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Abstract

In this communication, we consider the inference problem for the ratio of two
interaction parameters, the so-called conversion efficiency of the Lotka-Volterra
ordinary differential equations system (ODEs). The stochastic model under
consideration views the actual population sizes as random perturbations of the
solutions to these ODEs. Namely, we assume that the perturbations follow correlated
Ornstein-Uhlenbeck processes and thus, no assumption is made that the random
variables are independent. In this context, we establish the uniformly most powerful
unbiased test for the conversion efficiency parameter. The asymptotic properties of the
proposed test are derived. A simulation study is conducted and this provided strong
evidence that corroborates with the usual asymptotic theory of optimal tests. To
illustrate the procedure, the proposed method is applied to the Canadian mink-muskrat

data set.

Keywords: conversion efficiency, gaussian process, Lotka-Volterra ODEs, monte-carlo
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1. Introduction
We consider predator-prey system as described by the Lotka-Volterra system

of differential equations [1,2]:
= (=Y x(), TP =(rx(®) - 6) y(t)
(x(0), y(0)) = (X,.y,) fixed @

where 77, 3,7,0 are all positive quantities and the components of initial value

(X, Y ,) are the positive. We suppose that (X, Y ,) is different from an equilibrium

point and thus, the solution of the system (1) is not trivial. The system (1) does not

admit an explicit analytical solution even if it admits a unique solution which belongs to

a closed curve. Thus, the trajectory (X(t), y(t))is a periodic function, whose period is

denoted by p(7, 3,0,1,X4,Y,) and, is afunctionof (y,,5,17,X,,Y,)-
Theoretically, X(t) and y(t) are the population sizes (at time t) of the prey

and the predator, respectively. The parameter, 77 is the birth rate of the prey when the

predator is absent, O is the death rate of the predator when the prey is absent. In

ecological modeling, the parameters O and 17, are usually considered as intrinsics at
the species prey and predator. The parameters ,B and y are the interaction

parameters. The ratio y/ﬂ is called “conversion efficiency" and represents a

percentage of consumed prey that is converted into biomass predator. In the sequel,

/4

the conversion efficiency that is the parameter of interest is denoted by & =-—.

In practice, we have N pairs of observations (Xi in) 212 n Collected

at discrete tmes t ., where O<t,<t Xiand Y, , represent respectively the

i+1;
sizes of the prey and the predator observed at time ti =12, , N. Briefly, as

in Froda and Nkurunziza [3], the logarithm of population sizes are considered as
logarithm of the solution of ODE (1) plus error Markov processes. In this model, the
error process is considered as mainly measurement (observation) error which does not
interfere with the deterministic function. Interestingly, a such measurement type model
has the advantage of preserving the periodic behaviour as well the irregularities of the

trajectory that is commonly observed in practice (see Froda and Nkurunziza, [3]). In fact,
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according to ecologists (see e.g. Kendall, et al., [4], Ginzburg and Taneyhill, [5] or
Royama, [6], chapters 5-6), the trajectory of many animal population sizes has
oscillatory behaviour. However, the trajectory of the observed predator-prey population
sizes are not as smooth and regular as the solution of the ODEs (1).

Concerning the noise, we assume that each component of error process

follows Ornstein-Uhlenbeck process that is the continuous version of a first-order
autoregressive model AR(1) in discrete times. In fact, if {((—,":< , 1> 0} is an Ornstein-
Uhlenbeck process, then

{(et"i ,0<t, <t, <...<t,, witht,_, —t. constant for all i}

a first-order autoregressive model AR(1). Indeed, the statistical model which is
commonly used by ecologists with population cycles is the linear autoregressive (AR)
model (see Kendall, et al., [4], Berryman, [7] or Royama,[6]), with an order less than or
equal to 2. In our case, the periodicity is captured by the solution of the ODEs (1) and
then, to simplify some computations, we can reduce the order by considering an AR(1)
model. For other references on the study of cyclic behaviour in the ecological literature,

we refer the reader to Haydon, et al. [8], Brillinger [10] and Boyce [11].

The point estimation problem of the parameters m ﬂ,]/,5 is considered by
Froda and Colavita [12] and Nkurunziza [4] proposed the likelihood ratio test for the
interaction parameters £ and y

In the current investigation, the parameter of interest is the conversion

efficiency and we would like to test

Hy:y/B=0<86, against H,:0>6,.

For 190 =1, the above test allows us to test the homogeneity of the two
interaction parameters ¥ and f.

As in Nkurunziza [4], the nuisance parameters & and 17 are considered as

constants with respect to the interaction parameters y and IB (for more details, see

Nkurunziza, [4]).

The rest of the paper is organized as follows. In Section 2, we present the
statistical model and give some preliminary results. Section 3 presents the uniformly
most powerful unbiased test, when the nuisance parameters are assumed to be known.

In Section 4, we deal with the testing problem when these nuisance parameters are
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unknown. Section 5 is Data Analysis and Simulations Studies. Finally, the conclusion is

offered in Section 6.

2. Preliminaries and Statistical Model

In this section, we showcase the statistical model and set up some
assumptions and notations used in this paper. To this end, let (X(t), y(t)) be the
solution of ODEs (1) and let us assume that the N pairs of observations

(Xi ’Yi)i=l, 2,

Xi = X(ti), Yi EY(ti). Further, these observations are generated by a process

_________ y are collected at discrete times 0 <t, <t, <...<t,, where
with continuous paths {(X ©,Y (@), 0<t<T } satisfying
log X, =logx(t) + e, logY, =logy(t) + e/, @)

here we assume that each noise component {(etx , etY), 0<t ST} is Ornstein-

Uhlenbeck process [13], with a particular dependence structure as described in Froda

and Nkurunziza [3]. More precisely, we assume that

de) =—cedt+7zdW ), de; =—ce/dt+zdW,’, ¢, >0, @3)
Where {\Ntx, tZO} and {\Nty, tZO} are Wiener processes which satisfy
Assumption (El) as given in Froda and Nkurunziza [3]. Also, the initial random

variables eOX and eg are assumed to satisfy assumption (62) given in Nkurunziza

[4].

As mentioned in the Introduction, the main objective is testing problem

H, 6<6, against H,:0>6,. @)
for a given 90 Further, let x, and My be the population means during a period and

let p=p(, B,5,1, X, Y,) -We have,

== xdt ano ==yt ®
p p*
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From (5), we get (4,,n,)= (S/y,n/B) and therefore,
My /,ux = 4977/5. Hence, when 77, O are fixed and known, the testing problem in (4)
is equivalent to the following testing problem
My
iy

In solving the testing problem in (4), we consider first the case when the

H, :;fs%@ozﬂ; against H,:u" > u,. (6)

nuisance parameters are known. In this case, we establish the uniformly most powerful
unbiased (UMPU) test. Further, we consider the more realistic situation when the
nuisance parameters need to be estimated. Hence, we replace these parameters by
their strongly consistent estimators to obtain a test which is asymptotically as powerful
as the uniformly most powerful unbiased test.

Given the testing problem (4) and the ODE (1), we note that the parameter of
interest is an argument of an implicit function, which is the mean of the model (2). In
establishing the UMPU we use the following theorem on a re-parametrization of the
solution of ODE (1).

Theorem 1 (Nkurunziza, [4]) Let K and K, be two positive real numbers,

let (X,,Y,) be fixed initial value and let

(X(t; 7, B,0,1m, %0, Yo ) Y& 7, 5,0,1, %5, ¥y)) be a solution to the
Lotka-Volterra ODE (1). Then,

X
X(t;y,ﬂ,&n,xo,yo):qu(t;Kly,Kzﬁ,&n,—O,ﬁj
K K,
. ) Xy Yo
y(t'}/’ﬂ’5’77!X0!yO)=K2y(t!Kl}/lkzﬂyé‘vn!_y_ja
K K,

fort>0,n, B, y,0>0.

From Theorem (1), Nkurunziza [4] proves that, under some assumptions, the

period of the populations is an intrinsic characteristic of the interacting species (see
Nkurunziza, [4], Corollary 1), i.e. the period of the ODEs (1) p( 7, £,3,1, Xy, Yo) is

constant with respect to the interaction parameters (see Nkurunziza, [4]). Namely, that
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holds if “there exists (U,, V,) € N2, fixed and that (X,,Y,) is chosen such that,
forall >0, >0, X,=U,/y and y, =v,/S"
For the simplicity sake, we assume that (U, V,)is known. In fact, (U,, V)

can be replaced by its strongly consistent estimator (00,\70) (see Nkurunziza, [4]).

Further, let
L=y, 8,6,m), (X5 X0, Yo) YT X, Vo)) = (X(1), Y(1)
E(t) =x(t;1,1, 0,7 u,, V) and v(t) = y(t; L, 1, 0,7, Uy, V). (7N

1 1
Following Theorem 1, (X(t), y(t)) = (—f(t), —V(t)j, Vvt >0. In passing,
yo B
note that Theorem 1 is a key result of this paper. Indeed, it permits to overcome the

implicit parametrization inherent to the testing problem (4).

3. The uniformly most powerful unbiased test

In this section, we develop the UMPU test for the conversion efficiency

parameter, & . The composite null and alternative hypotheses are given as follows:
H, 6<6, against H,:60>6,, ®)
where 90 is positive and known.

In order to solve the testing problem (8), let us consider the differences

A, (1) =log(X;) —log((1)), A, (1) =log(Y;) —log(v(J)),
where, for all  j=1,2,..., N, the pair (X;,Y;) are generated by the
stochastic model (2) and (£(]), V(])) is given by (7). Also let ¢ = exp(—C) and the
NxN matix Q=c?(g' 1), .., . Further, let the vectors

A=AD, A2, ..., AN, Ay =(A,0),Ay(2),....A,(N)),

and let the real quantities
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2 -1 x -1 -1 -1
len [, =enQlen, A, = (6L Qe ) ter QA

A, =(e Q') e Q7'A (9)

where €n is the column vector of dimension m with all entries equal to 1. Further, we

have

o?len];, =[2+@- )N -2)]@+¢)",

2 -2

A =To ey, A, =Toey]. (10)

where

1 3 . .
Tl = Ax(]') + m;(AX(J) - ¢AX(J _1))

1 3 . .
T, =Ay(1)+mjz;,(Ay(J)—¢Ay(J—1))- 11

The statistics (Tl, T2) is complete and sufficient for the interaction parameters
(7, P) (see Nkurunziza, [4]).
Finally, let ®(X) be the cumulative distribution function of a standard normal

random variable and let IAdenote the indicator function of an event A . The following

proposition gives a solution to the testing problem (4).

Proposition 1 Consider the testing problem defined in (8), at level 0< ar <1

and suppose that p = 0, the UMPU ¢ level test, is given by

Y=V, 1, [5,- 5, + o] <5 . a2)
where ®(z,)=1- . The statistic (KX , Ky) is given by (9). O

The proof follows from the application of Theorem 1 in Lehmann ([14], Chap. 5,
p. 190).

In passing, note that the maximum likelihood estimator of @ is 0, such that
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N N o 1+¢ B
log(0)=-A,+A, = 21 A- AN _2)(T1 T,). (13)

Moreover, the statistic (—AX,Ay) is the maximum likelihood estimator of

(log(y), log(5)).

4. Asymptotic test and practical aspects
In the preceding section, we established the test function, ¥, which is useful

if the parameters, O, n, ¢, o are known. However, in practice, these parameters are
usually unknown. Accordingly, we modify the test W by replacing the parameters
0, n, ¢, o with their strongly consistent estimators, &, ﬁ, ¢, O . The estimators and

their properties are given in Froda and Nkurunziza [3].

Let [Iy (x;, k,) be the power of the test V' evaluated at the point
(x,, k,) and let
1- 2+(1-¢)(N-2
b o 2HON-D)
1+¢ 1+¢
L-g)(N-2)
1+¢

Also, let a sequence of local alternatives defined as

c(9) =

(14)

L) =2

H .\ :log(6) = log(6,) + ——, 2 %0, N=1 2,...

JN

As a preliminary step, in the following proposition we prove that W is

consistent test.

Proposition 2 Let A be fixed and positive real number and suppose that

Proposition 1 holds. Then, uniformly in A belonging to a fixed compact of R,

Ji_r)nxl_[\y(log(eo)+%j=® 2 . +@ . 5 (15)
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By Proposition 2, the asymptotic power of ¥ is the right side of (15). For

practical reasons, we modify the test ' by replacing the parameters &, n, ¢, o with

theirs strongly consistent estimators, 0, ﬁ, ¢, O . Hence, the new test is

(16)

\P :I = ~ 1
a {\ O (9)/26° [(Tal ~Ta2)/¢n (¢)]+|09(90) < Zl—a}

where é/N (¢) is given by (14). Further (T Ta2) is obtained from (11), by replacing

al’
0,1, @, c with 3, n, (;, &. In a similar way, a plug-in estimator of @ is derived from
(13), by replacing &, n, ¢, o with 5, ﬁ, ¢?, c. Again, to simplify some computations,
we assume that (U,,V,) is known. Nevertheless, by replacing (U,,V,) by its

strongly consistent estimator (l]o, \70), we preserve the asymptotic properties of the

test (see Nkurunziza, [4]).

Noting that, the proposed new test-statistic ‘Pa, is no longer the UMPU test.

However, the following proposition proves that ‘Pa is indeed asymptotically as

powerful as the uniformly most powerful unbiased test.

Proposition 3 Let A be any fixed and positive real number and assume that

Proposition 2 holds. Then, the asymptotic power of ‘Pa is the right side of relation (15).

5. Data Analysis and Simulations studies

In this section, we illustrate how to apply the test presented in this paper. To
this end, we apply the test to the Canadian mink-muskrat data as well as to some of the
generated data according to the statistical model (2). Also, we present some graphics

which illustrate the consistency of the UMPU test.

5.1 Test on the Canadian Mink-Muskrat data set
This subsection illustrates the use of the test ‘I’a, on a real data set. The

data set considered here is the mink-muskrat data as given in Brockwell and Davis ([15],
p. 557-558). These data correspond to fur sales of the Bay of Hudson Company, in the
years 1848-1912. Thus, we have 64 pairs of observations which represent the number

of prey and predators recorded over 64 consecutive years.
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In this data set, the prey is muskrat, whereas the predator is mink. In Bulmer
[16], the author comments on the predator-prey relationship between the species listed
in the Bay of Hudson Company records, and point out the fact that the muskrat cycle is
due to predation by mink. Thus, the mink-muskrat is a predator-prey couple which
seems to satisfy the requirement that the muskrat is the main food supply for the
predator. Also, the same data has been used in Froda and Colavita [12] as well as in
Froda and Nkurunziza [3] to illustrate their estimation methods.

Interestingly, Figure 1 highlights some periodicity in the data, and this is in

agreement with the modeling of the Lotka-Volterra system of ODE.

c— - — Observed log(X) (prey)
7.5 —&—— Observed log(Y) (predator) *

TOD

Figure 1. Observed log-populations sizes

5.1.1 Preliminary estimation and test result

In accordance with the test presented, we need to estimate firstly the

parameters (5, a, (72, ¢, Uy, Vo) by using the method in Froda and Colavita [12] or
in Froda and Nkurunziza [3]. Let (&, @, 62, @, Uy, V,) be this preliminary estimate
of the parameters (5, @, o2, @, Ug, Vy). We get

(5,4, 62, ¢)=(0.538147, 0.917363, 0.3966, 0.7046),
and

(U, V,) = (0.486203, 1.920740).

Consider testing problem H,: @ <1 against H ,:6 >1. we have

Cu(@)/267 (T ~T.)/ ¢ @]+ 109(0,) -11.60418
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which gives the p-value approximately equals to 1. Therefore, the null hypothesis

Hy: <1 is not rejected, at level 5%. It should be noted that, from (13), a

consistency estimator of 10g(8) is given by log(8) = (T, +Ta2)/§N (¢)
Thus, by some computations, we get —3.01572 as an estimate of

log(@). Therefore, as an estimate of €, we take exp(—3.01572) = 0.0490104 <1.
Thus, the test result seems in agreement with the point estimation results. The following

Table (1) gives some test results when (90 takes some values less than or equal to
0.0490104. The same Table (1) shows that when 90 is less than or equal to 0.03, we
reject the null hypothesis H: 6 < 6, at level 5%.

Table 1. Test results for some values of 90

o 0.01 0.02 0.03 0.04
0
Z-statistic -6.116 -3.4489 -1.8887 -0.7817
P-value 4.79681e-10 0.000281466 0.029466933 0.21719055

5.2 Test on the simulated data set

The main purpose of this subsection is to study the behavior of the power test
for different sample sizes. To this end, we generate 1,000 samples of data sets of sizes
20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 100. Also, in simulation studies, we

take (,/,0,a,%,,Y,)=(0.0008, 0.0206, 0.4417, 0.9760, 565.45, 78.34). For

the nuisance parameters, o, p, ¢, we choose (o, p, ¢) =(0.82,0.85,0).

Figure (2) illustrates how the behavior of the power for the UMPU test is in
agreement with the fact that the UMPU test is consistent.
Further, Figure (2) illustrates the behavior of the power test when the nuisance

parameters O, p are estimated. In particular, the consistence property is preserved,

even if the sample sizes have to be relatively larger than the previous case when the

nuisance parameters are known.
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Figure 2. Simulated power by sample sizes

Our simulation experiments and numerical examples have provided strong
evidence to corroborate the usual asymptotic theory related to the suggested inference

method.

6. Summary and discussion

This paper deals with the inference problem concerning the variation of the
conversion efficiency parameter. Methodologically, we use the stochastic model
suggested in Froda and Nkurunziza [3]. As mentioned in the quoted paper, a such
stochastic model has the advantage preserving both periodic behaviour and
irregularities that are commonly observed in practice. In fact, many animal populations
exhibit periodic behavior~(see e.g. Kendall, et al., [5], Ginzburg and Taneyhill, [6] or
Royama, [7], chapters 5-6), that the trajectory of observed population sizes is not as
smooth as the solution of the Lotka-Volterra ODE.

In testing problems, we derived the one-sided UMPU test for testing the
conversion efficiency parameter when the nuisance parameters (5, n,o, ¢) are to
be known. In particular, the test presented allows the ecologists to compare the
interaction parameters ¥ and ,6’ Furthermore, the suggested test is also useful for

testing the one-sided hypothesis regarding the ratio, mean of the predator by the mean
of the prey during a period of the ODEs (1).

Secondly, we extended this test to a more realistic situation. That is the case

when the interaction parameters (5, n,o, ¢) are unknown. In this case, by replacing

these parameters by their strongly consistent estimators (5, ﬁ, 5‘, ¢),we derive a
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test which is asymptotically as powerful as the UMPU test for the known nuisance
parameters case.

Finally, the most original contribution of this paper consists in the use of
Theorem 1 to transform the hypothesis testing problem into some familiar problems.
Basically, after this re-parametrization, we applied classical techniques in testing
hypotheses, in particular, for the Gaussian case. Also, with Corollary 1, we provide a

sufficient condition for the period of the ODEs (1) to be constant with respect to the

interaction parameters ¥ and [ as well as to the conversion efficiency.
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