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Abstract 

 This paper compares confidence intervals for the variance and the ratio of two 

variances when the population distributions are non-normal and item nonresponse is 

occurring. The data after random hot deck imputation used to define the confidence 

interval. The confidence intervals considered are the classical confidence intervals in text 

books and the adaptive confidence interval based on the Bonett confidence intervals. 

Our simulation study shows that the use of the adaptive confidence intervals for variance 

and ratio of two variances when the underlying distributions are generally skewed and 

unknown and missing data occur give better coverage probabilities. Therefore their use 

is recommended. 

______________________________ 
Keywords: confidence interval, coverage probability, item nonresponse, kurtosis, prior 

information, random hot deck imputation. 

 
1. Introduction 

 Calculating confidence interval for the variance and the ratio of two variances is 

an important problem in manufacturing and quality management. Generally when sample 

distributions are normal the classical confidence intervals by 2χ  and F  statistics in text 

books are used for the variance and the ratio of two variances respectively. However in 

this paper we are interested in non-normal distributions. Bonett [1]  showed that when 
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the normal assumption is violated performance of the classical confidence interval for 

variance 2σ  is not acceptable. With nominal level 0.95  its coverage probability drops 

below 0.60  in some situations. For this case Bonett [1] proposed a confidence interval 

using a normal approximation to 2ln s  and the kurtosis of the distribution 4γ . Simulation 

results showed that the Bonett confidence interval has better coverage than the classical 

confidence interval but its coverage  probability is still less than nominal level for some 

non-normal distributions. The Bonett confidence interval has been adjusted by Niwitpong 

and Kirdwichai [2]. The adjusted confidence interval has coverage probability closes to 

the nominal level than the Bonett confidence interval. However that study results made 

with the assumption that the data is complete or not missing.   

  Item nonresponse for certain questions is a general missing data problem in 

sample surveys. Imputation methods are usually used for item nonresponse. Kalton and 

Brick [3] concluded that the advantages of using imputed data that can be used for 

internally consistent standard analysis or multivariate analysis. Qin et al.[4] proposed 

confidence intervals for marginal parameters such as mean distribution function or 

quantile under imputation for item nonresponse but they did not discuss about the 

important parameters such as the variance or the ratio of two variances. This paper 

proposes adaptive confidence intervals for the variance and the ratio of two variances for 

non-normal distributions with missing data. In this study we assumed data is missing 

completly at random (MCAR) and used random hot deck imputation to fill in missing 

data. We compared four confidence intervals: the classical and adaptive confidence 

intervals for the variance and for the ratio of two variances with missing data. 

               

2. Confidence Intervals Considered 

 Let { },i ix δ  with 1,...,i n=  be random samples of incomplete data from 

population { },X δ  where 0iδ =  if ix  is missing, and 1iδ =  otherwise. Let 
1

n
ii

r δ
=

= ∑  

and m n r= − . We denote rs  to be the set of respondents with respect to x . Let *
ix  be 

the imputed values for the missing data with respect to x . Random hot deck imputation 

uses a simple random sample with replacement size m  from rs  to fill in the missing 

data, i.e., *
i jx x=  for some rj s∈ . Let ( ) *

, 1I i i i i ix x xδ δ= + −  be the complete data after 

imputation.      
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2.1 Classical Interval for Variance with Missing Data 

 Let 2
Is  be the sample variance for Ix . The Classical ( )100 1 %α−  confidence 

interval for variance 2σ  with missing data is: 

 

  ( ) ( )2 2 2 2 2
1 / 2, 1 / 2, 11 / 1 /I n I nn s n sα αχ σ χ− − −− < < −    (1) 

 

where 2
,p kχ  is the 1 p−  quantile of the 2χ  distribution with degrees of freedom k . 

 

2.2 Adaptive Interval for Variance with Missing Data  

 For adaptive confidence intervals for a single variance 2σ  with missing data we 

used complete data after random hot deck imputation to calculate an adjusted statistic t  

confidence interval of Niwitpong and Kirdwichai [2]. The adaptive ( )100 1 %α−  

confidence interval for variance 2σ  with missing data is defined by 

 

 ( ){ }2
/ 2, 1exp ln I n IRs t seα −±       (2) 

 

where ,p kt  is the 1 p−  quantile of the t  distribution with degrees of freedom  k ,  

 

 ( ){ } ( )
1/ 2*

4ˆ 3 / / 1 ,I Ise R n n nγ = − −      (3) 

 

( )/ 2, 1/ nR n n tα −= −  is a small sample adjustment, ( ) ( )*
4 0 4 4 0ˆ / ,I In n n nγ γ γ ′= + +  4γ  is a 

prior estimate of 4γ  obtained from a larger sample of size 0n  (we used *
4 4ˆ I Iγ γ ′=  if 4γ  is 

not available), and 
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1
4 2

2
,

1

=

=

−
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 

∑

∑

n

I i I
i

I n

I i I
i

n x med

x x
γ       (4) 

 

where Imed is median for Ix . 
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2.3 Classical Interval for Ratio of Two Variances with Missing Data 

 Let 1 ,I ix  and 2 ,I jx  with 11,...,i n=  and 21,...,j n=  be complete data after 

random hot deck imputation from populations 
1X  and 

2X  with variances 2
1σ  and 2

2σ  

respectively. Let 2
1Is  and 2

2Is  be sample variances for 1Ix  and 2Ix  respectively. The 

Classical ( )100 1 %α−  confidence interval for variance 2 2
1 2/σ σ  with missing data is: 

 

 
2 2 2
1 1 1

/ 2, 2 1, 1 1 1 / 2, 2 1, 1 12 2 2
2 2 2

I I
n n n n

I I

s sf f
s sα α

σ
σ− − − − −< <     (5) 

 

where 
1 2, ,p k kf  is the 1 p−  quantile of the F  distribution with degrees of freedom  1k   

and 2k  respectively. 

 

2.4 Adaptive Interval for Ratio of Two Variances with Missing Data  

 Bonett [1] used a normal approximation of 2ln s  to propose a confidence 

interval for a single variance from non-normal distributions. For adaptive confidence 

intervals for the ratio of two variances 2 2
1 2/σ σ  with nonnormal distributions and missing 

data we used a normal approximation of ( )2 2
1 2ln /s s . The adaptive ( )100 1 %α−  

confidence interval for ratio of two variances 2 2
1 2/σ σ  with missing data is defined by  

 

 
2

2 21 1
/ 2 1 22

2 2

ln
   ± +  
   

I
I I

I

R sexp z se se
R s α     (6) 

 

where ( )/ 2/k k kR n n zα= −  and 2
Ikse  is defined by (3) in subsection 2.2 respect to 1X  

and 2X  with 1,2k = . 

       

3. Simulation Results 

  This section provides simulation studies for the coverage probabilities of 

confidence intervals as proposed in section 2 and the ratio of expected lengths of the 

adaptive and classical confidence intervals RE . The nominal level is 95%. If 1RE <  
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that mean the adaptive confidence intervals are shorter than the classical confidences 

intervals. The results, based on 10,000 simulations, are written in R program. 

 For confidence intervals for variances the distributions we considers are normal, 

uniform, ,t  exponential and chi-squared. Sample sizes 10,25,50,100n =  are used. 

We defined probability of item response is p  (if 1p =  the data is not missing). Table 1 

and 2 show that the adaptive confidence interval (2) has coverage probability closer to 

nominal level 0.95 than the classical confidence interval (1) for all distributions 

considered except the uniform distribution. They also show that the coverage probability 

of the adaptive confidence interval will be closer to the nominal level 0.95 when a prior 

estimate of 4γ  for large samples is used. Although the length of the classical confidence 

interval is lower than the adaptive confidence interval in most cases but their coverage 

probabilities are not acceptable. 

 

Table 1: Estimated coverage probabilities and ratio of expected lengths of (2) and (1). 

 

  n  p  (1) (2) RE  

Normal(0,1) 10 0.9 0.9312 0.9782 1.6562 

    0.8 0.9022 0.9641 1.6988 

  25 0.9 0.9264 0.9724 1.3486 

    0.8 0.8998 0.9580 1.3585 

  50 0.9 0.9263 0.9727 1.2753 

    0.8 0.9004 0.9554 1.2786 

  100 0.9 0.9232 0.9698 1.2456 

    0.8 0.9012 0.9545 1.2477 

Uniform(0,1) 10 0.9 0.9840 0.9924 1.5019 

    0.8 0.9657 0.9848 1.6030 

  25 0.9 0.9904 0.9947 1.1446 

    0.8 0.9842 0.9919 1.1744 

  50 0.9 0.9924 0.9946 1.0415 

    0.8 0.9852 0.9893 1.0537 

  100 0.9 0.9943 0.9931 0.9946 

    0.8 0.9884 0.9870 1.0009 
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  n  p  (1) (2) RE  
t (5) 10 0.9 0.8456 0.9502 2.0639 

    0.8 0.8093 0.9295 2.0535 

  25 0.9 0.8109 0.9390 1.7742 

    0.8 0.7685 0.9077 1.7538 

  50 0.9 0.7808 0.9286 1.7349 

    0.8 0.7431 0.9037 1.7370 

  100 0.9 0.7516 0.9283 1.7569 

    0.8 0.7209 0.9030 1.7414 

Exponential(3) 10 0.9 0.7368 0.9070 3.0377 

    0.8 0.7010 0.8745 2.9323 

  25 0.9 0.6926 0.9121 2.4954 

    0.8 0.6488 0.8850 2.4386 

  50 0.9 0.6740 0.9305 2.4157 

    0.8 0.6360 0.9048 2.3892 

  100 0.9 0.6495 0.9466 2.4097 

    0.8 0.6121 0.9177 2.3696 
2χ  (1) 10 0.9 0.6117 0.8640 3.9111 

    0.8 0.5789 0.8229 3.7028 

  25 0.9 0.5642 0.8881 3.3129 

    0.8 0.5308 0.8576 3.1685 

  50 0.9 0.5524 0.9122 3.1876 

    0.8 0.5075 0.8824 3.0815 

  100 0.9 0.5347 0.9295 3.1307 

    0.8 0.4948 0.9090 3.0797 
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Table 2: Estimated coverage probabilities and ratio of expected lengths of (2) and (1) 

when prior kurtosis information is available.  

 

  
0n  4γ  n  p  (1) (2) RE  

Uniform(0,1) 200 1.8 25 0.9 0.9908 0.9928 1.0523 

        0.8 0.9844 0.9884 1.0541 

      100 0.9 0.9944 0.9933 0.9755 

        0.8 0.9871 0.9861 0.9768 

  500 1.8 25 0.9 0.9917 0.9940 1.0635 

        0.8 0.9815 0.9863 1.0664 

      100 0.9 0.9940 0.9929 0.9819 

        0.8 0.9880 0.9867 0.9842 

t(5) 200 6.1 25 0.9 0.8077 0.9777 2.1678 

        0.8 0.7651 0.9692 2.1660 

      100 0.9 0.7899 0.9681 1.8387 

        0.8 0.7175 0.9361 1.8278 

  500 7.0 25 0.9 0.8055 0.9844 2.4026 

        0.8 0.7699 0.9766 2.4003 

      100 0.9 0.7574 0.9623 1.9537 

        0.8 0.7153 0.9511 1.9550 

Exponential(3) 200 7.9 25 0.9 0.6905 0.9676 2.6541 

        0.8 0.6527 0.9509 2.6457 

      100 0.9 0.6600 0.9528 2.2245 

        0.8 0.6077 0.9282 2.2179 

  500 8.5 25 0.9 0.6935 0.9713 2.7933 

        0.8 0.6556 0.9574 2.7904 

      100 0.9 0.6547 0.9509 2.2477 

        0.8 0.6101 0.9342 2.2419 

2χ  (1) 200 12.2 25 0.9 0.5613 0.9534 3.7144 

        0.8 0.5320 0.9388 3.7048 

      100 0.9 0.5270 0.9355 2.8647 

        0.8 0.4979 0.9123 2.8419 

  500 13.6 25 0.9 0.5692 0.9641 4.0843 

        0.8 0.5344 0.9529 4.0767 

      100 0.9 0.5303 0.9483 2.9329 

        0.8 0.4926 0.9233 2.9268 

 



88                                                                           Thailand Statistician, 2010; 8(1):81-92 

For the uniform distribution the adaptive confidence interval has coverage probability and 

expected length close to the classical confidence interval when a prior estimate of 4γ  for 

large samples is used. Therefore, the use of the adaptive confidence interval for variance 

when the distribution is unknown is recommended.           

 For confidence intervals for the ratio of two variances we consider cases when 

two populations 
1X  and 2X  have the same and different distributions. Sample sizes 

1 2 20n n= =  and 1 2100, 50n n= =  are considered. We define 1 2 10 20 10, , , ,p p n n γ  

and 20γ  as probability of item response of sample unit, prior sample sizes and kurtosis 

information with respect to 1X  and 2X  respectively. Tables 3 and 4 show that when the 

two distributions are normal the adaptive confidence interval for the ratio of two 

variances (6) is wider than the classical confidence interval (5) if no data are missing 

( 1 2p =p =1.0 ) but when there is missing data the adaptive confidence interval will have 

coverage probability closer to nominal level 0.95 than the classical confidence interval. 

When either or both distributions are non-normal, except the uniform distribution, the 

adaptive confidence interval has coverage probability closer to nominal level 0.95 than 

the classical confidence interval whether there is missing data or not. They also show 

that the coverage probability of adaptive confidence interval will be closer to the nominal 

level 0.95 when a prior estimate of kurtosis for large samples 10n  and 20n  are used. 

 When both distributions are uniform distributions the adaptive confidence 

interval has coverage probability close to the classical confidence interval but in large 

sample sizes 1 2100, 50n n= =  the adaptive confidence interval are shorter than the 

classical confidence interval.  

 

4. Conclusions 

  In this paper we compare the efficiency of the classical confidence intervals and 

adaptive confidence intervals for the variance and the ratio of two variances when there 

is missing data and the samples come form non-normal distributions. The simulation 

results show that the adaptive confidence interval with imputed data by random hot deck 

method has higher efficiency than the classical confidence interval based on the 2χ  

statistic which coincides with results of Niwitpong and Kirdwichai [2] for complete data. 

 For two populations when two data are missing the adaptive confidence interval 

based on Bonett confidence interval have higher efficiency than the classical confidence 
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interval base on the F  statistic interval in all distributions considered except the uniform 

distribution. They also show that the adaptive confidence interval has coverage 

probability close to the classical confidence interval and is shorter with large sample 

sizes. Therefore, the use of the adaptive confidence intervals when the underlying 

distributions are generally skewed and unknown and missing data occur give better 

coverage probabilities. 

Table 3: Estimated coverage probabilities and ratio of expected lengths of (6) and (5). 

      (5) (6) RE  

Normal(0,1) 
1 2p =p =1.0  1 2n =n =20  0.9499 0.9769 1.3082 

   
1 2n =100,n =50  0.9499 0.9840 1.1980 

  
1 2p =0.8,p =0.9  1 2n =n =20  0.9105 0.9553 1.3335 

   
1 2n =100,n =50  0.9114 0.9608 1.2000 

Uniform(0,1) 
1 2p =p =1.0  1 2n =n =20  0.9946 0.9970 1.0906 

   
1 2n =100,n =50  0.9959 0.9969 0.9591 

  
1 2p =0.8,p =0.9  1 2n =n =20  0.9823 0.9898 1.1480 

   
1 2n =100,n =50  0.9900 0.9928 0.9722 

t(5) 
1 2p =p =1.0  1 2n =n =20  0.8399 0.9510 1.6783 

   
1 2n =100,n =50  0.7884 0.9544 1.6026 

  
1 2p =0.8,p =0.9  1 2n =n =20  0.7927 0.9190 1.6435 

   
1 2n =100,n =50  0.7579 0.9288 1.5671 

Exponential(3) 
1 2p =p =1.0  1 2n =n =20  0.7402 0.9498 2.5037 

   
1 2n =100,n =50  0.6941 0.9646 2.2872 

  
1 2p =0.8,p =0.9  1 2n =n =20  0.6892 0.9095 2.3773 

   
1 2n =100,n =50  0.6447 0.9390 2.2416 

2χ  (1) 1 2p =p =1.0  1 2n =n =20  0.6155 0.9222 3.4927 

   
1 2n =100,n =50  0.5689 0.9545 3.0580 

  
1 2p =0.8,p =0.9  1 2n =n =20  0.5657 0.8845 3.2191 

   
1 2n =100,n =50  0.5266 0.9282 2.9790 

1X  is Normal(0,1) 1 2p =p =1.0  1 2n =n =20  0.7263 0.9181 2.1040 

2X  is 2χ  (1)  
1 2n =100,n =50  0.6466 0.9395 2.2977 

  
1 2p =0.8,p =0.9  1 2n =n =20  0.6887 0.8931 2.0711 

  

 
1 2n =100,n =50  0.6071 0.9131 2.2576 
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      (5) (6) RE  

1X  is Exponential(3) 1 2p =p =1.0  1 2n =n =20  0.6657 0.9302 2.8912 

2X  is 2χ  (1)  
1 2n =100,n =50  0.6028 0.9500 2.7131 

  
1 2p =0.8,p =0.9  1 2n =n =20  0.6167 0.8994 2.7690 

   
1 2n =100,n =50  0.5631 0.9258 2.6638 

 

Table 4: Estimated coverage probabilities and ratio of expected lengths of (6) and (5) 

when prior kurtosis information is available. 

      (5) (6) RE  
Uniform(0,1) 

1 2p =p =1.0  1 2n =n =20  0.9944 0.9946 1.0052 

10 10n =200 , =1.8γ   
1 2n =100,n =50  0.9954 0.9956 0.9302 

20 20n =500 , =1.8γ  1 2p =0.8,p =0.9  1 2n =n =20  0.9833 0.9843 1.0095 

   
1 2n =100,n =50  0.9915 0.9900 0.9328 

t(5) 
1 2p =p =1.0  1 2n =n =20  0.8305 0.9871 2.5970 

10 10n =200 , =6.1γ   
1 2n =100,n =50  0.7910 0.9750 1.9366 

20 20n =500 , =7.0γ  1 2p =0.8,p =0.9  1 2n =n =20  0.7908 0.9776 2.5938 

   
1 2n =100,n =50  0.7493 0.9600 1.9369 

Exponential(3) 
1 2p =p =1.0  1 2n =n =20  0.7283 0.9796 3.2690 

10 10n =200 , =7.9γ   
1 2n =100,n =50  0.7055 0.9694 2.2961 

20 20n =500 , =8.5γ  1 2p =0.8,p =0.9  1 2n =n =20  0.6839 0.9624 3.2567 

   
1 2n =100,n =50  0.6528 0.9503 2.2895 

2χ  (1) 1 2p =p =1.0  1 2n =n =20  0.6046 0.9745 5.4144 

10 10n =200 , =12.2γ   
1 2n =100,n =50  0.5693 0.9614 3.1693 

20 20n =500 , =13.6γ  1 2p =0.8,p =0.9  1 2n =n =20  0.5550 0.9563 5.3876 

   
1 2n =100,n =50  0.5281 0.9424 3.1477 

1X  is Exponential(3) 1 2p =p =1.0  1 2n =n =20  0.6591 0.9762 4.3645 

2X  is 2χ  (1)  
1 2n =100,n =50  0.6057 0.9630 2.8938 

10 10n =200 , =7.9γ  1 2p =0.8,p =0.9  1 2n =n =20  0.6300 0.9613 4.3491 

20 20n =500 , =13.6γ   
1 2n =100,n =50  0.5707 0.9457 2.8821 
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5. Numerical Example 

 Suppose a manufacturer takes random sample size 1 2n n 10= =  items of his 
product and competitor product respectively. But the performance values of the 
competitor have missing in sampling survey. Therefore random hot deck imputation is 
used to handle. The resulting performance values are generated from 2χ  (1) and 2χ  (2) 

respectively : 

 
Manufacturer's 

Product 
Competitor's 

Product imputed data 

2.13 0.91 0.91 

1.57 0.99 0.99 

0.28 0.90 0.90 

0.38 3.62 3.62 

0.56 0.28 0.28 

0.01 - 0.43 

1.24 4.38 4.38 

0.02 0.43 0.43 

0.01 1.81 1.81 

1.61 2.23 2.23 

  
The sample variances and the small-sample adjustments are 2

1s 0.62,=  

2
2s 2.01=  and 1 2

0.025

10R R 1.244
10 z

= = =
−

 . The pooled estimate of 

( )2
1var ln s  and ( )2

2var ln s  are 2 2
1se 0.66=  and 2 2

2se 0.84= . From equation (6) 

the 95% adaptive confidence interval for ratio of variances of performance values from 
two products is 

 

[ ]2 20.62ln 1.96 0.66 0.84 0.038,2.513
2.01

   ± + =  
  

exp  
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