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Abstract

Some problems in the errors of regression model is an important issue, such as
the autocorrelated error, moving average error. When these problems occur, the ordinary
least squares (OLS) estimators can not be used because they are not efficient. This
paper proposes a transformation matrix to correct the first-order moving average, MA(1),
problem and to recover the one lost observation in a regression model. When the errors
have the MA(1) problem, the sample mean squared error (MSE) is shown theoretically
and empirically to be an overestimate of the MSE after transformation. The results of
simulation study confirm that the errors after removing the MA(1) problem are
independent and if the MA(1) problem is not corrected, the MSE overestimates the

corrected one at the significance level 0.05.

Keywords: first-order moving average, mean squared error, regression model,
transformation matrix.

1. Introduction

Regression analysis is a statistical technique for modeling and analyzing the
relationship between several variables, when the focus is on the relationship between a

dependent variable and one or more independent variables. More specifically, regression


http://en.wikipedia.org/wiki/Independent_variable
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analysis helps us understand how the typical value of the dependent variable changes
when any one of the independent variables is varied, while the other independent
variables are held fixed. Most commonly, regression analysis estimates the conditional
expectation of the dependent variable given the independent variables i.e., the average
value of the dependent variable when the independent variables are held fixed.
Applications of regression can occur in almost every field such as the engineering,
physical, chemical, biological, social sciences, economics, and management. The linear
regression model can be written conveniently in a matrix form as follows [1]:
y=Xnt+vV Q)

where y is a T x1 dependent random vector of observations, X is a Tx K matrix of

independent explanatory variables with full-column rank, m is a Kx1 unknown
parameter vector of regression coefficients, and v is a T x1 error vector.

The classical assumptions for regression analysis are summarized as follows
[2-4]. The sample must be representative of the population for the inference prediction.
The error is assumed to be a random variable with a mean of zero conditional on the
explanatory variables and all of errors are uncorrelated. The variance of the error is
constant across observations: homoscedasticity. The independent variables are error-
free and they must be linearly independent, i.e., it must not be possible to express any
predictor as a linear combination of the others. These are sufficient conditions for the
least squares estimator to possess desirable properties, in particular, these assumptions
imply that the parameter estimates will be unbiased, consistent, and efficient in the class
of linear unbiased estimators.

When the regression model in (1) is fitted, the residuals V may observe a
systematic pattern. These residuals may suggest that some essential independent
explanatory variables have not been included in the model. Exclusion could be due to
inadequate knowledge in the problem and/or lack of accurate data. In this paper, the
error generated in the fitted model is assumed in the form of a first-order moving average
or MA(1) process,

V,=¢,—-0¢,,t=12,...,T )]

where the first-period back error ¢, is called the first-lag of error ¢, , the parameters 0

of the model must satisfy the following condition to ensure the invertibility of the error

terms [5],

|6]<1 (3)
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and the error g, in (2) is assumed to be normally independent distributed with mean

zero and the variance is finite and also time invariant. So that g, is an independent
identically distributed random variable, obeying

st~NID(0,02),t:1, 2,...,T ()
It is noteworthy that the value of v, in the moving average model (2) depend on the

value of g;, which is unknown. The recovery of v, will be discussed later. The

objectives of this paper are two points. Firstly, the transformation matrix is proposed to
correct the first-order moving average problem and to recover the one lost observation in
a regression model. Secondly, if the moving average problem in errors is ignored, the
estimate of sample mean squared error is shown theoretically and empirically to be an
overestimate of the corrected one. This paper is divided in four sections. The second
proposes the methodology, i.e., the transformation matrix, to correct the first-order
moving average problem in a regression model and the third shows the algorithm for
simulate the first-order moving average model and shows all results of the simulation

study. Conclusions appear in the 4" section..

2. Methodology

Theorem A-1: The T x T transformation matrix p, used to correct the first-order moving

average problem in a regression model is defined by

! 0 0 o ... O
V1+6?
0 1 0
P=| @ 0 1 0 ... 0. (5)
0° 0 0 1 ... 0
éT—l e.T—Z e:l'—3 e:l'—4 . 1

The transformation matrix p in (5) is used to transform y and X in (1) to be y*

and X*, respectively, such that the moving average of the errors v in (1) is eliminated,

to give the model

y'=X'n+g (6)
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where y* =Py, X" =PX, E(£|X")=0,and E(e&'|X") =0’I,.

Theorem A-2: Under the regression model in (1), if we ignore the moving average
problem and use the ordinary least squares (OLS) method to estimate the unknown

parameter vector, then the corrected minimum sample mean squared error from the OLS

estimate, yields the expectation of V'V divided by T-K,

AY
E ~ o’ (1+6%). 7
(7)) <>
Under the transformed model in (6), the least squares residuals can
consistently be used to estimate the variance o’ with unbiased estimator 6% = Ts SK
[6-7]. Therefore,
£'e
E =c°. 8
() o
Subtracting equation (8) from equation (7), yields
E[ Y |_g[_EE |>0. ©)
T-K T-K

The equality to zero in (9) can occur if, and only if the moving average problem does not
exists in the error V.

From the inequality in (9), we can conclude that if we ignore the moving
average problem and use the residuals from the ordinary least squares method to
estimate the sample mean squared error, the estimated value is greater than the one

after the moving average problem has been corrected.

3. Simulation study and results

In this simulation study, we consider a multiple linear regression model with four
independent explanatory variables (K = 4), denoted by X,,, X,,, X,3, and X,,, where the
first element of independent explanatory variables X,, is given as a constant 1 (xIl = 1).

The parameters of regression model are assumed to be
m,=20,m,=5n,=7, and m, =12.
Therefore, the multiple linear regression model in this simulation takes the form

Y, = 20+5X,, + 7X,; +12X,, +V, (10)
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fort=12,...,100.

The error v, in (10) is in the form of moving average model of order 1, MA(1),

where the parameter 0 is assumed to be

0=06.

Therefore, the moving average model in this simulation is in the form

v, =g, —0.6¢, , (11)

fort=1,2,...,100.

obeying

The error ¢, in (11) is an independent identically distributed random variable,

g,~N(0,0.49).

Steps in the Simulation Study

Step 1

Step 2

Step 3

Step 4

Step 5

Generate normal independent random variable with zero mean and unit
variance, called r, by the CALL RANNOR routine in SAS version 9.1 about

5,700 observations; the seed number to generate r is arbitrarily given as 34134.
Generate normal distribution of ¢, with zero mean and variance equal to 0.49
about 5,700 observations by the following equation

g, =oxr=0.7xr.
Construct the series of errors v, in (11) about 5,700 observations, using the
normal distribution of g which obtained in Step 2 where g, are arbitrarily
given to be zero. Then split of the series of errors v, in sequence to preserve

the relationship in v, into 57 samples, each of which consists of 100

observations, the first 100 observations go to sample 1, the second 100
observations go to sample 2, and so on.

Test the MA(1) properties for the errors generated in Step 3, estimate the
parameter 6 and also test the normality for the residuals ¢, by the ARIMA and

the UNIVARIATE procedure, respectively, in SAS version 9.1. Discard 7

samples that fail the test, and retain 50 samples for further study.

Generate the series of independent explanatory variables X,,, X,;, and X,,

about 6,000 observations by the UNIFORM function in SAS version 9.1 where
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Step 6

Step 7

Step 8

Step 9

Step 10

Step 11
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X, ~U(510), x;~U(10,20), and x,, ~U(2,6); the seed numbers to

generate X,,, X,;, and X, are arbitrarily given as 789455, 9875244, and

658214, respectively. Split of the series of independent explanatory variables

Xizr Xi3, @nd X, as Step 3 in sequence into 60 samples, each of which

t21 t31
consists of 100 observations.

Test the multicollinearity problem for the series of independent explanatory

variables X,,, X,;, and X,, in Step 5, using the knowledge of correlation matrix

t2r M3
and the variance inflation factor (VIF). Discard 10 samples which present the
multicollinearity problem, and retain 50 samples for further study.

Construct the dependent variable y, described in (10), using the corresponding

independent explanatory variables X,,, X,;, and X,, obtained in Step 6 and the

t2r 31

moving average error Vv, obtained in Step 4.

Construct the estimate of proposed transformation matrix p in (5) for each

sample, using the estimated value of 6 which obtained in Step 4 and use it to
transform the regression model in (1) to the transformed model as shown in (6).
Estimate the parameters m's of the transformed model in Step 8 by the REG
procedure in SAS version 9.1. Then test the moving average in the residuals
and test the normality of the residuals by the ARIMA and the UNIVARIATE
procedures, respectively. The tests confirm that the errors of all 50 transformed
samples in Step 8 are white noises. Therefore, we can say that the proposed

transformation matrix p in (5) has a transformation percentage of 100 percent.

Use the residuals ét in Step 9 to calculate the sample mean squared error of
the transformed model by the proposed transformation matrix p in (5),

100 ~ 100 ~
th th
MSE=-1“ -ttt |
100-4 96
Estimate the parameters of the regression model in Step 7 by using the REG
procedure where the moving average problem is ignored. Using the residuals
v

. to calculate the sample mean squared error of the model before

transformation,
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100 ~> 100 >

20 2%
MSE=—1 =1
100-4 96

Step 12 Compare the sample mean squared errors from Steps 10 and 11 by the TTEST

procedure in SAS version 9.1. The result shows that, when ignoring the moving
average problem in the errors of the model in (10), the sample mean squared
error is greater than the one of the transformed model at the level of
significance 0.05. The sample mean squared error of all 50 samples from the
model before and after transformation are shown in Figure 1. The mean,
standard deviation, minimum and maximum values of the sample mean

squared errors before and after transformation are shown in Table 1.

0.9000
0.8000 n ﬂ n
0.7000 -y

0.5000 -

0.4000 -

0-3000 IR T e e T e e e e e B e B D B B B
YOO PP D PR

Sample No.

—— MSE before transformation
—— MSE after trandformation

Figure 1.The Sample Mean Squared Error of 50 Samples from the Model before and

after Transformation.
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Table 1. Mean, Standard Deviation, Minimum and Maximum Values of the Sample Mean

Squared Error in 50 Samples with the t and p Values of the Test.

MSE
Sample no.
Before Transformation After Transformation

Mean 0.6378 0.4714
SD. 0.0881 0.0626
Min 0.4694 0.3238
Max 0.8142 0.6003

t-test 10.89

p-value <0.001

4, Conclusions

This paper has presented a transformation matrix in order to correct the first-
order moving average problem and to recover the one lost observation in a regression
model. When ignoring the first-order moving average, the sample mean squared error is
shown to be an overestimate of the sample mean squared error when the moving
average has been corrected.

The results of simulation study confirm that the transformed errors of the
multiple linear regression model are independent and that before removing the moving
average in the errors of the model, the sample mean squared error is greater than the
one after the moving average problem has been corrected at the level of significance
0.05.
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Appendix

Proof of Theorem A-1.
At the " observation, the regression model in (1) can be written as follows:
yo=Xm+v,t=12 ..., T (A1)
where

X

Il
—
X
=

X
N
X
~
—

V,=¢,—-0¢,,t=2,3,...,T. (A2)
Replacing v, in (A2) into (A1),
Y, =Xm+e, —0¢, . (A3)
Rearrange (A3) in term of ¢, ,
g =Yy, —X;m+0¢g, . (A4)
Then, the i" lag of €, can be written as:

€ = Yo — X+ 0g ( (A5)

i+
Use the knowledge of (A5), the equation in (A3) become
Y, =xmw+e, —0(y,, —x,w+0¢,_,)
Y +0y,, =(X{+0x;,)m+e —0%,,
=(x; +0x, )m+e, —0 (y_, —X,m+0c_,)

2 ' ' 2 3
Y, +0y,, +0%y,., = (x[ +0x., +6 x{_2)7r+st -0,


http://libsearch.nida.ac.th/ipac20/ipac.jsp?session=12P642S2714C3.25544&profile=main&uri=search=AL@!Box,%20George%20E%20P.&ri=2&aspect=basic_search&menu=search&source=202.28.16.20@!nidadb
http://libsearch.nida.ac.th/ipac20/ipac.jsp?session=12P642S2714C3.25544&profile=main&uri=search=AL@!Jenkins,%20Gwilym%20M.&menu=search&submenu=basic_search&source=202.28.16.20@!nidadb
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T T
D0 =20 mre —0e (A6)

i=0 i=0
As T becomes large and 0 satisfies the invertibility condition, the value of 6"

in (A6) approach zero. Therefore, (A6) can be reduced to
>0y =D 0 e,

i=0 i=0

y; =xm+g,t=2,3,...,T (A7)

T T
where y; =Y 0y, and X; = > 0'X .

i=0 i=0

From (A7) it can be seen that Var(yf

xf)=Var(st):cs2 for t=2,3..,T.

In other words, the moving average problem at t=2, 3,..., T has been corrected. The

transformation in (A7) does not include the first observation in (Al). The
heteroskedasticity remains unsolved unless the first observation is eliminated. But if the
first observation is included in the analysis, the transformation must be extended by the

following steps. Firstly, we take the expectation to v, in (A2),
E(v[) = E(gt)—eE(a[_l), t=2,3,....,T
—E(s,)-0E(z,)
= (1-0)E(e,).
Using the assumption E(at)= 0 in (4), we have the expectation of v, is equal
to zero. Next, from (A1) the variance of y, given x, for t=1, 2, ..., T can be written as

Var(y, |x,) =Var(v,)=E(V})

Var(y, |x,) =(1+6%)c’. (A8)



Warangkhana Keerativibool 73

Hence, the first observation should weighted by fﬁ , yields the model
+

Y =X m+g (A9)

* 1 *! l '
where y; = Wy1 and x; = mxl.

It can be shown that the moving average problem att = 1 has been corrected,

Var (yI

. 1
xl) :mVar(yl|xl)

1
=———(1+0°)5°
1+6° ( )
=c’.
Combining the results in (A9) and (A7), respectively, the vector of transformed

dependent variables y* can be written as

! — 0 0 0 .. 0|y

1+60

0 1 0 o0 .. ol
y=Py=| © o 1 o .. ol

0 0 0 1 .. o™

e.” e'” e.” e'“ 1 L.

and the matrix of transformed independent variables X* = PX can be written in similar

manner.

Q.E.D.

Proof of Theorem A-2.
Under the regression model in (1) and the moving average problem is ignored,
the OLS estimator of unknown parameter vector m is
7=(XX)" Xly. (A10)

Replacing & in (A10) into the regression model in (1), yields the estimated error V as

follows:
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U=y-Xi=y-X(XX)" Xy =[ L -X(XX)" X[y (AL1)
The expectation of V'V can be written as
E(79) =Efy[ 1 =X (xX)" x|y}
=tr{[1, = X(¥X)" X o} (Xa) [ 1 -X(XX) ' X (X0)  (a12)

where Xz denotes the expectation of y and @ denotes the conditional variance of y

given X.
Consider the last term in (A12),

(Xm) [ 1 =X (XX)" X' |(Xm) = a'XXm -2 XX (XX)" X'Xn
=a'X'Xn-a'XXn=0.
Therefore, the expectation of V'V in (A12) is equal to
E(9) = tr{[ 1 =X(XX)" X [0 = tr(@)-u[ X(XX)'X®].  (a13)
The conditional variance of y given X, @, in terms of the autocovariance

function of error v can be rewritten in terms of the autocorrelation function of error v at

lag 1, 2,..., T—-1 asshownin [8],

@ =Var(y|X)=Var(v)=E(w’)

L k2 ed)  (T-2) §(T-Y)

20) 8(0)  9(0) T 6(0)  6(0)

L T A (CI i I (e
0(0) 20)  0(0) %(0)  9(0)

0@ e e (T4 e(T-3)

0(0)  4(0) 9(0) %(0)  4(0)

5 o(3 (2 o(1 o(T-5) o(T-4

SRR
¢(T—2) ¢(T—3) ¢(T—4) (|)(T—5) 1 @
00)  6(0)  9(0)  4(0) %(0)
¢(T—1) ¢(T—2) ¢(T—3) ¢(T—4) @ 1
60)  4(0)  0(0)  #(0) 4(0)
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=6%¢(0)xR =c’p(0)x(I; +F) (A15)
where ¢(0) in (A14) can be written in the term of variance of error v, , E(vf), as

follows:

E 2
8(0)= (‘:‘ ) _1ver, (A16)
(e

¢(1) in (Al4) can be written in the term of autocovariance of error v, at lag 1,

E(v,V.,), as follows:

o(1) = = = —?E[(st -0, ) (e, —GSH)]

== [E (ee.,)—0E(ge_,)—6E (’3371 ) +0°E (e &, )]
—~0E (&7,

= 02
—~0E (&7)

=—=

-9,

(I)(S), s=2,3, ..., T-1 in (A14) can be written in the term of autocovariance of error v,

atlags, E(v,v, ), as follows:

E(VV,) 1
2

o(s) = = . E |:(8t - 98[71)(8175 — 08 () )J
1

== [E (e, )—6E (statf(sﬂ) ) -0E (g, )+0°E (8t71817(5+1) )J

©q
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0 o) 02 (3 o(T-2) #(T-1)
6(0)  9(0) (0 $(0)  4(0)
¢_1) 0 @ M o(T-3) ¢(T-2)
¢(0) $(0) ¢(0) 6(0)  ¢(0)
@ @ 0 @ ¢(T—4) ¢(T—3)
6(0)  ¢(0) 6(0) $(0)  ¢(0)
ol B 6(2) 6@ 0 ¢(T-5) ¢(T-4)
o(0)  9(0) () 6(0)  ¢(0)
¢('I;—2) o(T-3) ¢(;I'—4) o(T-5) ;) @
0) 60  ¢(0)  ¢(0) ¢(0)
<|)(T—1) ¢(T—2) ¢(T—3) ¢(T—4) ﬁ 0
6(0)  ¢(0)  4(0) (0) 6(0)
0 f(l) 0 0 0 0
f(l) 0 f(l) 0 0 0
0 f l) 0 0o .. 0 0
B T I | (AL
0 0 0 0o ... 0 f(l)
| 0 0 0 0o ... f(l) 0 |
and f(l) in (A17) represents the autocorrelation function of the error v, atlag 1,
fy-t@ __ o (A18)

0(0)  1+6?
Therefore, the expectation of U7 in (A13) can be written as
E(99) =tr[o%(0)xR]-tr{[X(xX)" X |[o%(0)xR]|
=o"(0){tr(R)~tr[ X(xX)"* XR]}
- cs2¢(o){T—tr[x(X'x)’l X'(1; +F)J}
- 02¢(0){T ] X(xX) " x|t X (xX) XF] }
=" p(0){(T-K)-tr[ X (xX)"

tr

(T-K X'X X'F] } . (A19)
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We can normalized the independent variable X, to be X, =X, —X,. Hence,

we have

T T
3% =3 (X -%)=0,k=2,3,..., K
t=1

t=1

then the matrix of independent variables becomes

l )’212 XB XlK
1 )’222 )~(23 )~(2K
1 XSZ )’233 X3K
1R, Ky o Ko
X=|i ST (A20)
1 )~(T—3 2 XT—3,3 XT—S K
1 XT—Z 2 )~(T—2 3 XT—Z K
l XT—].,Z XT—l,S . )?T—l,K
_1 XTZ )~(T3 XTK _

By the usual assumption of the regression model, two independent variables

X, and X, , k=K' are uncorrelated. That is,

T T
Z)N(tky(tk’ = Z(th _Yk)(xtk' _Yk’)
t=1 t=1

is insignificantly different from zero. Therefore, the inverse of matrix X'X in (A20) can

be reduced to the form of diagonal matrix,

(X'X)" = diag % o (A21)
Zy(tzz Z )~(t23 zxtzK
t=1 t=1 o1
The value of tr[X(X'X)f1 X'F} in (A19) is equivalent to the value of
tr] (XX)" XFX]. (A22)

Post-multiply the transpose of matrix X in (A20) by the matrix F in (A17),
yields
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Ay 8, Q5 8y .. Ay A, Ay Yy
a a a d oo dyr, dyr ., dyr, d
X;F — .21 . 22 .23 . 24 . 2.,T 3 2.,T 2 .Z,T 1 .ZT (A23)
Agy gy ks Qg -+ Bz A7 kT Akr
where
8y =ar = f (1)’
A, =8 =a = ... =377, =814 = 2f (1)!
andfor k=2,3,...,K
qy = szf (1)1
, = (Xlk + X )f (1)1
A3 :(~2k +X4k)f 1),
Ay =()~(3k +)~(5k)f 1),

Post-multiply the matrix X'FJ. in (A23) by the matrix X in (A20) will produce the

matrix X’FjX which takes the form

b, b, ... by
b, b, .. b

XFX = T Pz Pk (A24)
Dy by - Dy

where the diagonal elements of the matrix X’FjX in (A24) is given by

by = Yay = 26 (1) +2(T—2)f (1) = 2(T-1)F (1)

t=1

andfor k=2,3,..., K
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aktxtk

M-

bkk =

[iN

=
=, Xy F A, X 25Xy, T, Xy + -
PRI SINNEY B SRR T DR ST B S
= Xy K F (1) + Ky (Koo + K ) F (1) + Ky (X + K ) F (L) + Ky (X + %) F (D)
I S b e o | | B S SRS S
+ Ry gy (X ap + Xy ) F (1) + Xy Xy, F (1)
= 2F (1) { Ry Ky + Ky Ky + Ky Ky + Ky Ky + ..
+ X Xran F Xy Ko+ X gu Xy + )’ZT—l,kXTk}

.
=2f (1)Z>~<t_1,k>~<tk.
2

t=
The off-diagonal elements of the matrix X’FjX in (A24) is not given here

because under the condition is that the inverse of matrix X'X in (A21) is diagonal matrix,

these elements are not necessary to calculate the value of tr [(X’X)fl X’FJ.X} in (A19).

Therefore, the value of tr[(X’X)fl X’FjXJ in (A19) is equal to

Under the assumption of nonautocorrelation in the independent variable )?tk,

we have

is insignificantly different from zero. Therefore, the value of tr[(X'X)f1 X'FjXJ in (A25)

can be approximated by

2$f (1)=2f (1)~ 2F(1). (A26)
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As T becomes large and the absolute value of f(l) is less than one, the

second term, %f (1) in (A26) can be dropped. Therefore, (A26) can be approximately
reduced to

tr] X(XX) " X, |=tr] (XX)" XFX |~ 2f (). (A27)
Substituting the value of f (1) in (A18) into (A27) will provide

20

tr[ X(X'X) " XF, | ~

(A28)

Replacing ¢(0) in (A16) and tr[X(X’X)flx'FJ in (A28) into the expected

value of V'V in (A19), yields the approximated value of the expectation of V'V

E(VV)~c’ {(1+ez)[(T—K)+%H. (A29)

Divided the expectation of V'V in (A29) by T-K,

20

A —
E[ o |~ o?{(14+67) | 1+ 220 L. (A30)

T-K T-K

As T becomes large, (A30) can be reduced to
AY

E ~c (1+67). A31
[Tt o

Under the invertibility conditions in (3), we have 1<1+ 6% < 2. Therefore, (A31)

is always greater than c’.
Q.E.D.
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