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Abstract 

 In this research we present sampling designs that are extensions of simple 

Latin square sampling (SLSS) designs when the population consists of  N = d × d 

quadrats. The SLSS designs are extended to larger samples, specifically to samples of 

size n = 2d, 3d, …, (d – 1)d  which we call double SLSS, triple SLSS, etc. The general 

case for n = kd  is called a “k – tuple simple Latin square sampling design”. The goals 

are then to derive an estimator of the population total, the true variance of this estimator, 

and an estimator of this variance.  Horvitz – Thompson estimation is used to generate 

formulae for these three estimation goals. Simulated populations that have different 

forms of spatial correlation are used to show that the variance and the estimated 

variance of the estimator of the population for k – tuple simple Latin square sampling 

designs are smaller than the variance and the estimated variance for simple random 

sampling designs. That is, taking a k – tuple SLSS is more efficient than the simple 

random sampling designs for estimating population total. 

______________________________ 
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1. Introduction 

In many agricultural, biological, geological and sociological studies, the population 

of interest is a region that is partitioned into quadrats which represent the sampling units. 

The variable of interest is some characteristic that can be measured in each quadrat. 

After taking a sample of these quadrats by a particular sampling design and recording 

the measurement for the variable of interest, this information can be used to estimate a 

parameter of the population. Moreover, suppose that the variable of interest has a 

positive spatial correlation which means neighboring units tend to have more similar 

values than units that are far apart. This type of spatial correlation is present in many 

biological and geological populations. Therefore, it is desirable for sampling units to be 

scattered throughout the population to assure a representative sample with good spatial 

coverage. 

Assume the finite population of interest can be partitioned into a d x d grid of 

equal sized rectangular sampling units called quadrats. Simple Latin square sampling 

(SLSS) designs contain d units such that one sampling unit is selected from each row 

and each column, and, in general, provides good spatial coverage of the population. In 

1996, Munholland and Borkowski [1] considered the following modification: once a 

simple Latin square sampling of size d is selected, one additional unit is drawn at 

random from the remaining d 2 – d units to give a new probability sampling design which 

they called Simple Latin Square Sampling +1 designs (SLSS+1). SLSS+1 designs fall 

into the classical design framework [2] in that samples generated by the design have 

corresponding selection probabilities that are independent of the response y.  Selection 

of the one additional unit ensures unbiased variance estimation of a population total τ or 

population mean µ  and also helps to provide estimators that are generally more efficient 

than those based on simple random sampling (SRS) and for systematic sampling when 

spatial autocorrelation among units is suspected or known to exist. In conclusion, the 

SLSS +1 designs generate efficient estimators and can provide good spatial coverage. 

In a further extension of SLSS designs to a d x d grid of quadrats, Borkowski [3] 

introduced simple Latin square sampling  ± k (SLSS ± k) sampling designs. A SLSS ± k 

design contains d ± k sampling units. For a SLSS - k design, d –k units are selected that 

are a subset of units from a SLSS design. For a SLSS + k design, d units are selected 

that form a SLSS design, and then k additional units are selected that span k row and k 

columns. These designs produce estimators of τ or µ with smaller variance than the 

estimators based on SRS when the units in the population are spatially correlated. 
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Without stratification, the only allowable sample sizes for SLSS ± k designs are from 2  

to 2d-1. 

This study will extend simple Latin square sampling to sample sizes of n = 2d, 

3d, …, (d-1)d  taken from this population d 2 quadrats. When n = 2d, it is called double 

simple Latin square sampling (double SLSS);  when n = 3d, it is called triple SLSS; and 

so on. The general case for n = kd will be called “k–tuple simple Latin square sampling” 

(k – tuple SLSS). 

Because of desirable spatial coverage properties possessed by k – tuple SLSS 

designs, they should be considered when spatial correlation is present. These desirable 

spatial properties lead to more precise estimation of τ or µ than would be achieved by 

SRS. The new theoretical results that will be developed include determining first-order 

and second-order inclusion probabilities, estimators of τ  and µ , the variance of these 

estimators, and the estimators of these variances. These inclusion probabilities will be 

used to derive the Horvitz – Thompson estimators [4]. We will then compare the 

estimated variances of τ̂  from k – tuple SLSS to the estimated variances from SRS. To 

study the efficiency of k – tuple SLSS relative to SRS designs, the variance of the k – 

tuple SLSS Horvitz – Thompson estimator will be compared to the variance of the 

estimator under SRS. 

 
2.  k – tuple Simple Latin Square Sampling Designs 

This research will extend simple Latin square sampling to larger sample sizes, 

specifically to sample sizes of n = 2d, 3d, …., (d – 1)d taken from this population of N = 

d2 quadrats. We will call it Double SLSS when n = 2d, Triple SLSS when n = 3d, etc. The 

general case for n = kd will be called “ k – tuple SLSS ”. The new theoretical results that 

will be developed include determining first – order and second – order inclusion 

probabilities, estimators of the population total τ or mean µ , and estimators of the 

variance of the estimator of the population total ( )ˆr(âv τ ). Then we will compare (i) the k 

– tuple SLSS estimator variances ( )ˆvar(τ ) with the variances of τ̂  for simple random 

sampling and (ii) the k – tuple SLSS estimator of the variances ( )ˆr(âv τ ) with the 

variances of τ̂  for simple random sampling. 

In this study, we define the methodology for k – tuple simple Latin square 

sampling designs as follows. 
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2.1  Selecting  k – tuple Simple Latin Square Sampling Designs 

Each sample size is selected from a grid of d2 quadrats. Let the two dimensions 

be referred to as “row” and “column”, and let (r,c) denote the SLSS unit at row = r and 

column = c. The following algorithm describes the procedure for selecting the units when 

the sampling design is a k – tuple SLSS.  

Step1: Generate a SLSS of size d. This will be referred to as the original SLSS. 

Let c1, c2, …, cd be the columns corresponding to the sampled units in rows 1, 2, …, d, 

respectively, of the original SLSS 

Step 2: In row 1, randomly select k – 1 units from the remaining d – 1 units. Let 

C1, C2, …, Ck-1 be the columns corresponding to the additional  k – 1 units selected in 

row 1. 

Step 3: Generate k – 1 additional SLSSs by cyclically shifting the units of the 

original SLSS to the right based on the distances between the sampled units in row 1. 

Specifically, in row r (r = 1, 2,…, d) of the ith additional SLSS (i = 1, 2, …, k – 1) select 

the unit that is 

(i)        Ai = Ci – c1 units to the right of cr if Ci > c1 

(ii) Ai = d + Ci – c1 units to the right of cr if Ci < c1 

When necessary, cyclically return to column 1 if shifting takes the sample 

beyond the d th unit in that row. 

For the ith additional SLSS (i = 1,2,…,k – 1), Step 3 is mathematically 

equivalent to selecting unit Ci in row 1, unit  Ai + c2 (mod d) in row 2, … , Ai + cd (mod d) 

in row d, and if  Ai  + cj (mod d) = 0 for row j, then the unit in column d of row j is selected. 

Note that there are 







k
d

(d – 1)!  possible k – tuple SLSS designs. 

Consider an example of selecting a k – tuple SLSS when d = 5 and k = 3. We can 

generate this 3 – tuple SLSS as follows: 

 

Step1: Select the original SLSS. Suppose (c1, c2, c3, c4, c5) = (3, 1, 4, 5, 2). Then the 

SLSS is shown below. 

  X   
X     
   X  
    X 
 X    
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Step 2: Select  k – 1 = 2 additional units in row 1. Suppose the 2 additional units are in 

columns C1 = 2 and C2 = 5, and are denoted by 1 and 2, respectively. 

 1 X  2 
X     
   X  
    X 
 X    

 
Step 3: Additional unit 1 is A1 = 4 units to the right of  X  in column 3 from the SLSS. 

Or, mathematically, because C1 = 2 is less than c1 = 3  (C1< c1), the value of   A1 = d + C1 

– c1 =  5 + 2 – 3 = 4.  Then we move 4 units to the right of the SLSS units in rows 2, 3, 4, 

and 5. Each unit in the first additional SLSS is shown below as a 1. 

 1 X  2 
X    1 
  1 X  
   1 X 

1 X    
 

Additional unit 2 is A2 = 2 units to the right of  X  in column 3 from the SLSS.  Or, 

mathematically, because C2 = 5 is greater than c1 = 3  (C2 > c1), the value of  A2 = C2 – c1 

= 5 – 3 = 2.  Then we move 2 units to the right of the SLSS units in rows 2, 3, 4, and 5. 

Each unit in the second additional SLSS is shown below as a 2. 

 1 X  2 
X  2  1 
2  1 X  
 2  1 X 

1 X  2  

Note that there are 








k
d (d – 1)!  possible k – tuple SLSS designs. 

 

2.2  Estimation of Population Total 

2.2.1 Inclusion Probabilities for k – tuple Simple Latin Square Sampling 
Designs 

In this research study, the first goal is to derive the first – order and second – 

order inclusion probabilities which will then be used to derive Horvitz – Thompson 

estimators of τ  and µ , the variances of these estimators, and the estimators of these 

variances. 

Because each of the n = kd  units in a k – tuple simple Latin square sample has 

the same probability of being selected, the first-order inclusion probability 
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iπ = 2d
kd

 = 
d
k

. 

For distinct units ui and uj ,the second – order inclusion probability ijπ  depends 

on one of the following 3 cases: 

(Case I) Units ui and uj are in the same row : There are 







−
−

2
2

k
d  possible ways 

to select the other k - 2 units in row 1 that do not correspond to units ui and uj, and (d-1)!  

ways to select remaining units in the original SLSS. Then, for Case I: 

ijπ    =    
)1(
)1(

−
−

dd
kk

. 

(Case II)  Units ui and uj are in the same column : Units ui and uj will be in 

different SLSS if they are in the same column. Then there are two units in row 1 that 

correspond to these two SLSS. Like Case 1, there are  







−
−

2
2

k
d

 possible ways to select 

the other k  - 2 units in row 1 that do not correspond to units ui and uj, and (d-1)!  ways to 

select remaining units in the original SLSS. Then, for Case II: 

ijπ     =    
)1(
)1(

−
−

dd
kk

. 

(Case III) Units ui and uj are in different rows and columns : We have 2 

possible cases to consider: 

(i)  If units ui and uj are in different rows and columns but are in the same SLSS, 

there is a corresponding SLSS unit in row 1. Then there are 








−
−

1
1

k
d  possible ways to 

select the other k - 1 units in row 1. Because ui and uj are in the same SLSS, there are (d 

- 2)!  possible ways to select the other d – 2 units in that SLSS. Then for Case III(i): 

)(i
ijπ    =    

)1( −dd
k

. 

( ii )  If units ui and uj are in different rows and columns and are in different 

SLSSs, we will first select one of the d - 2 possible units in the row of ui  to be in the 

SLSS containing ui. Then, pick the remaining k - 2 units in row 1 that do not correspond 

to the two SLSSs containing ui and uj . Ther are 







−
−

2
2

k
d possible selections. Last, there 
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are (d-2)! possible ways to select the remaining units of the SLSS containing ui . Then, 

for Case III(ii): 

)(ii
ijπ    =    2)1(

)2)(1(
−

−−
dd

dkk
. 

Combining the results from cases III( i ) and ( ii ) when ui and uj are in different rows 

and columns yields ijπ =  
)(i

ijπ +  
)(ii

ijπ  or 

ijπ   =  
)1( −dd

k
  +  2)1(

)2)(1(
−

−−
dd

dkk
 

               = 2

22

)1(
2
−

+−
dd

kkdk
 = 2)1(

)12(
−

+−
dd

kkdk
. 

 

2.2.2 The Horvitz – Thompson estimators 

Other goals are to derive an estimator of the population total, the true variance of 

this estimator, and an estimator of this variance. Horvitz – Thompson estimation [4] is 

used to generate formulas for these three estimation goals. 

When the inclusion probabilities for k – tuple simple Latin square sampling 

designs are known, we can use these to estimate the population total (τ ), the true 

variance of this estimator (var( τ̂ )) and estimator of this variance ( )ˆr(âv τ ). 

The Horvitz – Thompson (HT) estimator [4] for k – tuple simple Latin square 

sampling (k – tuple SLSS) designs has the same form as the estimator for the two 

dimensional simple Latin square sampling (SLSS) designs case. The HT estimators 

τ̂  = ∑
=

n

i i

iy
1 π

  and   µ̂  = ∑
=

n

i i

iy
N 1

1
π

 

are design unbiased estimators of the population total (τ ) and mean (µ ) when N = d2  

the population size and the summation is over the n units in the sample. The variance of 

the estimator τ̂  is 

∑∑∑
= >=

−+−=
N

i

N

j
ji

ji

ij
N

i
i

i

yyy
1 11

2 .)1(2)11()ˆvar(
ππ
π

π
τ  

An estimator of this variance is   



100                                                                      Thailand Statistician, 2010; 8(1):93-107 

∑∑∑
= >=

−+
−

=
n

i

n

ij
ji

ijji

n

i
i

i

i yyy
11

2
2 .)11(2)

1
()ˆr(âv

ππππ
π

τ  

Because N = d2, it follows directly that )ˆvar(µ = 4

1
d

)ˆvar(τ  and 

)ˆr(âv µ = 4

1
d

)ˆr(âv τ . If ijπ > 0 for all i, j = 1, 2, …, N, the estimator )ˆr(âv τ is 

unbiased in the design sense. Thus, )ˆr(âv τ is an unbiased estimator for a k – tuple 

SLSS. 

 

3.  k – tuple SLSS Examples 
To evaluate the efficiency of k – tuple SLSS designs, the variance of the k – tuple 

SLSS Horvitz – Thompson estimators will be compared to the variance of the estimators 

under simple random sampling (SRS). The SRS estimators can be found in 

Cochran [2] and Thompson [5]. Four populations exhibiting various levels of spatial 

correlation will be compared in this study: 

 
22   25   15   12     7    3      4     5 
26   31   25   22   17   11     9   17 
30   33   26   21   12   11   20   24 
26   26   23   18   12     9   19   28 
20   21   19   13   12   13   20   22 
21   23   15   11   11   10   13   21 
19   14   10   10   11   14     9     9 
15   12     8     7     4     7     7     9 

Figure 1: (Population P1) An 8 x 8 grid with τ  = 1019 taken from Munholland and 

Borkowski [1]. 

 

 28   27   26   26   28   32   28   33   25   30 
23   26   26     1   26   28   26   29   23   27 
21   23   24   22   24   25   26   25   24   25 
17   20   19   20   22   21   22   21   19   22 
15   17   17   17   18   16   18   15   19   18 
14   13   14   18   16   13   13   11   14   12 
10     9   11   13   11   10     9     8   11     9 
  8     9     7   10     8     7     6     8     9     7 
  5     7     6     8     9     6     5     6     5     4 
  3     4     2     6     5     6     6     4     3     2 

 

Figure 2:  (Population P2)  A 10 x 10 grid with τ  = 1570 and a top to bottom 

decreasing trend. 
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18  20  15  20  20  15  19  18  24  23  20  26  29  28  28  31  31  34  28  32 
13  20  16  20  15  23  19  26  21  21  24  30  23  26  25  33  31  28  32  38 
16  18  20  24  25  26  22  23  26  26  22  27  25  25  34  28  37  36  38  31 
17  17  16  22  21  23  22  27  27  24  28  32  29  33  27  37  37  38  35  33 
15  19  23  17  21  23  21  23  24  25  31  26  32  34  32  33  31  31  36  37 
21  24  20  21  28  26  30  22  31  25  29  29  27  30  29  37  35  32  38  43 
23  17  24  25  24  27  31  29  31  34  27  36  29  29  34  39  37  37  40  36 
18  24  21  25  27  22  32  32  31  26  28  34  34  37  35  34  38  38  37  40 
22  26  28  26  24  29  33  26  27  27  34  31  39  32  36  38  37  40  44  43 
23  27  28  29  26  32  25  31  35  34  32  33  37  32  42  40  40  37  42  44 
23  21  31  23  30  27  31  30  32  35  30  40  32  37  37  36  40  44  44  40 
26  29  31  26  30  31  34  36  30  38  36  32  38  38  37  42  42  41  40  49 
28  24  28  27  26  31  32  29  32  33  38  34  39  38  40  37  41  43  42  43 
32  25  31  32  29  29  35  38  38  32  36  35  39  42  39  40  44  42  41  45 
27  29  35  28  35  35  31  40  35  37  38  44  40  40  47  39  49  48  51  49 
30  29  32  32  33  30  36  38  42  36  35  38  44  47  45  49  41  43  44  51 
28  35  35  34  34  33  41  33  34  35  39  44  44  48  44  50  49  48  53  54 
29  33  32  36  39  33  33  34  35  42  46  47  48  47  46  45  44  52  54  55 
28  37  38  37  33  33  34  37  45  40  39  42  42  46  47  48  52  47  46  53 

            38  39  39  37  34  38  39  45  39  42  45  41  44  51  46  50  52  51  51  53 
 

Figure 3:  (Population P3)  A 20 x 20 grid with τ  = 13354 with an increasing diagonal 

trend. 

 

1   1   1   1   1   2   1   0   0   0   4   5   0   1   0   1   2   1   0   1 
3   2   1   0   1   0   0   0   1   2   2   2   0   2   2   2   0   2   0   1 
7   4   1   1   1   1   0   0   0   2   2   0   4   3   2   4   2   1   2   2 
0   1   2   0   0   0   0   0   4   6   5   1   5   0   0   0   2   1   2   0 
1   1   0   2   3   2   0   0   2   1   3   1   4   1   1   1   2   2   1   1 
2   0   0   0   4   3   3   0   1  16  5   0   1   3   8   0   0   1   3   3 
0   0   1  14  3   3   1   2   0   8   0   2   0   3   9   0   4   2   1   0 
0   0   5   1   8   7   6   6   6   1   0   4   0   0   1   2   2   0   1   2 
0   0   2   2   3   2   2   3   1   1   1   3   0   0   2   2   0   3   4   0 
0   0   0   0   1   0   3   1   1   1   2   0   2   0   2   0   2   1   1   0 
1   8   7   7   8   0   5   0   1   0   1   2   0   0   2   4   2   2   2   4 
0   9   1   0   0   1   1   1   0   0   0   1   2   4   0   2   1   3   3   1 
0   0   0   1   0   2   4   3   1   2   2   0   0   1   1   2   2   0   2   4 
0   1   0   0   1   2   0   2   3   5   2   0   0   2   1   1   2   0   1   3 
1   0   0   1   1   0   0   0   2   2   2   1   1   1   0   0   2   0   0   0 
0   2   0   2   2   0   1   1   0   2   0   0   1   0   0   1   1   1   5   3 
0   0   0   3   2   1   0   0   0   0   0   2   1   0   1   1   1   3   1   2 
1   0   0   1   0   3   0   1   0   0   2   1   2   0   0   0   1   1   1   0 
0   0   0   0   0   0   0   1   1   1   0   1   0   3   0   2   0   1   1   0 
2   0   0   0   0   0   0   0   1   2   0   1   3   0   0   1   0   1   2   4 

 

Figure 4:  (Population P4)  The 20×20 grid shown in Fig. 4 corresponds to the census 

data studied by Rathbun and Cressie [6]. This population exhibits a weak spatial 

correlation [7]. 
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4. Comparison  Results 
The variances of the new estimator for k – tuple SLSS were compared to the 

variances of the estimator based on simple random sampling plans using both simulated 

and real populations. The estimator variance results of this research study for 

populations P1 to P4 are summarized in Table 1. These tables contain the variance of 

the estimators using k – tuple SLSS and the SRS for samples of size  n  =  2d, 3d,…,    

(d – 1)d. The population size N is 64 for P1, 100 for P2, and 400 for P3 and P4. 

 

Table 1. The true variances of estimators of population total ( )ˆvar(τ ) for SRS and k - 

tuple  SLSS designs for populations P1 – P4: SRSτ̂  is the SRS estimator. KTUPLEτ̂  is the  
k – tuple  SLSS estimator. 
 

The true variances of estimators of population total ( )ˆvar(τ ) 

k 

P1: d = 8, τ = 1,019 P2: d = 10, τ = 1,570 P3: d = 20, τ = 13,354 P4: d = 20 , τ = 584 

n 
var 

( SRSτ̂ ) 
var 

(
KTUPLEτ̂ ) n 

var 

( SRSτ̂ ) 

var 

( KTUPLEτ̂ ) n 
var 

( SRSτ̂ ) 
var 

( KTUPLEτ̂ ) n 
var 

( SRSτ̂ ) 
var 

(
KTUPLEτ̂ ) 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

16 
24 
32 
40 
48 
56 
 

10,449.1 
5,805.05 
3,483.03 
2,089.82 
1,161.01 
497.58 

2,892.31 
1,606.84 

964.1 
578.46 
321.37 
137.73 

20 
30 
40 
50 
60 
70 
80 
90 

28,133.33 
16,411.11 
10,550.00 
7,033.33 
4,688.89 
3,014.26 
1,758.33 
781.48 

1,227.65 
716.13 
460.37 
306.91 
204.61 
131.53 
76.73 
34.10 

40 
60 
80 
100 
120 
140 
160 
180 
200 
220 
240 
260 
280 
300 
320 
340 
360 
380 

272,162.80 
171,361.76 
120,961.24 
90,720.93 
70,560.73 
56,160.58 
45,360.47 
36,960.38 
30,240.31 
24,742.07 
20,160.21 
16,283.24 
12,960.13 
10,080.10 
7,560.08 
5,336.53 
3,360.03 
1,591.60 

29,852.98 
18,796.32 
13,267.99 
9,950.99 
7,739.66 
6,160.14 
4,975.50 
4,054.11 
3,317.00 
2,713.91 
2,211.33 
1,786.08 
1,421.57 
1,105.67 
829.25 
585.35 
368.56 
174.58 

40 
60 
80 
100 
120 
140 
160 
180 
200 
220 
240 
260 
280 
300 
320 
340 
360 
380 

13,870.92 
8,733.54 
6,164.85 
4,623.64 
3,596.16 
2,862.25 
2,311.82 
1,883.70 
1,541.21 
1,260.99 
1,027.48 
829.88 
660.52 
513.74 
385.30 
271.98 
171.25 
81.12 

12,908.54 
8,127.60 
5,737.13 
4,302.85 
3,346.66 
2,663.67 
2,151.42 
1,753.01 
1,434.28 
1,173.50 
956.19 
772.31 
614.69 
478.09 
358.57 
253.11 
159.36 
75.49 

 

For population P1 with d = 8 when the sample sizes are n = 16, 24, 32, 40, 48 and 

56, the variances are much smaller using k – tuple SLSS designs in comparison to SRS 

designs. The variances from SRS designs are approximately 3.6 times larger than the 

variances from k – tuple SLSS designs with the same n. 

For population P2 with d = 10 when the sample sizes are n = 20, 30, 40, 50, 60, 

70, 80 and 90, the variances are much smaller using k – tuple SLSS designs in 

comparison to SRS designs. The variances from SRS designs are approximately 22.9 

times larger than the variances from k – tuple SLSS designs with the same n.  

For population P3 with d = 20 when the sample sizes are n = 40, 60, 80, 100,…, 

380, the variances are much smaller using k – tuple SLSS designs in comparison to SRS 
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designs. The variances from SRS designs are approximately 9.1 times larger than the 

variances from k – tuple SLSS designs with the same n.  

For population P4 of the longleaf pine data with d = 20 when the sample sizes are 

n = 40, 60, 80, 100,…, 380, the variances are slightly smaller using k – tuple SLSS 

designs in comparison to SRS designs. The variances from SRS designs are 

approximately only 1.1 times larger than the variances from k – tuple SLSS designs with 

the same n. The reduction in variance is relatively small because the spatial correlation 

is very weak. For populations P1, P2, and P3, the spatial correlation is much stronger, 

and that is why k – tuple SLSS designs are much more efficient than SRS designs. 

For every sample size across all four populations, the variance of the k – tuple 

SLSS estimator is smaller than the variance of the SRS estimator. The reduction in 

variance depends on both the type and strength of the spatial correlation. That is, 

1)  For the 10×10 population P2, there is a vertical (north – south) trend and it had 

the  largest reductions in variance.  

2)  For the 8×8 population P1 and the 20×20 population P3 with strong diagonal 

trends, there is still a large reduction, but not as large as the reduction in P2. 

3)  For the 20×20 population P4, there are no trends. Even so, there is a small 

reduction in the variance using a k – tuple SLSS. This is probably due to localized 

pockets of higher tree counts. That is, a k – tuple SLSS is slightly less likely to include 

multiple high count quadrats than a SRS, thereby reducing the variance. 

 

5. Simulation Results 

The estimated variance ( )ˆr(âv τ ) of the estimators for k – tuple SLSS are 

compared to the estimated variances of estimators based on simple random sampling 

plans using all possible sample sizes for the four populations. The comparisons based 

on calculated values of the estimated variance ( )ˆr(âv τ ) of the estimators for k – tuple 

SLSS and SRS taken over 1,000 simulated samples for each sample size, population, 

and sampling method.  

For each simulated sample, the estimated variance of the estimator was 

computed. In this study, we used the Matlab® 7.1 program [8-10] to simulate the 

sampling procedures and to calculate the estimated variances of the estimators of 

population total for all sample sizes.  

The results of this research study for populations P1 to P4 are summarized in 

Table 4.2. This table contains the estimated variances of the estimators of population 
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total for a SRS and k – tuple SLSS designs for each population P1 to P4 for samples of 

size n = 2d, 3d, … , (d – 1)d . 

 

Table 2.   Means of the estimated variances of estimators of population total ( )ˆr(âv τ ) 

for SRS and k - tuple  SLSS designs for populations P1 – P4: SRSτ̂  is the SRS estimator. 

KTUPLEτ̂  is the k – tuple  SLSS estimator. 

 

 

For population P1 with d = 8 when the sample sizes are n = 16, 24, 32, 40, 48 and 

56, the estimated variances are much smaller using k – tuple SLSS designs in 

comparison to SRS designs when taken 1,000 simulated samples. The estimated 

variances from SRS designs are approximately 3.6 times larger than the estimated 

variances from k – tuple SLSS designs with the same n. 

For population P2 with d = 10 when the sample sizes are n = 20, 30, 40, 50, 60, 

70, 80 and 90, the estimated variances are much smaller using k – tuple SLSS designs 

in comparison to SRS designs when taken 1,000 simulated samples. The estimated 

variances from SRS designs are approximately 23.1 times larger than the estimated 

variances from k – tuple SLSS designs with the same n.  

For population P3 with d = 20 when the sample sizes are n = 40, 60, 80, 100,…, 

380, the estimated variances are much smaller using k – tuple SLSS designs  

in comparison to SRS designs when taken 1,000 simulated samples. The estimated  

variances from SRS designs are approximately 9.1 times larger than the estimated 

variances from k – tuple SLSS designs with the same n.  

Means of the estimated variances of estimators of population total  ( )ˆr(âv τ ) 

k 
P1: d = 8, τ = 1,019 P2: d = 10, τ  = 1,570 P3: d = 20, τ  = 13,354 P4: d = 20, τ  = 584 

n )ˆr(âv SRSτ  )ˆr(âv SRSτ  n )ˆr(âv SRSτ  )ˆr(âv KTUPLEτ  n )ˆr(âv SRSτ  )ˆr(âv KTUPLEτ  n )ˆr(âv SRSτ  )ˆr(âv KTUPLEτ  

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

16 
24 
32 
40 
48 
56 

10,505.83 
5,784.73 
3,501.96 
2,089.28 
1,160.23 
498.29 

2,883.07 
1,650.94 
988.72 
582.02 
323.29 
137.41 

20 
30 
40 
50 
60 
70 
80 
90 

28,014.91 
16,417.08 
10,579.02 
7,040.99 
4,680.49 
3,012.23 
1,757.04 
782.04 

1,287.42 
623.53 
416.22 
303.71 
199.60 
130.09 
77.58 
33.80 

40 
60 
80 

100 
120 
140 
160 
180 
200 
220 
240 
260 
280 
300 
320 
340 
360 
380 

270,840.66 
172,396.22 
121,203.01 
90,763.26 
70,996.81 
55,750.41 
45,199.61 
36,826.01 
30,279.71 
24,808.51 
20,215.85 
16,284.01 
12,938.17 
10,094.69 
7,561.31 
5,333.49 
3,361.29 
1,589.59 

28,388.46 
16,376.30 
12,473.87 
9,588.66 
7,575.28 
5,949.51 
4,813.69 
3,920.32 
3,191.72 
2,619.91 
2,143.82 
1,751.08 
1,402.64 
1,095.41 
827.88 
586.99 
368.62 
174.43 

40 
60 
80 
100 
120 
140 
160 
180 
200 
220 
240 
260 
280 
300 
320 
340 
360 
380 

14,018.15 
8,669.89 
6,124.48 
4,669.76 
3,609.98 
2,885.25 
2,292.96 
1,887.85 
1,550.52 
1,259.38 
1,031.06 
829.53 
663.49 
515.52 
384.41 
271.24 
171.47 
81.23 

13,331.33 
8,240.81 
5,731.11 
4,338.81 
3,367.03 
2,702.26 
2,185.14 
1,784.04 
1,448.98 
1,180.89 
960.77 
777.09 
619.16 
482.30 
360.64 
254.05 
159.66 
75.63 
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For population P4 of the longleaf pine data with d = 20 when the sample sizes are 

n = 40, 60, 80, 100,…, 380, the estimated variances are slightly smaller using k – tuple 

SLSS designs in comparison to SRS designs when taken 1,000 simulated samples. The 

estimated variances from SRS designs are approximately only 1.1 times larger than the 

estimated variances from k – tuple SLSS designs with the same n. The reduction in 

variance is relatively small because the spatial correlation is very weak. For populations 

P1, P2, and P3, the spatial correlation is much stronger. 

When we want to validate the unbiased property of the estimator of the variance 

for each sampling design, we can find evidence in Tables 1 and Table 2. We can see 

that the values of  the true variances and mean estimated variances of estimators of the 

population total almost have equal values. We know that for Horvitz-Thompson 

estimation [4], E[ )ˆr(âv τ ] = )ˆvar(τ  for both SRS and k – tuple SLSS designs. 

Therefore, we expect the average of )ˆr(âv τ  should be close to )ˆvar(τ  when taken 

over 1,000 simulated samples for each sample size, population, and sampling method. 

Although k – tuple SLSS designs are much more efficient than SRS designs (that 

is, the estimated variance )ˆr(âv KTUPLEτ for a k – tuple SLSS design is smaller than the 

estimated variance )ˆr(âv SRSτ for a SRS design), it is possible for the estimated 

variance for a k – tuple SLSS designs to be less than zero ( )ˆr(âv KTUPLEτ < 0) 

especially for small k in populations P1 to P3. This is not a desirable result because we 

know the true variance must be greater than 0. 

 

6. Conclusions and Discussion 

In this study, we extended simple Latin square sampling  designs to larger sample 

sizes, specifically to sample sizes of n = 2d, 3d, ….,(d – 1)d  taken from this population 

of N = d2 quadrats. These sampling designs with n = kd will be called “k – tuple simple 

Latin square sampling (k – tuple SLSS) ” designs. New theoretical results were derived 

that include determining the first – order and second – order inclusion probabilities used 

in Horvitz – Thompson estimators of the population total τ  or mean µ , the variances of 

the estimator, and the estimator of the variance of the estimator of the population total. 

We then compared (i) the k – tuple SLSS estimator variances ( )ˆvar(τ ) with the 

variances of τ̂  for simple random sampling (SRS) and (ii) the k – tuple SLSS estimator 
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of the variances ( )ˆr(âv τ ) with the variances of τ̂  for simple random sampling (SRS) 

for four populations exhibiting various levels of spatial correlation.  

For Horvitz – Thompson estimators [4], we derived the inclusion probabilities that 

include determining the first – order and the second – order inclusion probabilities. The 

SRS and k – tuple SLSS designs have the same first – order inclusion probabilities but 

have different second – order inclusion probabilities. Also, these sampling designs have 

unbiased estimators of the population total and have unbiased estimators of the true 

variances of the estimators of the population total. 

Moreover, we applied k – tuple SLSS designs to populations that are spatially 

correlated that. The variances of estimator of population total for k – tuple SLSS designs 

and simple random sampling designs were calculated and compared. The estimated 

variances of the estimator of population total for k – tuple SLSS designs and for SRS 

designs were also compared. This comparison was based on calculated statistics from 

1,000 simulated samples for each sample size and population. 

One practical benefit of this research study was k – tuple SLSS expanded the 

possible sample sizes of SLSS ± k designs from n = 2,3,…,2d – 1 to larger sample sizes 

of size n = 2d, 3d, …., (d – 1)d. The researcher now has more choices of design size to 

implement a sampling design that possesses the desirable spatial properties of simple 

Latin square sampling designs.  

These desirable spatial properties can lead to more precise estimation of a 

population total or mean than would be achieved by simple random sampling. 
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