) for 1 < α ≤ 2. The average age of dividing cells in the stable 

population is dxxrxxf )exp()(∫
∞

−
0 0α  where )exp()( xrxf 0−α is referred to as the density 

function for Powell’s [2] carrier distribution. 

The vegetative cell population is constant at MV(0) for α = 2. Otherwise, as t increases it 

increases to a limiting value of )( 0
1

2
VMK
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 for 0 < α < 1 and it increases without 

bound for 1 < α < 2. If α = 1 then vegetative cells are being produced at a constant rate 

A0 for large values of t. As t increases the number of young vegetative cells increases for 

1 < α < 2, decreases to a limit of zero for 0 < α < 1, and remains constant for α = 1. 

Although a(x, t) is independent of t for large values of t this is not generally true for aV(x, t) 
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these conditions the age distribution for the total population of all the cells produced 

since the origin is stable at  
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The total cell population increases to a limiting value of )( 0
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α
 for 0 < α < 1 

and increases without bound otherwise. As t increases the number of young cells in the 

total population increases for 0 < α ≤ 2, decreases to a limit of zero for 0 < α < 1, and is 

constant for α = 1. 

 

5. The Generation Time Distribution  

         Before considering plausible choices for the generation time distribution of viable 

cells the following simplifying assumptions are made: α(t) = α, as discussed above; and 

the initial population consists entirely of K newborn viable cells with K ≥ 1. This means 

that: MV(0) = 0; a(x, o) = δ(x), which is the Dirac delta function; and aV(x, t) = 0 for all x 

and t when α = 2. Hence, from (4), (6) and (7),  
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Using these assumptions various plausible choices for the generation time distribution 

are considered. 

 

5.1 Constant Generation Time (τ) 
         Under this assumption each viable cell has a fixed lifetime of τ which means that 

the generation time density function f(x) = δ(τ - x) and, from (1), l(x) is the Heaviside 

function 
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         For the transient stage of growth using Laplace transforms in (11) gives B(t), which 

when substituted in (12) and (8) gives M(t) and M(t)a(x, t), and (9) describes the 

vegetative cell population. For the stable stage of growth the equations derived 

previously may be applied with A0 = K/τ and r0 = ln(α)/τ.  

         The main results of the analysis for the viable and vegetative cell populations are 

displayed in Table1. These results include those derived by Thornley [1] who only 

considered the case where α = 2 (i.e. no vegetative cells are produced) and they provide 

a more complete description of the process, particularly during the transient stage of 

growth. Thornley [1] notes that at time t, in the stable population, there are twice as many 

newborn viable cells as there are viable cells that are about to divide. In the stable 

population from the equation for M(t)a(x, t) in Table1 it is seen that the corresponding 

ratio is α for the more general process considered here where vegetative and viable cells 

are present. Also, it is noted from the equation for M(t) that the doubling time for the 

stable population of viable cells is given by 
)ln(

ln
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τ 2
 when α ≠ 1. 
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Table1. Summary of results for a fixed generation time τ 
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5.2 Variable Generation Times Involving the Completion of a Fixed Number of 

Events 

         An alternative model of the generation time for viable cells assumes that cell 

division occurs at the completion of a fixed number of n events which take place in each 
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cell in a specific order at different rates β1, β2, β3, …, βn, respectively. This model is 

referred to as the Generalized Erlangian Model and was proposed by Kendall [4].  

         If Pk(x) is the probability that exactly k events have been completed by age x then 

)()(
)(

)(
)(
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dx
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dx

xdP
11101

0
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when inverted gives the generation time density function, 
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         If it is assumed in the Generalized Erlangian Model (13) that βj = β, for j = 1, 2, 

3, …, n then the density function for the generation time is, 

                                               ( )!n

xnxn
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which is an Erlangian or Pearson type III density function with mean generation time n/β. 

This is referred to as the Erlangian Model and was proposed by Kendall [3].  

         If it assumed in (13) that βj = jβ for j = 1, 2, 3, …, n then,  

                                      [ ] )exp()exp()( xn
n

xxf βββ −
−

−−=
1

1 ,                                 (15)                                                            

which is the density function for Yule’s distribution and the mean generation time 

is
( )
( ) jCnn

j j

j
n 11

0 2
1

1 −∑
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= +

−

β
. This is referred to as Rahn’s Model [6].  

         If n = 1 in equations (13)-(15) then cell division occurs at the completion of a single 

event and the generation time has a simple exponential distribution, 

                                                        )exp()( xxf ββ −= ,                                              (16)                                                                                         

with mean value 1/β. This is referred to as the simple exponential or Malthusian Model.  
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         Comparing the mean values of the generation times using equations (14)-(16) it is 

seen that,  

n/β (Erlangian Model) ≥ 
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j
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β
 (Rahn’s Model) ≥ 1/β (Malthusian Model), 

with equalities when n = 1. 

         It is noted that Rahn [6] obtained the Yule distribution by assuming that cell division 

occurs at the completion of n independent events which are not necessarily completed in 

sequence but each has a duration with an exponential density βexp(-βx). This 

assumption is quite different from the assumption that leads to the Yule distribution as 

described above in (15) and emphasizes the general principle that a generation time 

density function must not be selected only on the basis that it exhibits a reasonable fit to 

experimental data. There must also be sound physiological evidence to support the 

selection.  

         The Malthusian, the Erlangian, the Generalized Erlangian, and Rahn’s formulations 

for the generation time are now used in the integral equation model for the population of 

cells.  

The Malthusian Model 

         The use of the Malthusian Model (16) in the integral equation formulation is 

analyzed using the assumptions which lead to (11) and (12) where, from (1), l(x) = exp(-

βx). For the transient stage of growth substituting (16) in (11) and taking Laplace 

transforms gives B(t) and then M(t) and M(t)a(x, t) are obtained from (12) and (8), 

respectively. Corresponding expressions for the population of vegetative cells are 

obtained from (9). For the stable stage of growth the equations derived in section 4.2 are 

applied with A0 = αβK and r0 = β(α – 1).  
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         For the stable stage of growth the corresponding expressions are the same as for 

the transient stage. From the expression for M(t) it is seen that the doubling time for the 

population of viable cells is ( )1
2

−αβ

ln
. 

The Erlangian Model 
         The use of the Erlangian Model (14) in the integral equation formulation is analyzed 

using the assumptions which lead to (11) and (12). Substituting (14) in (11) and taking 

Laplace transforms gives, 
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       (17)                     

For the vegetative cells, from (9), 
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Equations (17) and (18) provide an analysis of the transient stage of growth.  

         The analysis of the stable stage of growth for the viable cells gives, 
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For the stable population of vegetative cells the results are most easily expressed in 

terms of the results in (19), 
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         For the stable stage of growth it noted that the average age of a cell that is about 

to divide is 

n

n
1

βα

 and the expected lifetime of a newborn viable cell is n/β. Also, from 

(19) the doubling time for the stable population of viable cells is 

)( 1
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2

−nαβ

ln
. 

         Kendall’s [3] analysis using the Erlangian Model uses a different approach and is 

restricted to the case where α = 2 (i.e. no vegetative cells are produced) and K = 1. His 

analysis considers the population of viable cells at time t and defines P(Nn, Nn-1, …, N1; t) 

as the probability that there are Ni  cells undergoing the i-th of the n sequential events 

where i = 1, 2, 3, …, n. The probability generating function Φ(zn, zn-1, …, z1; t) for the 

distribution of cells undergoing the events 1, 2, 3, …, n is shown to be Z(βt)exp(-βt) 
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         The result for M(t) in (17) reduces to that obtained by Kendall when K = 1 and α = 

2. It is noted that the integral equation formulation which led to (17) is easier than 

Kendall’s approach and certainly gives more general results because it accounts for the 

possibility of vegetative cells and allows for an initial population size K ≥ 1. Furthermore, 

the analysis of the stable stage of growth using (19) and (20) for the integral equation 

model carries the generalization of Kendall’s results further. 
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         The problem may also be formulated as a Bellman-Harris process but for this 

approach it is necessary to specify iq for i = 0, 1, 2, which is the probability that when a 

viable cell divides i viable cells are produced [8]. To relate this to the vegetative 

parameter α used in the integral equation formulation it is reasonable to use 0q = 0, 1q = 

2 – α, and 2q = α -1 so that α=∑
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iiq  where it is assumed that 1 < α ≤ 2 and so the 

cells are reasonably well nourished. If N(t) is the number of viable cells in the population 

at time t, Pj(t) is the probability that there are j viable cells in the population at time t, and 
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Differentiating n times gives,  
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         Bharucha-Reid [12] shows that if 
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where 002 =)(M .     

         In the particular case where n = 1 (Malthusian Model) (21) becomes, 
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 and the coefficient of variation is 

( )t11 −−− αβexp[  for ,21 ≤< α  and it approaches 1 for large values of t. 

         It is seen that by formulating the problem as a Bellman-Harris process with 

appropriate values for iq  it is possible to determine the distribution for the size of the 

viable cell population and obtain the variance of this population size for the Malthusian 

Model (n = 1). However, the nth order differential equations (21) and (22) for F(z, t) and 

M2(t), respectively, indicate the extra difficulties in obtaining results for n ≥ 2 by analytic 

methods compared to the analysis using the integral equation model. Also, in practice it 

seems reasonable to assume that an estimate of the vegetative parameter α would be 

easier to obtain than the values of iq  and, from an estimate of α, the integral equation 

model provides extensive information without requiring any knowledge of the values for 

iq .  
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The Generalized Erlangian Model and Rahn’s Model 
         As might be expected it is difficult to obtain analytic results using the Generalized 

Erlangian Model (13) for the generation time density and the same is true for the use of 

Rahn’s Model (15). For example, using Rahn’s Model (15) and the Generalized 

Erlangian Model (13), in (11), and taking Laplace transforms gives, 
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In both cases the inversion is in general a difficult procedure with the results being 

dependent on the value of α. However, for each of these models in the case where n = 1 

(Malthusian Model), and the case where n = 2 and 1 < α ≤ 2, which corresponds to a 

situation where the cells are reasonable well nourished, it is possible to obtain closed 

form expressions for B(t) and M(t) for the transient and stable stages of growth. These 

results are displayed in Table 2 which also includes for comparative purposes the 

corresponding results for the Erlangian Model (14) obtained from the relevant parts of 

(17).  

         Other characteristics of the populations of viable and vegetative cells as well as the 

total population may be obtained from the results in Table 2 using the descriptions 

derived from the integral equation model presented previously. For example, from Table 

2 it is seen that for the stable population of viable cells where n = 2 and 1 < α ≤ 2 a 

comparison of the doubling times for the different models of the generation time density 

may be made and, 
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Malthusian Model [n =1 in equations (13)-(15)]: 
B(t) and M(t) are exactly as for the transient stage of growth 
Generalized Erlangian Model [n = 2, 1 < α ≤ 2, in (13)]: 
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Rahn’s Model [n = 2, 1 < α ≤ 2, in (15)]: 
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Erlangian Model [n = 2 in (14)]: 
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6. A Time Dependent Vegetative Parameter α(t) 

         So far the discussion has been mainly concerned with the situation where the 

vegetative parameter α(t) is constant. It is more realistic to assume that it is time 

dependent which may reflect variations in the level of nourishment available, or other 

environmental factors, and factors operating within the cell itself which may cause the 

production rate of viable cells to vary with time. 
         As before, it is assumed that the initial population consists entirely of K newborn 

viable cells and so (13) becomes, 

                                        ∫ −+=
t
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0
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and f(x) is assumed to be the Erlangian density function (14). Unfortunately, in general 

the solution of (23) is no longer amenable to the use of the Laplace transforms as was 

the case when α(t) was constant. Instead, the substitution B(t) = α(t)v(t)exp(-βt) is used 

in (23) to give,  
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Differentiating (24) n times with respect to t gives, 
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and assuming that α(t) is analytic for t ≥ 0, a series solution may be obtained for v(t) in 

(25) as, 

                                          

( ) 













∑
=

=
+

=+

=

−≤≤=

∑
∞

=
+−=

i

j
ij

in

in

inb

nKn-b

niib

ni
itibntnKtv

0

1

200

1

  2,..., 1, 0, ,

,

 , ,

  where

α
β

β

β

!

!

)(

                       (26) 

and the jα  are the coefficients in the series expansion of, 
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         Hence, the series solution for B(t) is given by B(t) = α(t)v(t)exp(-βt) where v(t) and 

α(t) have the series expansions in (26) and (27), respectively. Substituting the series 

expansions for B(t) and α(t) in (4) gives the series expansion for M(t) as, 
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where the bi, αi are given by (26) and (27), respectively. 

         In the particular case where n =1 (Malthusian Model) the expressions for B(t) and 

M(t) are simpler and, 
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Consequently, closed form expressions for B(t) and M(t) can usually be obtained for the 

case n = 1 for both the transient and stable stages of growth whereas for n ≥ 2 series 

expansions are obtained using equations (26)-(28).          

         In order to illustrate the procedure two examples are considered using the 

Erlangian density function (14) for the generation time. In the first example α(t) 

decreases exponentially over time which corresponds to a situation where factors 
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operating within the cell or its environment lead to a decrease in the production rate of 

viable cells over time. The second example illustrates a situation where the change in α(t) 

is represented by an S-shaped logistic function where α(t) increases over time to a 

limiting value. In both examples expressions for B(t) are found for the transient stage of 

growth for the case n ≥ 2 and for the case n = 1 (Malthusian Model) both B(t) and M(t) 

are found for the transient and stable stages of growth. The results are presented in 

Table 3. 

 

Table 3. Solutions for choices of α(t)  
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Example 2. 
(Logistic) 
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From Example 1 in Table 3 for the case n = 1 it is seen that in the stable 

population of viable cells M(t) is dependent on the value of c. For 0 < c < 1, M(t) → 0 for 

large values of t, leaving only vegetative cells in the population. In this case the halving 

time for the population of viable cells is ( )c−1

2

β

ln
. For c = 1, )exp()(

λ

βL
KtM =  which 

corresponds to a constant number of viable cells. For 1 < c < L + c ≤ 2 the number of 

viable cells increases without bound as t increases but approaches )exp(
λ

βL
K as c 

approaches 1 and the doubling time is ( )1
2

−cβ

ln
. 

         From Example 2 in Table 3 it is seen that for n = 1 the number of viable cells 

increases without bound as t increases. The doubling time for the stable population of 

viable cells is ( )1
2

−Lβ

ln
. 

 

7. Conclusion 

         The integral (renewal) equation model used by demographers to describe the 

growth of human populations has been modified to develop a model which describes the 

growth of a population of viable and vegetative cells. The viable cells are capable of 

dividing to produce 2 new cells where on average α(t) of these newborn cells are viable 

and 2 - α(t) are vegetative cells, which are not capable of division. The model has been 
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analyzed using various biologically plausible forms for the inputs α(t) and f(x) which is the 

density function for the generation time of the viable cells. Throughout the presentation 

the use of the integral equation model is compared to other modeling approaches and 

the integral equation approach is shown to have advantages.  

         The formulation of the model is simple and is based on a modification of the 

integral (renewal) equation of population dynamics which has a long history of 

importance in the study of many biological and physical phenomena particularly where 

the age structure of the population varies with time [13,31]. The outputs from the model 

enable a complete analysis of the total population of all of the cells as well as the 

subpopulations of viable and vegetative cells during both the transient and stable stages 

of growth. In addition, a range of other growth parameters (e.g. doubling times and crude 

birth rates) may be determined which in turn may be used to compare the effects of 

different assumptions about inputs to the model. Other approaches do not include the 

possibility of the production of vegetative cells (e.g. Kendall [3] and Thornley [1]) and 

there is a preoccupation among other approaches with only the stable stage of growth 

with no analysis of the earlier transient stage when viable cells present in the initial 

population have not all divided (e.g. Powell [2] and Thornley [1]). This preoccupation may 

not be justified in terms of the variability of environmental and other factors which 

influence the growth process.    

         If the input parameter α(t) is constant, which is a common assumption in other 

approaches, the model may be solved easily using Laplace transforms and a rigorous 

presentation of the theory of this method of solution has been presented as early as 

1941 by Feller [14]. Estimates of α(t) are easier to obtain than the input parameters 

needed in other approaches (e.g. a Bellman-Harris process). If α(t) is time dependent 

then under plausible assumptions about the generation time distribution series solutions 

may be obtained from the model. Also, well established numerical techniques are 

available for solving the model [17-20]. 

         Finally, although the details are not presented in this article, in practice values of 

the density function for the generation time may be obtained from experimental data 

most naturally represented in either histogram or concentrated form. One approach is to 

fit theoretical forms (e.g. Erlangian curves) to this empirical data but this is not without 

difficulties as indicated in the introductory remarks for section 5.2 and, as noted by Feller 

[14], unless the curve fitting is done by the method of moments then the asymptotic 

values of B(t) will depend on the method used. Consequently, it is often an advantage to 

use the empirical data in its natural form.  



Graham K. Winley                                                                                 43 

     If the data is in histogram form then 
)(

)(

t

tB

α
 in (23) may be represented by a system of 

integro-difference equations and solutions for B(t) can be obtained in each of the 

consecutive time intervals used in the histogram. If the data is in concentrated form then 

)(

)(

t

tB

α
 in (23) becomes a set of difference equations involving Dirac delta functions and 

again solutions for B(t) can be obtained in each of the consecutive time intervals.   
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