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Abstract 

In this communication, we consider the inference problem for the ratio of two 

interaction parameters, the so-called conversion efficiency of the Lotka-Volterra 

ordinary differential equations system (ODEs). The stochastic model under 

consideration views the actual population sizes as random perturbations of the 

solutions to these ODEs. Namely, we assume that the perturbations follow correlated 

Ornstein-Uhlenbeck processes and thus, no assumption is made that the random 

variables are independent. In this context, we establish the uniformly most powerful 

unbiased test for the conversion efficiency parameter. The asymptotic properties of the 

proposed test are derived. A simulation study is conducted and this provided strong 

evidence that corroborates with the usual asymptotic theory of optimal tests. To 

illustrate the procedure, the proposed method is applied to the Canadian mink-muskrat 

data set. 

______________________________ 
Keywords: conversion efficiency, gaussian process, Lotka-Volterra ODEs, monte-carlo 

simulation, the uniformly most powerful unbiased test.  
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1. Introduction 

We consider predator-prey system as described by the Lotka-Volterra system 

of differential equations [1,2]: 
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where δγβη ,,, are all positive quantities and the components of initial value 

),( 00 yx  are the positive. We suppose that ),( 00 yx  is different from an equilibrium 

point and thus, the solution of the system (1) is not trivial. The system (1) does not 

admit an explicit analytical solution even if it admits a unique solution which belongs to 

a closed curve. Thus, the trajectory ))(,)(( tytx is a periodic function, whose period is 

denoted by ),,,,,( 00 yxηδβγρ  and, is a function of .),,,,,( 00 yxηδβγ   

Theoretically, )(tx and )(ty are the population sizes (at time t) of the prey 

and the predator, respectively. The parameter, η  is the birth rate of the prey when the 

predator is absent, δ  is the death rate of the predator when the prey is absent. In 

ecological modeling, the parameters δ and η , are usually considered as intrinsics at 

the species prey and predator. The parameters β  and γ  are the interaction 

parameters. The ratio βγ  is called “conversion efficiency'' and represents a 

percentage of consumed prey that is converted into biomass predator. In the sequel, 

the conversion efficiency that is the parameter of interest is denoted by 
β
γθ = . 

  In practice, we have N pairs of observations Niii YX ,........,2,1),( = collected 

at discrete times  ,it where iii Xtt ;0 1+<< and iY  , represent respectively the 

sizes of the prey and the predator observed at time .,..........,2,1, Niti =  Briefly, as 

in Froda and Nkurunziza [3], the logarithm of population sizes are considered as 

logarithm of the solution of ODE (1) plus error Markov processes. In this model, the 

error process is considered as mainly measurement (observation) error which does not 

interfere with the deterministic function. Interestingly, a such measurement type model 

has the advantage of preserving the periodic behaviour as well the irregularities of the 

trajectory that is commonly observed in practice (see Froda and Nkurunziza, [3]). In fact, 
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according to ecologists (see e.g. Kendall, et al., [4], Ginzburg and Taneyhill, [5] or 

Royama, [6], chapters 5-6), the trajectory of many animal population sizes has 

oscillatory behaviour. However, the trajectory of the observed predator-prey population 

sizes are not as smooth and regular as the solution of the ODEs (1).  

Concerning the noise, we assume that each component of error process 

follows Ornstein-Uhlenbeck process that is the continuous version of a first-order 

autoregressive model AR(1) in discrete times. In fact, if { }0,( ≥te X
t  is an Ornstein-

Uhlenbeck process, then 

 { }iallfortconsttwithttte iiN
X
t i

tan,...0,( 121 −<<<< +   

a first-order autoregressive model AR(1). Indeed, the statistical model which is 

commonly used by ecologists with population cycles is the linear autoregressive (AR) 

model (see Kendall, et al., [4], Berryman, [7] or Royama,[6]), with an order less than or 

equal to 2. In our case, the periodicity is captured by the solution of the ODEs (1) and 

then, to simplify some computations, we can reduce the order by considering an AR(1) 

model. For other references on the study of cyclic behaviour in the ecological literature, 

we refer the reader to Haydon, et al. [8], Brillinger [10] and Boyce [11].  

  The point estimation problem of the parameters δγβη ,,,  is considered by 

Froda and Colavita [12] and Nkurunziza [4] proposed the likelihood ratio test for the 

interaction parameters γβ and  

  In the current investigation, the parameter of interest is the conversion 

efficiency and we would like to test 

    .:: 000 θθθθβγ >≤= AHagainstH  

For ,10 =θ  the above test allows us to test the homogeneity of the two 

interaction parameters  .βγ and   

As in Nkurunziza [4], the nuisance parameters ηδ and are considered as 

constants with respect to the interaction parameters βγ and  (for more details, see 

Nkurunziza, [4]). 

The rest of the paper is organized as follows. In Section 2, we present the 

statistical model and give some preliminary results. Section 3 presents the uniformly 

most powerful unbiased test, when the nuisance parameters are assumed to be known. 

In Section 4, we deal with the testing problem when these nuisance parameters are 
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unknown. Section 5 is Data Analysis and Simulations Studies. Finally, the conclusion is 

offered in Section 6.  

 
2.  Preliminaries and Statistical Model 

In this section, we showcase the statistical model and set up some 

assumptions and notations used in this paper. To this end, let ))(,)(( tytx be the 

solution of ODEs (1) and let us assume that the N pairs of observations  

Niii YX ,........,2,1),( =  are collected at discrete times ,...0 21 Nttt <<<< where 

.)(,)( iiii tYYtXX ≡≡  Further, these observations are generated by a process 

with continuous paths  }{ TttYtX ≤≤0,))(,)((  satisfying  

          ,)(loglog,)(loglog Y
tt

X
tt etyYetxX +=+=                             (2) 

here we assume that each noise component { }Ttee Y
t

X
t ≤≤0,),(  is Ornstein- 

Uhlenbeck process [13], with a particular dependence structure as described in Froda 

and Nkurunziza [3]. More precisely, we assume that  

,0,,, >+−=+−= τττ cdWdtecdedWdtecde Y
t

Y
t

Y
t

X
t

X
t

X
t             (3) 

Where { }0, ≥tW X
t  and { }0, ≥tW Y

t  are Wiener processes which satisfy 

Assumption )( 1  as given in Froda and Nkurunziza [3]. Also, the initial random 

variables Xe0  and Ye0  are assumed to satisfy assumption )( 2  given in Nkurunziza 

[4]. 

As mentioned in the Introduction, the main objective is testing problem  

          .:: 000 θθθθ >≤ AHagainstH                                            (4) 

for a given 0θ  Further, let xµ  and yµ  be the population means during a period and 

let .),,,,,(~
00 yxηδβγρρ = We have, 

dttx
s

sx ∫
+

=
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ρ
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From (5), we get ),(),( βηγδµµ =yx and therefore, 

.δηθµµ =xy  Hence, when  δη,  are fixed and known, the testing problem in (4) 

is equivalent to the following testing problem 

.:: 0000
 µµµθ

δ
ηµ

µ
µ

>=≤= A
x

y HagainstH                   (6) 

In solving the testing problem in (4), we consider first the case when the 

nuisance parameters are known. In this case, we establish the uniformly most powerful 

unbiased (UMPU) test. Further, we consider the more realistic situation when the 

nuisance parameters need to be estimated. Hence, we replace these parameters by 

their strongly consistent estimators to obtain a test which is asymptotically as powerful 

as the uniformly most powerful unbiased test. 

Given the testing problem (4) and the ODE (1), we note that the parameter of 

interest is an argument of an implicit function, which is the mean of the model (2). In 

establishing the UMPU we use the following theorem on a re-parametrization of the 

solution of ODE (1).  

Theorem 1 (Nkurunziza, [4]) Let 21 κκ and  be two positive real numbers, 

let  ),( 00 yx  be fixed initial value and let  

)),,,,,;(,),,,,,;(( 0000 yxtyyxtx ηδβγηδβγ be a solution to the 

Lotka-Volterra ODE (1).  Then, 
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From Theorem (1), Nkurunziza [4] proves that, under some assumptions, the 

period of the populations is an intrinsic characteristic of the interacting species (see 

Nkurunziza, [4], Corollary 1), i.e. the period of the ODEs (1) ),,,,,( 00 yxηδβγρ  is 

constant with respect to the interaction parameters (see Nkurunziza, [4]). Namely, that 
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holds if  “there exists ,),( 2
00 +ℜ∈vu fixed and that ),( 00 yx  is chosen such that,  

for all  βγβγ 0000,0,0 vyandux ==>> ”.  

For the simplicity sake, we assume that ),( 00 vu is known. In fact, ),( 00 vu  

can be replaced by its strongly consistent estimator )ˆ,ˆ( 00 vu (see Nkurunziza, [4]). 

Further, let 

)7(.),;,,1,1;()(),;,,1,1;()(
,))(,)(()),;;(,),;;((,),,,(
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Following Theorem 1, .0,)(1,)(1))(,)(( ≥∀







= ttvttytx

β
ξ

γ
 In passing, 

note that Theorem 1 is a key result of this paper. Indeed, it permits to overcome the 

implicit parametrization inherent to the testing problem (4).  

 

3. The uniformly most powerful unbiased test 

In this section, we develop the UMPU test for the conversion efficiency 

parameter,  θ . The composite null and alternative hypotheses are given as follows: 

              ,:: 000 θθθθ >≤ AHagainstH                                                            (8) 

where 0θ  is positive and known. 

In order to solve the testing problem (8), let us consider the differences  

,))(log()log()(,))(log()log()( jvYjjXj jyjx −=∆−=∆ ξ  

where, for all  ,,...,2,1 Nj =  the pair ),( jj YX  are generated by the 

stochastic model (2) and ))(,)(( jvjξ is given by (7). Also let )exp( c−=φ and the 

NN×  matrix .)( ,...,2,1,
2

Nji
ji

=
−=Ω φσ  Further, let the vectors 

,))(,...,)2(,)1((,))(,...,)2(,)1(( ′∆∆∆=∆′∆∆∆=∆ NN yyyyxxxx  

and let the real quantities 
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where me  is the column vector of dimension m with all entries equal to 1. Further, we 

have  
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The statistics ),( 21 TT  is complete and sufficient for the interaction parameters 

),( βγ  (see Nkurunziza, [4]). 

Finally, let )(xΦ  be the cumulative distribution function of a standard normal 

random variable and let AI denote the indicator function of an event A . The following 

proposition gives a solution to the testing problem (4).  

Proposition 1 Consider the testing problem defined in (8), at level 10 << α  

and suppose that ,0=ρ  the UMPU α  level test, is given by 

( ) [ ] }{ αθ −Ω
<+∆−∆

=Ψ
10 )(log21 ze yxN

I                                                   (12) 

where .1)( αα −=Φ z   The statistic ),( yx ∆∆  is given by (9).                          □ 

The proof follows from the application of Theorem 1 in Lehmann ([14], Chap. 5, 

p. 190). 

In passing, note that the maximum likelihood estimator of θ  is θ̂ , such that 
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      .)(
)2()1(2

1)ˆ(log 21 TT
Nyx −
−−+

+
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φ
φθ                           (13) 

Moreover, the statistic ),( yx ∆∆− is the maximum likelihood estimator of  

.))(log,)(log( βγ   

 

4. Asymptotic test and practical aspects 

In the preceding section, we established the test function, Ψ , which is useful 

if the parameters, σφηδ ,,,  are known. However, in practice, these parameters are 

usually unknown. Accordingly,  we modify the test Ψ by replacing the parameters  

σφηδ ,,,  with their strongly consistent estimators, .ˆ,ˆ,ˆ,ˆ σφηδ  The estimators and 

their properties are given in Froda and Nkurunziza [3]. 

Let ),( 21 κκΨ∏ be the power of the test Ψ evaluated at the point 

),( 21 κκ  and let  
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Also, let a sequence of local alternatives defined as 

...,2,1,0,)log()log(: 0; =≠+= N
N

H NA λλθθ  

As a preliminary step, in the following proposition we prove that Ψ is 

consistent test. 

Proposition 2 Let λ be fixed and positive real number and suppose that 

Proposition 1 holds. Then, uniformly in λ  belonging to a fixed compact of ,+ℜ   

      .
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By Proposition 2, the asymptotic power of Ψ  is the right side of (15). For 

practical reasons, we modify the test Ψ  by replacing the parameters σφηδ ,,,  with 

theirs strongly consistent estimators, .ˆ,ˆ,ˆ,ˆ σφηδ  Hence, the new test is 

         [ ]{ } ,1021
2 )(log)ˆ()(ˆ2)ˆ( αθφζσφζ −<+−

=Ψ
zTTa

NaaN
I                                (16) 

where )ˆ(φζ N  is given by (14). Further ),( 21 aa TT  is obtained from (11), by replacing 

σφηδ ,,,  with .ˆ,ˆ,ˆ,ˆ σφηδ  In a similar way, a plug-in estimator of θ  is derived from 

(13), by replacing σφηδ ,,,  with  .ˆ,ˆ,ˆ,ˆ σφηδ  Again, to simplify some computations, 

we assume that ),( 00 vu  is known. Nevertheless, by replacing ),( 00 vu  by its 

strongly consistent estimator ,)ˆ,ˆ( 00 vu  we preserve the asymptotic properties of the 

test (see Nkurunziza, [4]). 

Noting that, the proposed new test-statistic aΨ , is no longer the UMPU test. 

However, the following proposition proves that  aΨ is indeed asymptotically as 

powerful as the uniformly most powerful unbiased test. 

Proposition 3 Let λ  be any fixed and positive real number and assume that 

Proposition 2 holds. Then, the asymptotic power of aΨ  is the right side of relation (15).  

 

5. Data Analysis and Simulations studies 

In this section, we illustrate how to apply the test presented in this paper. To 

this end, we apply the test to the Canadian mink-muskrat data as well as to some of the 

generated data according to the statistical model (2). Also, we present some graphics 

which illustrate the consistency of the UMPU test. 

 

5.1 Test on the Canadian Mink-Muskrat data set 

This subsection illustrates the use of the test ,aΨ  on a real data set. The 

data set considered here is the mink-muskrat data as given in Brockwell and Davis ([15], 

p. 557-558). These data correspond to fur sales of the Bay of Hudson Company, in the 

years 1848-1912. Thus, we have 64 pairs of observations which represent the number 

of prey and predators recorded over 64 consecutive years. 
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In this data set, the prey is muskrat, whereas the predator is mink. In Bulmer 

[16], the author comments on the predator-prey relationship between the species listed  

in the Bay of Hudson Company records, and point out the fact that the muskrat cycle is 

due to predation by mink. Thus, the mink-muskrat is a predator-prey couple which 

seems to satisfy the requirement that the muskrat is the main food supply for the 

predator. Also,  the same data has been used in Froda and Colavita [12] as well as in 

Froda and Nkurunziza [3] to illustrate their estimation methods. 

Interestingly, Figure 1 highlights some periodicity in the data, and this is in 

agreement  with the modeling of the Lotka-Volterra system of ODE. 

          
Figure 1. Observed log-populations sizes 
 

5.1.1 Preliminary estimation and test result 

In accordance with the test presented, we need to estimate firstly the 

parameters ),,,,,( 00
2 vuφσαδ  by using the method in Froda and Colavita [12] or 

in Froda and Nkurunziza [3]. Let  )ˆ,ˆ,ˆ,ˆ,ˆ,ˆ( 00
2 vuφσαδ  be this preliminary estimate 

of the parameters .),,,,,( 00
2 vuφσαδ  We get 

,)7046.0,3966.0,917363.0,538147.0()ˆ,ˆ,ˆ,ˆ( 2 =φσαδ  

and  

                    .)920740.1,486203.0(),( 00 =vu  

Consider testing problem .1:1:0 >≤ θθ AHagainstH  We have  

                   [ ] 60418.11)(log)ˆ()(ˆ2)ˆ( 021
2 =+− θφζσφζ NaaN TT  



Sévérien Nkurunzizal and S. Ejaz Ahmed                                                                    157 

which gives the p-value approximately equals to 1. Therefore, the null hypothesis 

1:0 ≤θH  is not rejected, at level 5%. It should be noted that, from (13), a 

consistency estimator of )(log θ  is given by   ( ).ˆ)()(log 21 φζθ Naa TT +−=  

Thus, by some computations, we get 01572.3−  as an estimate of 

.)(log θ  Therefore, as an estimate of ,θ  we take .10490104.0)01572.3(exp <=−  

Thus, the test result seems in agreement with the point estimation results. The following 

Table (1) gives some test results when 0θ  takes some values less than or equal to 

.0490104.0  The same Table (1) shows that when 0θ  is less than or equal to 0.03, we 

reject the null hypothesis 00: θθ ≤H  at level 5%. 

 Table 1. Test results for some values of 0θ  

0θ  0.01 0.02 0.03 0.04 

Z-statistic -6.116 -3.4489 -1.8887 -0.7817 

P-value 4.79681e-10 0.000281466 0.029466933 0.21719055 

 

5.2 Test on the simulated data set 

The main purpose of this subsection is to study the behavior of the power test 

for different sample sizes. To this end, we generate 1,000 samples of data sets of sizes 

20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 100. Also, in simulation studies, we 

take .)34.78,45.565,9760.0,4417.0,0206.0,0008.0(),,,,,( 00 =yxαδβγ For 

the nuisance parameters, ,,, φρσ   we choose .)0,85.0,82.0(),,( =φρσ  

Figure (2) illustrates how the behavior of the power for the UMPU test is in 

agreement with the fact that the UMPU test is consistent. 

Further, Figure (2) illustrates the behavior of the power test when the nuisance 

parameters  ρσ ,  are estimated. In particular, the consistence property is preserved, 

even if the sample sizes have to be relatively larger than the previous case when the 

nuisance parameters are known. 
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               Figure 2. Simulated power by sample sizes 

 

Our simulation experiments and numerical examples have provided strong 

evidence to corroborate the usual asymptotic theory related to the suggested inference 

method. 

 

6. Summary and discussion 

This paper deals with the inference problem concerning the variation of the 

conversion efficiency parameter. Methodologically, we use the stochastic model 

suggested in Froda and Nkurunziza [3]. As mentioned in the quoted paper, a such 

stochastic model has the advantage preserving both periodic behaviour and 

irregularities that are commonly observed in practice. In fact, many animal populations 

exhibit periodic behavior~(see e.g. Kendall, et al., [5], Ginzburg and Taneyhill, [6] or 

Royama, [7], chapters 5-6), that the trajectory of observed population sizes is not as 

smooth as the solution of the Lotka-Volterra ODE. 

In testing problems, we derived the one-sided UMPU test for testing the 

conversion efficiency parameter when the nuisance parameters ),,,( φσηδ  are to 

be known. In particular, the test presented allows the ecologists to compare the 

interaction parameters γ  and .β  Furthermore, the suggested test is also useful for 

testing the one-sided hypothesis regarding the ratio, mean of the predator by the mean 

of the prey during a period of the ODEs (1).  

Secondly, we extended this test to a more realistic situation. That is the case 

when the interaction parameters ),,,( φσηδ are unknown. In this case, by replacing 

these parameters by their strongly consistent estimators ,)ˆ,ˆ,ˆ,ˆ( φσηδ we derive a 
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test which is asymptotically as powerful as the UMPU test for the known nuisance 

parameters case. 

Finally, the most original contribution of this paper consists in the use of 

Theorem 1 to transform the hypothesis testing problem into some familiar problems. 

Basically, after this re-parametrization, we applied classical techniques in testing 

hypotheses, in particular, for the Gaussian case. Also, with Corollary 1, we provide a 

sufficient condition for the period of the ODEs (1) to be constant with respect to the 

interaction parameters γ  and β  as well as to the conversion efficiency. 
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