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Abstract
This paper compares confidence intervals for the variance and the ratio of two
variances when the population distributions are non-normal and item nonresponse is
occurring. The data after random hot deck imputation used to define the confidence
interval. The confidence intervals considered are the classical confidence intervals in text
books and the adaptive confidence interval based on the Bonett confidence intervals.
Our simulation study shows that the use of the adaptive confidence intervals for variance
and ratio of two variances when the underlying distributions are generally skewed and
unknown and missing data occur give better coverage probabilities. Therefore their use

is recommended.

Keywords: confidence interval, coverage probability, item nonresponse, kurtosis, prior
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1. Introduction
Calculating confidence interval for the variance and the ratio of two variances is
an important problem in manufacturing and quality management. Generally when sample

distributions are normal the classical confidence intervals by y* and F statistics in text

books are used for the variance and the ratio of two variances respectively. However in

this paper we are interested in non-normal distributions. Bonett [1] showed that when
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the normal assumption is violated performance of the classical confidence interval for
variance o? is not acceptable. With nominal level 0.95 its coverage probability drops

below 0.60 in some situations. For this case Bonett [1] proposed a confidence interval
using a normal approximation to Ins? and the kurtosis of the distribution 7, - Simulation

results showed that the Bonett confidence interval has better coverage than the classical
confidence interval but its coverage probability is still less than nominal level for some
non-normal distributions. The Bonett confidence interval has been adjusted by Niwitpong
and Kirdwichai [2]. The adjusted confidence interval has coverage probability closes to
the nominal level than the Bonett confidence interval. However that study results made
with the assumption that the data is complete or not missing.

Item nonresponse for certain questions is a general missing data problem in
sample surveys. Imputation methods are usually used for item nonresponse. Kalton and
Brick [3] concluded that the advantages of using imputed data that can be used for
internally consistent standard analysis or multivariate analysis. Qin et al.[4] proposed
confidence intervals for marginal parameters such as mean distribution function or
quantile under imputation for item nonresponse but they did not discuss about the
important parameters such as the variance or the ratio of two variances. This paper
proposes adaptive confidence intervals for the variance and the ratio of two variances for
non-normal distributions with missing data. In this study we assumed data is missing
completly at random (MCAR) and used random hot deck imputation to fill in missing
data. We compared four confidence intervals: the classical and adaptive confidence

intervals for the variance and for the ratio of two variances with missing data.

2. Confidence Intervals Considered

Let {xi,5i} with i=1..,n be random samples of incomplete data from
population {X,5} where &, =0 if X is missing, and &, =1 otherwise. Let r :Zin:lc?i

and m=n-r.We denote s, to be the set of respondents with respect to X . Let X be
the imputed values for the missing data with respect to X. Random hot deck imputation
uses a simple random sample with replacement size m from s, to fill in the missing
data, i.e., X, = x; forsome jes .Let x,; =& +(1-6,)x be the complete data after

imputation.
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2.1 Classical Interval for Variance with Missing Data

Let s/ be the sample variance for X, . The Classical 100(1-«)% confidence

interval for variance ¢ with missing data is:
(n _1) S|2 /le-alz,n-l <o’< (n _1) S|2 /Z§IZ,n—l 1)
where ;(;k is the 1— p quantile of the y* distribution with degrees of freedom K .

2.2 Adaptive Interval for Variance with Missing Data

For adaptive confidence intervals for a single variance o with missing data we

used complete data after random hot deck imputationto calculate an adjusted statistic t

confidence interval of Niwitpong and Kirdwichai [2]. The adaptive 100(1—a)%

confidence interval for variance o with missing data is defined by
exp{ln(Rs,2 | ES } )

where o is the 1— p quantile of the t distribution with degrees of freedom Kk,

se, = R[{;?:I (n—3)/n}/(n—1)}uz, 3)

R=n/(n —ta,z,n_l) is a small sample adjustment, 7,, =(n,7, +ny,, )/(n, +n), 7, isa

prior estimate of y, obtained from a larger sample of size n, (we used 7, =y,, if 7, is

not available), and

n

nZ(x,'i —medl)4

Yo === @)

where med, is median for X, .
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2.3 Classical Interval for Ratio of Two Variances with Missing Data

Let x,; and X, ; with i=1..n and j=1..n, be complete data after

. . . . : 2 2

random hot deck imputation from populations X, and X, with variances o, and o,
respectively. Let s> and s;, be sample variances for x, and X,, respectively. The

Classical 100(1-a)% confidence interval for variance o’ / o, with missing data is:

2 2 2
S; ol s

| 1 11

2 fa/2,n2—1,nl—1 < 2 < 2 fl—a/Z,nZ—l,nl—l (5)
SZI 02 21

where f . isthe 1-p quantile of the F distribution with degrees of freedom k

and k, respectively.

2.4 Adaptive Interval for Ratio of Two Variances with Missing Data
Bonett [1] used a normal approximation of Ins? to propose a confidence
interval for a single variance from non-normal distributions. For adaptive confidence

intervals for the ratio of two variances o} /o with nonnormal distributions and missing
data we used a normal approximation of In(sf/szz). The adaptive lOO(l—a)%

confidence interval for ratio of two variances o} /o with missing data is defined by

2

exp<In ﬁ +7_,,4/5€, + €, )

2512

where R, =n,/(n -z,,,) and se,zk is defined by (3) in subsection 2.2 respect to X,

and X, with kK =1,2.

3. Simulation Results
This section provides simulation studies for the coverage probabilities of

confidence intervals as proposed in section 2 and the ratio of expected lengths of the

adaptive and classical confidence intervals RE . The nominal level is 95%. If RE <1
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that mean the adaptive confidence intervals are shorter than the classical confidences
intervals. The results, based on 10,000 simulations, are written in R program.

For confidence intervals for variances the distributions we considers are normal,

uniform, t, exponential and chi-squared. Sample sizes N =10, 25,50,100 are used.

W e defined probability of item responseis P (if P =1 the data is not missing). Table 1

and 2 show that the adaptive confidence interval (2) has coverage probability closer to
nominal level 0.95 than the classical confidence interval (1) for all distributions
considered except the uniform distribution. They also show that the coverage probability
of the adaptive confidence interval will be closer to the nominal level 0.95 when a prior

estimate of y, for large samplesis used. Although the length of the classical confidence

interval is lower than the adaptive confidence interval in most cases but their coverage

probabilities are not acceptable.

Table 1: Estimated coverage probabilities and ratio of expected lengths of (2) and (1).

n p @ @ RE

Normal(0,1) 10 0.9 0.9312 0.9782 1.6562
0.8 0.9022 0.9641 1.6988

25 0.9 0.9264 0.9724 1.3486

0.8 0.8998 0.9580 1.3585

50 0.9 0.9263 0.9727 1.2753

0.8 0.9004 0.9554 1.2786

100 0.9 0.9232 0.9698 1.2456

0.8 0.9012 0.9545 1.2477

Uniform(0,1) 10 0.9 0.9840 0.9924 1.5019
0.8 0.9657 0.9848 1.6030

25 0.9 0.9904 0.9947 1.1446

0.8 0.9842 0.9919 1.1744

50 0.9 0.9924 0.9946 1.0415

0.8 0.9852 0.9893 1.0537

100 0.9 0.9943 0.9931 0.9946

0.8 0.9884 0.9870 1.0009
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n p @ @ RE

te) 10 0.9 0.8456 0.9502 2.0639
0.8 0.8093 0.9295 2.0535

25 0.9 0.8109 0.9390 1.7742

0.8 0.7685 0.9077 1.7538

50 0.9 0.7808 0.9286 1.7349

0.8 0.7431 0.9037 1.7370

100 0.9 0.7516 0.9283 1.7569

0.8 0.7209 0.9030 1.7414

Exponential(3) 10 0.9 0.7368 0.9070 3.0377
0.8 0.7010 0.8745 2.9323

25 0.9 0.6926 0.9121 2.4954

0.8 0.6488 0.8850 2.4386

50 0.9 0.6740 0.9305 2.4157

0.8 0.6360 0.9048 2.3892

100 0.9 0.6495 0.9466 2.4097

0.8 0.6121 0.9177 2.3696

;(2 1) 10 0.9 0.6117 0.8640 3.9111
0.8 0.5789 0.8229 3.7028

25 0.9 0.5642 0.8881 3.3129

0.8 0.5308 0.8576 3.1685

50 0.9 0.5524 0.9122 3.1876

0.8 0.5075 0.8824 3.0815

100 0.9 0.5347 0.9295 3.1307

0.8 0.4948 0.9090 3.0797
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Table 2: Estimated coverage probabilities and ratio of expected lengths of (2) and (1)
when prior kurtosis information is available.
N, 74 n P ) @ RE
Uniform(0,1) 200 1.8 25 0.9 0.9908 0.9928 1.0523
0.8 0.9844 0.9884 1.0541
100 0.9 0.9944 0.9933 0.9755
0.8 0.9871 0.9861 0.9768
500 1.8 25 0.9 0.9917 0.9940 1.0635
0.8 0.9815 0.9863 1.0664
100 0.9 0.9940 0.9929 0.9819
0.8 0.9880 0.9867 0.9842
t(5) 200 6.1 25 0.9 0.8077 0.9777 2.1678
0.8 0.7651 0.9692 2.1660
100 0.9 0.7899 0.9681 1.8387
0.8 0.7175 0.9361 1.8278
500 7.0 25 0.9 0.8055 0.9844 2.4026
0.8 0.7699 0.9766 2.4003
100 0.9 0.7574 0.9623 1.9537
0.8 0.7153 0.9511 1.9550
Exponential(3) | 200 7.9 25 0.9 0.6905 0.9676 2.6541
0.8 0.6527 0.9509 2.6457
100 0.9 0.6600 0.9528 2.2245
0.8 0.6077 0.9282 2.2179
500 8.5 25 0.9 0.6935 0.9713 2.7933
0.8 0.6556 0.9574 2.7904
100 0.9 0.6547 0.9509 2.2477
0.8 0.6101 0.9342 2.2419
lz @ 200 12.2 25 0.9 0.5613 0.9534 3.7144
0.8 0.5320 0.9388 3.7048
100 0.9 0.5270 0.9355 2.8647
0.8 0.4979 0.9123 2.8419
500 13.6 25 0.9 0.5692 0.9641 4.0843
0.8 0.5344 0.9529 4.0767
100 0.9 0.5303 0.9483 2.9329
0.8 0.4926 0.9233 2.9268
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For the uniform distribution the adaptive confidence interval has coverage probability and
expected length close to the classical confidence interval when a prior estimate of y, for
large samplesis used. Therefore, the use of the adaptive confidence interval for variance
when the distribution is unknown is recommended.

For confidence intervals for the ratio of two variances we consider cases when

two populations X, and X, have the same and different distributions. Sample sizes
n, =n, =20 and n, =100, n, =50 are considered. We define P, P,, Ny, Nyy, 7o

and ;720 as probability of item response of sample unit, prior sample sizes and kurtosis

information with respectto X, and X, respectively. Tables 3 and 4 show that when the

two distributions are normal the adaptive confidence interval for the ratio of two

variances (6) is wider than the classical confidence interval (5) if no data are missing
(p1:p2:1.0) but when there is missing data the adaptive confidence interval will have

coverage probability closer to nominal level 0.95 than the classical confidence interval.
When either or both distributions are non-normal, except the uniform distribution, the
adaptive confidence interval has coverage probability closer to nominal level 0.95 than
the classical confidence interval whether there is missing data or not. They also show

that the coverage probability of adaptive confidence interval will be closer to the nominal

level 0.95 when a prior estimate of kurtosis for large samples Nn,, and n,, are used.
When both distributions are uniform distributions the adaptive confidence

interval has coverage probability close to the classical confidence interval but in large

sample sizes N, =100, n, = 50 the adaptive confidence interval are shorter than the

classical confidence interval.

4. Conclusions

In this paper we compare the efficiency of the classical confidence intervals and
adaptive confidence intervals for the variance and the ratio of two variances when there
is missing data and the samples come form non-normal distributions. The simulation

results show that the adaptive confidence interval with imputed data by random hot deck
method has higher efficiency than the classical confidence interval based on the ;(2
statistic which coincides with results of Niwitpong and Kirdwichai [2] for complete data.

For two populations when two data are missing the adaptive confidence interval

based on Bonett confidence interval have higher efficiency than the classical confidence
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interval base on the F statistic interval in all distributions considered except the uniform
distribution. They also show that the adaptive confidence interval has coverage
probability close to the classical confidence interval and is shorter with large sample
sizes. Therefore, the use of the adaptive confidence intervals when the underlying
distributions are generally skewed and unknown and missing data occur give better
coverage probabilities.

Table 3: Estimated coverage probabilities and ratio of expected lengths of (6) and (5).

®) ©) RE

Normal(0,1) p1:p2:1-0 n1:n2:20 0.9499 | 0.9769 | 1.3082
n,=100,n,=50/ 0.9499 | 0.9840 | 1.1980

pl:0.8,p2:0.9 nl:n2:20 0.9105 | 0.9553 | 1.3335

n,=100,n,=50 | 0.9114 | 0.9608 | 1.2000

Uniform(0,1) p,=p,=1.0 n,=n,=20 0.9946 | 0.9970 |  1.0906
n,=100,n,=50 0.9959 | 0.9969 | 0.9591

p,=0.8,p,=0.9 n,=n,=20 0.9823 [ 0.9898 | 1.1480

n,=100,n,=50/ 0.9900 | 0.9928 | 0.9722

t(5) p,=p,=1.0 n,=n,=20 0.8399 | 0.9510 | 1.6783
n,=100,n,=50 0.7884 | 0.9544 | 1.6026

p1:0.8,p2:0.9 n1:n2:20 0.7927 | 0.9190 | 1.6435

n,=100,n,=50| 0.7579 | 0.9288 | 15671

Exponential(3) p1:p2:1-0 n1:n2:20 0.7402 | 0.9498 2.5037
n,=100,n,=50 0.6941 | 0.9646 | 2.2872

p,=0.8,p,=0.9 n,=n,=20 0.6892 | 0.9095 | 2.3773

n,=100,n,=50 0.6447 | 0.9390 | 2.2416

7@ p,=p,=1.0 n,=n,=20 0.6155 | 0.9222 | 3.4927
n,=100,n,=50 0.5689 | 0.9545 | 3.0580

pl:0.8,p2:0.9 n1:n2:20 0.5657 | 0.8845 | 3.2191

n,=100,n,=50 0.5266 | 0.9282 | 29790

X1 is Normal(0,1) pl:pzzl.O nl:n2:20 0.7263 | 0.9181 |  2.1040
X, is 7% @) n,=100,n,=50 | 0.6466 | 0.9395 | 22977
p,=0.8,p,=0.9 n,=n,=20 0.6887 | 0.8931 | 2.0711

n,=100,n,=50 | 0.6071 | 0.9131| 22576
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(5) (6) RE

X, is Exponential(3) p1:p2:1-0 n1:n2:20 0.6657 | 0.9302 | 2.8912
X,is 7% ) n,=100,n,=50 | 0.6028 | 0.9500 | 2.7131
p,=0.8,p,=0.9 n,=n,=20 0.6167 | 0.8994 | 2.7690

n,=100,n,=50 | 0.5631 | 0.9258 | 2.6638

Table 4: Estimated coverage probabilities and ratio of expected lengths of (6) and (5)

when prior kurtosis information is available.

®) (6) RE

Uniform(0,1) p,=p,=1.0 n,=n,=20 0.9944/0.9946 | 1.0052
n,=200,7,=1.8 n,=100,n,=50 |0-9954|0.9956| 0.9302
N,,=500,7,=1.8  p,=0.8,0,=0.9 n,=n,=20 0.9833/0.9843| 1.0095
n,=100,n,=50 |0-9915/0.9900| 0.9328

t(5) p,=p,=1.0 n,=n,=20 0.8305|0.9871| 2.5970
n,, =200 ,7,=6.1 n,=100,n,=50 |0.7910/0.9750| 1.9366
N,,=500,7,=7.0  p,=0.8,0,=0.9 n,=n,=20 0.7908|0.9776| 2.5938
n,=100,n,=50 |0.7493|0.9600| 1.9369

Exponential(3) p,=p,=1.0 n,=n,=20 0.7283/0.9796| 3.2690
n,,=200,7,=7.9 n,=100,n,=50 |0.7055|0.9694| 2.2961
n,=500,7,,=85  p,=0.8,p,=0.9 n,=n,=20 0.6839|0.9624| 3.2567
n,=100,n,=50 |0.6528|0.9503| 2.2895

7@ p,=p,=1.0 n,=n,=20 0.6046(0.9745| 5.4144
n,, =200 ,7,=12.2 n,=100,n,=50 |0.5693/0.9614/ 3.1693
N, =500,7,,=13.6  p,=0.8,p,=0.9 n,=n,=20 0.5550/0.9563| 5.3876
n,=100,n,=50 |0.5281|0.9424| 3.1477

X, is Exponential(3)  p,=p,=1.0 n,=n,=20 0.659110.9762| 4.3645
X, is 7% (1) n,=100,n,=50 |0.6057|0.9630| 2.8938
n,=200,7,=7.9 p,=0.8,0,=0.9 n,=n,=20 0.6300/0.9613| 4.3491
n,,=500,7,,=13.6 n,=100,n,=50 |0.5707|0.9457 | 2.8821
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5. Numerical Example

Suppose a manufacturer takes random sample size N; =N, = 10 items of his

product and competitor product respectively. But the performance values of the
competitor have missing in sampling survey. Therefore random hot deck imputation is

used to handle. The resulting performance values are generated from ;(2 (1) and ;(2 ¥3)
respectively :

Marllpurf:éﬁz;efs Colgfsggﬂgirs imputed data
2.13 0.91 0.91
157 0.99 0.99
0.28 0.90 0.90
0.38 3.62 3.62
0.56 0.28 0.28
0.01 - 0.43
1.24 4.38 4.38
0.02 0.43 0.43
0.01 1.81 181
1.61 2.23 2.23

The sample variances and the small-sample adjustments are 812 =0.62,

S§=2.01 and R1:R22L21.244 . The pooled estimate of

10-274 005
2 2 2 2 2 2 .
var(ln Sl) and var(ln 52) arese; =0.66" and se; = 0.84°. From equation (6)

the 95% adaptive confidence interval for ratio of variances of performance values from
two products is

exp {In (%) +1.96+/0.66° +0.84° } =[0.038,2.513]
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