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Abstract 

 Some problems in the errors of regression model is an important issue, such as 

the autocorrelated error, moving average error. When these problems occur, the ordinary 

least squares (OLS) estimators can not be used because they are not efficient. This 

paper proposes a transformation matrix to correct the first-order moving average, MA(1), 

problem and to recover the one lost observation in a regression model. When the errors 

have the MA(1) problem, the sample mean squared error (MSE) is shown theoretically 

and empirically to be an overestimate of the MSE after transformation. The results of 

simulation study confirm that the errors after removing the MA(1) problem are 

independent and if the MA(1) problem is not corrected, the MSE overestimates the 

corrected one at the significance level 0.05. 

______________________________ 

Keywords: first-order moving average, mean squared error, regression model, 
transformation matrix. 
 
1.  Introduction  

Regression analysis is a statistical technique for modeling and analyzing the 

relationship between several variables, when the focus is on the relationship between a 

dependent variable and one or more independent variables. More specifically, regression 

http://en.wikipedia.org/wiki/Independent_variable
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analysis helps us understand how the typical value of the dependent variable changes 

when any one of the independent variables is varied, while the other independent 

variables are held fixed. Most commonly, regression analysis estimates the conditional 

expectation of the dependent variable given the independent variables i.e., the average 

value of the dependent variable when the independent variables are held fixed. 

Applications of regression can occur in almost every field such as the engineering, 

physical, chemical, biological, social sciences, economics, and management. The linear 

regression model can be written conveniently in a matrix form as follows [1]: 

 = +y Xπ v  (1) 

where y  is a T 1×  dependent random vector of observations, X  is a T K×  matrix of 

independent explanatory variables with full-column rank, π  is a K 1×  unknown 

parameter vector of regression coefficients, and v  is a T 1×  error vector. 

 The classical assumptions for regression analysis are summarized as follows 

[2-4]. The sample must be representative of the population for the inference prediction. 

The error is assumed to be a random variable with a mean of zero conditional on the 

explanatory variables and all of errors are uncorrelated. The variance of the error is 

constant across observations: homoscedasticity. The independent variables are error-

free and they must be linearly independent, i.e., it must not be possible to express any 

predictor as a linear combination of the others. These are sufficient conditions for the 

least squares estimator to possess desirable properties, in particular, these assumptions 

imply that the parameter estimates will be unbiased, consistent, and efficient in the class 

of linear unbiased estimators.  

 When the regression model in (1) is fitted, the residuals v̂  may observe a 

systematic pattern. These residuals may suggest that some essential independent 

explanatory variables have not been included in the model. Exclusion could be due to 

inadequate knowledge in the problem and/or lack of accurate data. In this paper, the 

error generated in the fitted model is assumed in the form of a first-order moving average 

or MA(1) process, 

 t t t 1v ε ε , t 1, 2, , T−= − θ =   (2) 

where the first-period back error t 1ε −  is called the first-lag of error tε , the parameters θ  

of the model must satisfy the following condition to ensure the invertibility of the error 

terms [5], 

 1θ <  (3) 

http://en.wikipedia.org/wiki/Conditional_expectation
http://en.wikipedia.org/wiki/Conditional_expectation
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Uncorrelated
http://en.wikipedia.org/wiki/Homoscedasticity
http://en.wikipedia.org/wiki/Linearly_independent
http://en.wikipedia.org/wiki/Bias_of_an_estimator
http://en.wikipedia.org/wiki/Consistent_estimator
http://en.wikipedia.org/wiki/Efficient_(statistics)
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and the error tε  in (2) is assumed to be normally independent distributed with mean 

zero and the variance is finite and also time invariant. So that tε  is an independent 

identically distributed random variable, obeying 

 tε ~ ( )2NID 0, , t 1, 2, , Tσ =   (4) 

 It is noteworthy that the value of 1v  in the moving average model (2) depend on the 

value of 0ε , which is unknown. The recovery of 1v  will be discussed later. The 

objectives of this paper are two points. Firstly, the transformation matrix is proposed to 

correct the first-order moving average problem and to recover the one lost observation in 

a regression model. Secondly, if the moving average problem in errors is ignored, the 

estimate of sample mean squared error is shown theoretically and empirically to be an 

overestimate of the corrected one. This paper is divided in four sections. The second 

proposes the methodology, i.e., the transformation matrix, to correct the first-order 

moving average problem in a regression model and the third shows the algorithm for 

simulate the first-order moving average model and shows all results of the simulation 

study. Conclusions appear in the 4th section.. 

 

2.  Methodology 

Theorem A-1: The T T×  transformation matrix P, used to correct the first-order moving 

average problem in a regression model is defined by 

 

2

2

3 2

T 1 T 2 T 3 T 4

1 0 0 0 0
1

1 0 0 0
1 0 0

1 0

1− − − −

 
 

+ θ 
 θ
 

θ θ=  
 θ θ θ 
 
 

θ θ θ θ  









     



P . (5) 

 The transformation matrix P in (5) is used to transform y  and X  in (1) to be ∗y  

and ∗X , respectively, such that the moving average of the errors v  in (1) is eliminated, 

to give the model 

 ∗ ∗= +y X π ε  (6) 
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where , ,∗ ∗=y Py X = PX  ( )E ∗ =ε X 0 , and ( ) 2E ∗′ = σ Tεε X I . 

 
Theorem A-2: Under the regression model in (1), if we ignore the moving average 

problem and use the ordinary least squares (OLS) method to estimate the unknown 

parameter vector, then the corrected minimum sample mean squared error from the OLS 

estimate, yields the expectation of ˆ ˆ′v v  divided by T K− , 

 ( )2 2ˆ ˆ
E 1

T K
′  ≈ σ + θ − 

v v
. (7) 

 Under the transformed model in (6), the least squares residuals can 

consistently be used to estimate the variance 2σ  with unbiased estimator 2 ˆ ˆˆ
T K
′

σ =
−
ε ε

 

[6-7]. Therefore, 

 2ˆ ˆ
E

T K
′  = σ − 

ε ε
. (8) 

Subtracting equation (8) from equation (7), yields 

 
ˆ ˆ ˆ ˆ

E E 0
T K T K
′ ′   − ≥   − −   

v v ε ε
. (9) 

The equality to zero in (9) can occur if, and only if the moving average problem does not 

exists in the error v̂ .  

  From the inequality in (9), we can conclude that if we ignore the moving 

average problem and use the residuals from the ordinary least squares method to 

estimate the sample mean squared error, the estimated value is greater than the one 

after the moving average problem has been corrected.  

 
3.  Simulation study and results 

In this simulation study, we consider a multiple linear regression model with four 

independent explanatory variables (K = 4), denoted by t1 t 2 t3x , x , x ,  and t 4x , where the 

first element of independent explanatory variables t1x  is given as a constant 1 ( )t1x 1= . 

The parameters of regression model are assumed to be 

1 2 320, 5, 7 ,π = π = π =  and 4 12π = . 

Therefore, the multiple linear regression model in this simulation takes the form 

 t t 2 t3 t 4 ty 20 5x 7x 12x v= + + + +  (10) 
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for t 1, 2, , 100=  . 

 The error tv  in (10) is in the form of moving average model of order 1, MA(1), 

where the parameter θ  is assumed to be 

0.6θ = . 

Therefore, the moving average model in this simulation is in the form 

 t t t 1v 0.6 −= ε − ε  (11) 

for t 1, 2, , 100=  . 

 The error tε  in (11) is an independent identically distributed random variable, 

obeying 

tε ~ ( )N 0,0.49 . 

 

Steps in the Simulation Study 

Step 1 Generate normal independent random variable with zero mean and unit 

variance, called r, by the CALL RANNOR routine in SAS version 9.1 about 

5,700 observations; the seed number to generate r is arbitrarily given as 34134. 

Step 2 Generate normal distribution of tε  with zero mean and variance equal to 0.49 

about 5,700 observations by the following equation 

tε r 0.7 r= σ× = × . 

Step 3 Construct the series of errors tv  in (11) about 5,700 observations, using the 

normal distribution of tε  which obtained in Step 2 where 0ε  are arbitrarily 

given to be zero. Then split of the series of errors tv  in sequence to preserve 

the relationship in tv  into 57 samples, each of which consists of 100 

observations, the first 100 observations go to sample 1, the second 100 

observations go to sample 2, and so on.  

Step 4 Test the MA(1) properties for the errors generated in Step 3, estimate the 

parameter θ  and also test the normality for the residuals tε  by the ARIMA and 

the UNIVARIATE procedure, respectively, in SAS version 9.1. Discard 7 

samples that fail the test, and retain 50 samples for further study.  

Step 5 Generate the series of independent explanatory variables t 2 t3x , x ,  and t 4x  

about 6,000 observations by the UNIFORM function in SAS version 9.1 where 
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t 2x ~ ( )U 5,10 , t3x ~ ( )U 10,20 , and t 4x ~ ( )U 2,6 ; the seed numbers to 

generate t 2 t3x , x ,  and t 4x  are arbitrarily given as 789455, 9875244, and 

658214, respectively. Split of the series of independent explanatory variables 

t 2 t3x , x ,  and t 4x  as Step 3 in sequence into 60 samples, each of which 

consists of 100 observations. 

Step 6 Test the multicollinearity problem for the series of independent explanatory 

variables t 2 t3x , x ,  and t 4x  in Step 5, using the knowledge of correlation matrix 

and the variance inflation factor (VIF). Discard 10 samples which present the 

multicollinearity problem, and retain 50 samples for further study. 

Step 7 Construct the dependent variable ty  described in (10), using the corresponding 

independent explanatory variables t 2 t3x , x ,  and t 4x  obtained in Step 6 and the 

moving average error tv  obtained in Step 4. 

Step 8 Construct the estimate of proposed transformation matrix P in (5) for each 

sample, using the estimated value of θ  which obtained in Step 4 and use it to 

transform the regression model in (1) to the transformed model as shown in (6). 

Step 9 Estimate the parameters π ’s of the transformed model in Step 8 by the REG 

procedure in SAS version 9.1. Then test the moving average in the residuals 

and test the normality of the residuals by the ARIMA and the UNIVARIATE 

procedures, respectively. The tests confirm that the errors of all 50 transformed 

samples in Step 8 are white noises. Therefore, we can say that the proposed 

transformation matrix P in (5) has a transformation percentage of 100 percent. 

Step 10 Use the residuals tε̂  in Step 9 to calculate the sample mean squared error of 

the transformed model by the proposed transformation matrix P in (5), 

100 100
2 2
t t

t 1 t 1

ˆ ˆε ε
MSE

100 4 96
= == =
−

∑ ∑
. 

Step 11 Estimate the parameters of the regression model in Step 7 by using the REG 

procedure where the moving average problem is ignored. Using the residuals 

tv̂  to calculate the sample mean squared error of the model before 

transformation, 
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100 100
2 2
t t

t 1 t 1

ˆ ˆv v
MSE

100 4 96
= == =
−

∑ ∑
. 

Step 12 Compare the sample mean squared errors from Steps 10 and 11 by the TTEST 

procedure in SAS version 9.1. The result shows that, when ignoring the moving 

average problem in the errors of the model in (10), the sample mean squared 

error is greater than the one of the transformed model at the level of 

significance 0.05. The sample mean squared error of all 50 samples from the 

model before and after transformation are shown in Figure 1. The mean, 

standard deviation, minimum and maximum values of the sample mean 

squared errors before and after transformation are shown in Table 1.  
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Figure 1. The Sample Mean Squared Error of 50 Samples from the Model before and 

after Transformation. 
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Table 1. Mean, Standard Deviation, Minimum and Maximum Values of the Sample Mean 

Squared Error in 50 Samples with the t and p Values of the Test. 
 

Sample no. 
MSE 

Before Transformation After Transformation 

Mean 0.6378 0.4714 

SD. 0.0881 0.0626 

Min 0.4694 0.3238 

Max 0.8142 0.6003 

t-test 10.89 

p-value < 0.001 

 
4.  Conclusions 

 This paper has presented a transformation matrix in order to correct the first-

order moving average problem and to recover the one lost observation in a regression 

model. When ignoring the first-order moving average, the sample mean squared error is 

shown to be an overestimate of the sample mean squared error when the moving 

average has been corrected. 

 The results of simulation study confirm that the transformed errors of the 

multiple linear regression model are independent and that before removing the moving 

average in the errors of the model, the sample mean squared error is greater than the 

one after the moving average problem has been corrected at the level of significance 

0.05.  
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Appendix 

Proof of Theorem A-1. 

 At the tth observation, the regression model in (1) can be written as follows: 

 t ty v , t 1, 2, , T′= + = tx π  (A1) 

where 

[ ]t1 t 2 tKx x x′ = tx , 

 t t t 1v ε ε , t 2, 3, , T−= − θ =  . (A2) 

Replacing tv  in (A2) into (A1), 

 t t t 1y ε ε −′= + − θtx π . (A3) 

Rearrange (A3) in term of tε , 

 t t t 1ε y ε −′= − + θtx π . (A4) 

Then, the ith lag of tε  can be written as:  

 ( )t i t i t i 1ε y ε− − − +
′= − + θt-ix π . (A5) 

Use the knowledge of (A5), the equation in (A3) become 

  ty  ( )t t 1 t 2ε y ε− −′ ′= + − θ − + θt t-1x π x π  

      t t 1y y −+ θ  ( ) 2
t t 2ε ε −′ ′= + θ + − θt t-1x x π  

    ( ) ( )2
t t 2 t 3ε y ε− −′ ′ ′= + θ + − θ − + θt t-1 t-2x x π x π  

          2
t t 1 t 2y y y− −+ θ + θ  ( )2 3

t t 3ε ε −′ ′ ′= + θ + θ + − θt t-1 t-2x x x π  

     

http://libsearch.nida.ac.th/ipac20/ipac.jsp?session=12P642S2714C3.25544&profile=main&uri=search=AL@!Box,%20George%20E%20P.&ri=2&aspect=basic_search&menu=search&source=202.28.16.20@!nidadb
http://libsearch.nida.ac.th/ipac20/ipac.jsp?session=12P642S2714C3.25544&profile=main&uri=search=AL@!Jenkins,%20Gwilym%20M.&menu=search&submenu=basic_search&source=202.28.16.20@!nidadb
http://libsearch.nida.ac.th/ipac20/ipac.jsp?session=12P642S2714C3.25544&profile=main&uri=search=TL@!Time%20series%20analysis%20:%20forecasting%20and%20control%20/&term=&aspect=basic_search&menu=search&source=202.28.16.20@!nidadb
http://libsearch.nida.ac.th/ipac20/ipac.jsp?session=12P642S2714C3.25544&profile=main&uri=search=TL@!Time%20series%20analysis%20:%20forecasting%20and%20control%20/&term=&aspect=basic_search&menu=search&source=202.28.16.20@!nidadb
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T

i
t i

i 0
y −

=

θ∑  ( )

T
i T 1

t t T 1
i 0

ε ε+
− +

=

′= θ + − θ∑ t-ix π .                (A6) 

 As T becomes large and θ  satisfies the invertibility condition, the value of T 1+θ  

in (A6) approach zero. Therefore, (A6) can be reduced to  

       
T

i
t i

i 0
y −

=

θ∑  
T

i
t

i 0
ε

=

′= θ +∑ t-ix π   

    ty∗  tε , t 2, 3, , T∗′= + = tx π                       (A7) 

where 
T

i
t t i

i 0
y y∗

−
=

= θ∑  and 
T

i

i 0

∗

=

′ ′= θ∑t t-ix x . 

 From (A7) it can be seen that ( ) ( ) 2
t tVar y Var ε∗ ∗ = = σtx  for t 2, 3, , T=  . 

In other words, the moving average problem at t 2, 3, , T=   has been corrected. The 

transformation in (A7) does not include the first observation in (A1). The 

heteroskedasticity remains unsolved unless the first observation is eliminated. But if the 

first observation is included in the analysis, the transformation must be extended by the 

following steps. Firstly, we take the expectation to tv  in (A2), 

    ( )tE v  ( ) ( )t t 1E ε E ε , t 2, 3, , T−= − θ =   

  ( ) ( )t tE ε E ε= −θ  

  ( ) ( )t1 E ε= −θ . 

 Using the assumption ( )tE ε 0=  in (4), we have the expectation of tv  is equal 

to zero. Next, from (A1) the variance of ty  given tx  for t 1, 2, , T=   can be written as 

     ( )tVar y tx  ( ) ( )2
t tVar v E v= =  

 ( )2
t t 1E ε ε −

 = − θ   

 ( ) ( ) ( )2 2 2
t t t 1 t 1E ε 2 E ε ε E ε− −= − θ + θ  

 ( ) ( )2 2 2
t tE ε E ε= + θ  

  ( ) ( )2 2
t1 E ε= + θ  

     ( )tVar y tx  ( )2 21= + θ σ .                                                      (A8) 
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 Hence, the first observation should weighted by 2

1
1+ θ

, yields the model 

 1 1y ε∗ ∗′= +1x π  (A9) 

where 1 12

1y y
1

∗ =
+ θ

 and 2

1
1

∗′ ′=
+ θ1 1x x . 

 It can be shown that the moving average problem at t = 1 has been corrected, 

        ( )1Var y∗ ∗
1x  ( )12

1 Var y
1

=
+ θ 1x  

  ( )2 2
2

1 1
1

= ⋅ + θ σ
+ θ

 

  2= σ . 

 Combining the results in (A9) and (A7), respectively, the vector of transformed 

dependent variables ∗y  can be written as 

12

2

2 3

43 2

TT 1 T 2 T 3 T 4

1 0 0 0 0 y
1

y1 0 0 0
y

1 0 0
y

1 0

y
1

∗

− − − −

 
  

+ θ   
  θ
  

θ θ=   
  θ θ θ   
  
    

θ θ θ θ  










     



y = Py  

and the matrix of transformed independent variables ∗X = PX  can be written in similar 

manner.   

Q.E.D. 

 

Proof of Theorem A-2. 

 Under the regression model in (1) and the moving average problem is ignored, 

the OLS estimator of unknown parameter vector π  is  

 ( ) 1ˆ −′ ′=π X X X y . (A10) 

Replacing π̂  in (A10) into the regression model in (1), yields the estimated error v̂  as 

follows:  
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 ( ) ( )1 1
Tˆ ˆ − − ′ ′ ′ ′− = − − v = y Xπ y X X X X y = I X X X X y . (A11) 

The expectation of ˆ ˆ′v v  can be written as  

  ( )ˆ ˆE ′v v  ( ){ }1
TE − ′ ′ ′= − y I X X X X y  

 ( ){ } ( ) ( ) ( )1 1
T Ttr − −′   ′ ′ ′ ′= − + −   I X X X X Φ Xπ I X X X X Xπ  (A12) 

where Xπ  denotes the expectation of y  and Φ  denotes the conditional variance of y  

given X .  

Consider the last term in (A12), 

   ( ) ( ) ( )1
T

−′  ′ ′− Xπ I X X X X Xπ  ( ) 1−′ ′ ′ ′ ′ ′= −π X Xπ π X X X X X Xπ  

  0′ ′ ′ ′= −π X Xπ π X Xπ = . 

Therefore, the expectation of ˆ ˆ′v v  in (A12) is equal to  

 ( ) ( ){ } ( ) ( )1 1
Tˆ ˆE tr tr tr− −   ′ ′ ′ ′ ′= − = −   v v I X X X X Φ Φ X XX XΦ . (A13) 

 The conditional variance of y  given X , Φ , in terms of the autocovariance 

function of error v  can be rewritten in terms of the autocorrelation function of error v  at 

lag 1, 2, ,  T 1−  as shown in [8], 

 Φ   ( ) ( ) ( )Var Var E ′= = =y X v vv  

 ( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2

1 2 3 T 2 T 1
1

0 0 0 0 0

1 1 2 T 3 T 2
1

0 0 0 0 0

2 1 1 T 4 T 3
1

0 0 0 0 0

3 2 1 T 5 T 4
0 1

0 0 0 0 0

T 2 T 3 T 4 T 5 1
1

0 0 0 0 0

T 1 T 2 T 3 T 4 1
1

0 0 0 0 0

φ φ φ φ − φ −
 φ φ φ φ φ
 φ φ φ φ − φ −

φ φ φ φ φ


φ φ φ φ − φ −
 φ φ φ φ φ

 φ φ φ φ − φ −

= σ φ 
φ φ φ φ φ



φ − φ − φ − φ − φ


φ φ φ φ φ
φ − φ − φ − φ − φ
 φ φ φ φ φ











      





























    (A14) 
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 ( ) ( ) ( )2 20 0= σ φ × = σ φ × +TR I F                                                         (A15) 

where ( )0φ  in (A14) can be written in the term of variance of error tv , ( )2
tE v , as 

follows: 

 ( )
( )2

t 2
2

E v
0 1

σ
φ = + θ= ,                      (A16) 

( )1φ  in (A14) can be written in the term of autocovariance of error tv  at lag 1, 

( )t t 1E v v − , as follows: 

  ( )1φ  
( ) ( )( )t t 1

t t 1 t 1 t 22 2

E v v 1 E ε ε ε ε−
− − −= = − θ − θ  σ σ

 

  ( ) ( ) ( ) ( )2 2
t t 1 t t 2 t 1 t 1 t 22

1 E ε ε E ε ε E ε E ε ε− − − − −
 = − θ − θ + θ σ

  

  
( )2

t 1

2

E ε −−θ
=

σ
  

  
( )2

t

2

E ε−θ
=

σ
  

  = −θ , 

( )s , s 2, 3, , T 1φ = −  in (A14) can be written in the term of autocovariance of error tv  

at lag s, ( )t t sE v v − , as follows: 

 ( )sφ  
( ) ( ) ( )( )t t s

t t 1 t s t s 12 2

E v v 1 E ε ε ε ε−
− − − +

 = = − θ − θ σ σ
 

  ( ) ( )( ) ( ) ( )( )2
t t s t t 1 t s t 1t s 1 t s 12

1 E ε ε E ε ε E ε ε E ε ε− − − −− + − +
 = − θ − θ + θ σ

  

  0= ,  
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( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

j

1 2 3 T 2 T 1
0

0 0 0 0 0

1 1 2 T 3 T 2
0

0 0 0 0 0

2 1 1 T 4 T 3
0

0 0 0 0 0

3 2 1 T 5 T 4
0

0 0 0 0 0

T 2 T 3 T 4 T 5 1
0

0 0 0 0 0

T 1 T 2 T 3 T 4 1
0

0 0 0 0 0

φ φ φ φ − φ − 
 φ φ φ φ φ
 φ φ φ φ − φ −

φ φ φ φ φ


φ φ φ φ − φ −
 φ φ φ φ φ

 φ φ φ φ − φ −

= 
φ φ φ φ φ



φ − φ − φ − φ − φ


φ φ φ φ φ
φ − φ − φ − φ − φ
 φ φ φ φ φ

 









      





F
























 

  

( )
( ) ( )

( )

( )
( )

0 f 1 0 0 0 0

f 1 0 f 1 0 0 0

0 f 1 0 0 0 0
,

0 0 0 0 0 f 1

0 0 0 0 f 1 0

 
 
 
 
 =
 
 
 
 
 







      





                                 (A17) 

and ( )f 1  in (A17) represents the autocorrelation function of the error tv  at lag 1, 

 ( ) ( )
( ) 2

1
f 1

0 1
φ θ

= = −
φ + θ

 (A18) 

Therefore, the expectation of ˆ ˆ′v v  in (A13) can be written as  

     ( )ˆ ˆE ′v v  ( ) ( ) ( ){ }12 2tr 0 tr 0− ′ ′   = σ φ × − σ φ ×    R X X X X R  

  ( ) ( ) ( ){ }12 0 tr tr − ′ ′= σ φ −  R X X X X R  

  ( ) ( ) ( ){ }12 0 T tr − ′ ′= σ φ − + TX X X X I F  

  ( ) ( ) ( ){ }1 12 0 T tr tr− −   ′ ′ ′ ′= σ φ − −   X X X X X X X X F  

  ( ) ( ) ( ){ }12 0 T K tr − ′ ′= σ φ − −  X X X X F .                      (A19) 
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 We can normalized the independent variable tkx  to be tk tk kx x x= − . Hence, 

we have 

( )
T T

tk tk k
t 1 t 1

x x x 0, k 2, 3, , K
= =

= − = =∑ ∑   

then the matrix of independent variables becomes 

 

12 13 1K

22 23 2K

32 33 3K

42 43 4K

T 3,2 T 3,3 T 3,K

T 2,2 T 2,3 T 2,K

T 1,2 T 1,3 T 1,K

T2 T3 TK

1 x x x
1 x x x
1 x x x
1 x x x

1 x x x
1 x x x
1 x x x
1 x x x

− − −

− − −

− − −

 
 
 
 
 
 
 =  
 
 
 
 
 
  

  

  

  

  

    

  

  

  

  

X . (A20) 

 By the usual assumption of the regression model, two independent variables 

tkx  and tkx , k k′ ′≠  are uncorrelated. That is, 

( )( )
T T

tk tk tk k tk k
t 1 t 1

x x x x x x′ ′ ′
= =

= − −∑ ∑   

is insignificantly different from zero. Therefore, the inverse of matrix ′X X  in (A20) can 

be reduced to the form of diagonal matrix, 

 ( ) 1
T T T

2 2 2
t 2 t3 tK

t 1 t 1 t 1

1 1 1 1diag , , , ,
T x x x

−

= = =

 
  ′ =  
 
  

∑ ∑ ∑


  

X X . (A21) 

 The value of ( ) 1tr − ′ ′ X X X X F  in (A19) is equivalent to the value of  

 ( ) 1tr − ′ ′ X X X FX . (A22) 

 Post-multiply the transpose of matrix X  in (A20) by the matrix F  in (A17), 

yields 
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11 12 13 14 1,T 3 1,T 2 1,T 1 1T

21 22 23 24 2,T 3 2,T 2 2,T 1 2T

K1 K2 K3 K4 K,T 3 K,T 2 K,T 1 KT

a a a a a a a a
a a a a a a a a

a a a a a a a a

− − −

− − −

− − −

 
 
 ′ =  
 
  





        



X F  (A23) 

where 

 
( )

( )
11 1T

12 13 14 1,T 3 1,T 2 1,T 1

a a f 1 ,

a a a a a a 2f 1 ,− − −

= =

= = = = = = =
 

and for k 2, 3, , K=   

 

( )
( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

( )

k1 2k

k2 1k 3k

k3 2k 4k

k4 3k 5k

k,T 3 T 4,k T 2,k

k,T 2 T 3,k T 1,k

k,T 1 T 2,k Tk

kT T 1,k

a x f 1 ,

a x x f 1 ,

a x x f 1 ,

a x x f 1 ,

a x x f 1 ,

a x x f 1 ,

a x x f 1 ,

a x f 1 .

− − −

− − −

− −

−

=

= +

= +

= +

= +

= +

= +

=



 

 

 



 

 

 



  

 Post-multiply the matrix ′ jX F  in (A23) by the matrix X  in (A20) will produce the 

matrix ′ jX F X  which takes the form 

 

11 12 1K

21 22 2K

K1 K2 KK

b b b
b b b

b b b

 
 
 ′ =
 
 
 





   



jX F X  (A24) 

where the diagonal elements of the matrix ′ jX F X  in (A24) is given by 

 ( ) ( ) ( ) ( ) ( )
T

11 1t
t 1

b a 2f 1 2 T 2 f 1 2 T 1 f 1
=

= = + − = −∑  

and for k 2, 3, , K=   
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( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

T

kk kt tk
t 1

k1 1k k2 2k k3 3k k4 4k

k,T 3 T 3,k k,T 2 T 2,k k,T 1 T 1,k kT Tk

1k 2k 2k 1k 3k 3k 2k 4k 4k 3k 5k

T 3,k T 4,k T 2,k T 2,k T 3,

b a x

a x a x a x a x
a x a x a x a x

x x f 1 x x x f 1 x x x f 1 x x x f 1

x x x f 1 x x

=

− − − − − −

− − − − −

=

= + + + +
+ + + +

= + + + + + +

+ + + +

∑ 

    

   

          

     ( ) ( )
( ) ( ) ( )

( ){
}

( )

k T 1,k

T 1,k T 2,k Tk Tk T 1,k

1k 2k 2k 3k 3k 4k 4k 5k

T 4,k T 3,k T 3,k T 2,k T 2,k T 1,k T 1,k Tk

T

t 1,k tk
t 2

x f 1

x x x f 1 x x f 1

2f 1 x x x x x x x x

x x x x x x x x

2f 1 x x .

−

− − −

− − − − − − −

−
=

+

+ + +

= + + + +

+ + + +

= ∑



    

        

       

 

  

 The off-diagonal elements of the matrix ′ jX F X  in (A24) is not given here 

because under the condition is that the inverse of matrix ′X X  in (A21) is diagonal matrix, 

these elements are not necessary to calculate the value of ( ) 1tr − ′ ′ jX X X F X  in (A19).  

 Therefore, the value of ( ) 1tr − ′ ′ jX X X F X  in (A19) is equal to 

 ( ) ( ) ( ) ( )

T T T

t 1,2 t 2 t 1,3 t3 t 1,K tK
t 2 t 2 t 2

T T T
2 2 2
t 2 t3 tK

t 1 t 1 t 1

x x x x x x
T 12 f 1 f 1 f 1 f 1 .

T x x x

− − −
= = =

= = =

 
 − + + + + 
 
  

∑ ∑ ∑

∑ ∑ ∑

     



  

 (A25) 

 Under the assumption of nonautocorrelation in the independent variable tkx , 

we have  
T

t 1,k tk
t 2

T
2
tk

t 1

x x
, k 2, 3, , K

x

−
=

=

=
∑

∑

 





 

is insignificantly different from zero. Therefore, the value of ( ) 1tr − ′ ′ jX X X F X  in (A25) 

can be approximated by  

 ( ) ( ) ( )T 1 22 f 1 2f 1 f 1
T T
−

= − . (A26) 
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 As T becomes large and the absolute value of ( )f 1  is less than one, the 

second term, ( )2 f 1
T

, in (A26) can be dropped. Therefore, (A26) can be approximately 

reduced to  

 ( ) ( ) ( )1 1tr tr 2f 1− −   ′ ′ ′ ′= ≈   j jX X X X F X X X F X . (A27) 

Substituting the value of ( )f 1  in (A18) into (A27) will provide 

 ( ) 1
2

2tr
1

− θ ′ ′ ≈ −  + θjX X X X F . (A28) 

 Replacing ( )0φ  in (A16) and ( ) 1tr − ′ ′ jX X X X F  in (A28) into the expected 

value of ˆ ˆ′v v  in (A19), yields the approximated value of the expectation of ˆ ˆ′v v  

 ( ) ( ) ( )2 2
2

2ˆ ˆE 1 T K
1

 θ  ′ ≈ σ + θ − +  + θ  
v v . (A29) 

 Divided the expectation of ˆ ˆ′v v  in (A29) by T K− , 

 ( )
2

2 2

2
ˆ ˆ 1E 1 1

T K T K

 θ  
  ′    + θ≈ σ + θ +    − −     
   

v v
. (A30) 

As T becomes large, (A30) can be reduced to  

 ( )2 2ˆ ˆ
E 1

T K
′  ≈ σ + θ − 

v v
. (A31) 

 Under the invertibility conditions in (3), we have 21 1 2< + θ < . Therefore, (A31) 

is always greater than 2σ . 

 Q.E.D. 
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