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Abstract

In this research we present sampling designs that are extensions of simple
Latin square sampling (SLSS) designs when the population consists of N = dxd
quadrats. The SLSS designs are extended to larger samples, specifically to samples of
size n = 2d, 3d, ..., (d — 1)d which we call double SLSS, triple SLSS, etc. The general
case for n = kd is called a "k — tuple simple Latin square sampling design”. The goals
are then to derive an estimator of the population total, the true variance of this estimator,
and an estimator of this variance. Horvitz — Thompson estimation is used to generate
formulae for these three estimation goals. Simulated populations that have different
forms of spatial correlation are used to show that the variance and the estimated
variance of the estimator of the population for k — tuple simple Latin square sampling
designs are smaller than the variance and the estimated variance for simple random
sampling designs. That is, taking a k — tuple SLSS is more efficient than the simple

random sampling designs for estimating population total.
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1. Introduction

In many agricultural, biological, geological and sociological studies, the population
of interest is a region that is partitioned into quadrats which represent the sampling units.
The variable of interest is some characteristic that can be measured in each quadrat.
After taking a sample of these quadrats by a particular sampling design and recording
the measurement for the variable of interest, this information can be used to estimate a
parameter of the population. Moreover, suppose that the variable of interest has a
positive spatial correlation which means neighboring units tend to have more similar
values than units that are far apart. This type of spatial correlation is present in many
biological and geological populations. Therefore, it is desirable for sampling units to be
scattered throughout the population to assure a representative sample with good spatial
coverage.

Assume the finite population of interest can be partitioned into a d x d grid of
equal sized rectangular sampling units called quadrats. Simple Latin square sampling
(SLSS) designs contain d units such that one sampling unit is selected from each row
and each column, and, in general, provides good spatial coverage of the population. In
1996, Munholland and Borkowski [1] considered the following modification: once a
simple Latin square sampling of size d is selected, one additional unit is drawn at
random from the remaining d % _d units to give a new probability sampling design which
they called Simple Latin Square Sampling +1 designs (SLSS+1). SLSS+1 designs fall
into the classical design framework [2] in that samples generated by the design have
corresponding selection probabilities that are independent of the response y. Selection
of the one additional unit ensures unbiased variance estimation of a population total t or
population mean p and also helps to provide estimators that are generally more efficient
than those based on simple random sampling (SRS) and for systematic sampling when
spatial autocorrelation among units is suspected or known to exist. In conclusion, the
SLSS +1 designs generate efficient estimators and can provide good spatial coverage.

In a further extension of SLSS designs to a d x d grid of quadrats, Borkowski [3]
introduced simple Latin square sampling * k (SLSS * k) sampling designs. A SLSS * k
design contains d + k sampling units. For a SLSS - k design, d —k units are selected that
are a subset of units from a SLSS design. For a SLSS + k design, d units are selected
that form a SLSS design, and then k additional units are selected that span k row and k
columns. These designs produce estimators of t or p with smaller variance than the

estimators based on SRS when the units in the population are spatially correlated.
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Without stratification, the only allowable sample sizes for SLSS + k designs are from 2
to 2d-1.

This study will extend simple Latin square sampling to sample sizes of n = 2d,
3d, ..., (d-1)d taken from this population d 2 quadrats. When n = 2d, it is called double
simple Latin square sampling (double SLSS); when n = 3d, it is called triple SLSS; and
so on. The general case for n = kd will be called “k—tuple simple Latin square sampling”
(k — tuple SLSS).

Because of desirable spatial coverage properties possessed by k — tuple SLSS
designs, they should be considered when spatial correlation is present. These desirable
spatial properties lead to more precise estimation of t or pu than would be achieved by
SRS. The new theoretical results that will be developed include determining first-order
and second-order inclusion probabilities, estimators of 7 and (£, the variance of these

estimators, and the estimators of these variances. These inclusion probabilities will be
used to derive the Horvitz — Thompson estimators [4]. We will then compare the
estimated variances of 7 from k — tuple SLSS to the estimated variances from SRS. To
study the efficiency of k — tuple SLSS relative to SRS designs, the variance of the k —
tuple SLSS Horvitz — Thompson estimator will be compared to the variance of the

estimator under SRS.

2. k —tuple Simple Latin Square Sampling Designs

This research will extend simple Latin square sampling to larger sample sizes,
specifically to sample sizes of n = 2d, 3d, ...., (d — 1)d taken from this population of N =
d? quadrats. We will call it Double SLSS when n = 2d, Triple SLSS when n = 3d, etc. The
general case for n = kd will be called “ k — tuple SLSS ”. The new theoretical results that
will be developed include determining first — order and second — order inclusion
probabilities, estimators of the population total 7 or mean £/, and estimators of the

variance of the estimator of the population total (vér(f) ). Then we will compare (i) the k
— tuple SLSS estimator variances (var(f)) with the variances of 7 for simple random
sampling and (ii) the k — tuple SLSS estimator of the variances (vér(f)) with the

variances of 7 for simple random sampling.
In this study, we define the methodology for k — tuple simple Latin square

sampling designs as follows.
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2.1 Selecting k —tuple Simple Latin Square Sampling Designs

Each sample size is selected from a grid of d? quadrats. Let the two dimensions
be referred to as “row” and “column”, and let (r,c) denote the SLSS unit at row = r and
column = c. The following algorithm describes the procedure for selecting the units when
the sampling design is a k — tuple SLSS.

Stepl: Generate a SLSS of size d. This will be referred to as the original SLSS.
Let c1, Cy, ..., Cq be the columns corresponding to the sampled units in rows 1, 2, ..., d,
respectively, of the original SLSS

Step 2: In row 1, randomly select k — 1 units from the remaining d — 1 units. Let
Ci1, Cy, ..., Cx1 be the columns corresponding to the additional k — 1 units selected in
row 1.

Step 3: Generate k — 1 additional SLSSs by cyclically shifting the units of the
original SLSS to the right based on the distances between the sampled units in row 1.
Specifically, in row r (r = 1, 2,..., d) of the ith additional SLSS (i =1, 2, ..., k — 1) select
the unit that is

@) Ai = Ci — c1 units to the right of ¢ if Ci> ¢1
(i) Ai=d + C; — ¢y units to the right of ¢,if C; < ¢y
When necessary, cyclically return to column 1 if shifting takes the sample
beyond the d th unit in that row.
For the ith additional SLSS (i = 1,2,....k — 1), Step 3 is mathematically
equivalent to selecting unit C; in row 1, unit A; + ¢z (mod d) in row 2, ... , Aj + ¢4 (mod d)

inrow d, and if A + ¢j(mod d) = 0 for row j, then the unit in column d of row j is selected.
d
Note that there are K (d —1)! possible k — tuple SLSS designs.

Consider an example of selecting a k — tuple SLSS when d =5 and k = 3. We can

generate this 3 — tuple SLSS as follows:

Stepl: Select the original SLSS. Suppose (c1, C2, C3, C4, C5) = (3, 1, 4, 5, 2). Then the

SLSS is shown below.
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Step 2: Select k — 1 = 2 additional units in row 1. Suppose the 2 additional units are in
columns C;=2 and C,=5, and are denoted by 1 and 2, respectively.
1|X 2

X

X

Step 3: Additional unit 1 is A1 = 4 units to the right of X in column 3 from the SLSS.
Or, mathematically, because C; = 2 is less than ¢; = 3 (Ci< c1), the value of A;=d + C;
—c1= 5+ 2-3=4. Then we move 4 units to the right of the SLSS units in rows 2, 3, 4,

and 5. Each unit in the first additional SLSS is shown below as a 1.

1] X 2
X 1
1| X
1] X
1| X

Additional unit 2 is A= 2 units to the right of X in column 3 from the SLSS. Or,
mathematically, because C, = 5 is greater than c; = 3 (C; > ¢1), the value of A,=Cy -1
=5 -3 =2. Then we move 2 units to the right of the SLSS units in rows 2, 3, 4, and 5.

Each unit in the second additional SLSS is shown below as a 2.

1| X 2
X 2 1
2 1| X

2 1| X
1] X 2

Note that there are (dJ(d —1)! possible k — tuple SLSS designs.
k

2.2 Estimation of Population Total
2.2.1 Inclusion Probabilities for k — tuple Simple Latin Square Sampling
Designs
In this research study, the first goal is to derive the first — order and second —
order inclusion probabilities which will then be used to derive Horvitz — Thompson
estimators of 7 and g, the variances of these estimators, and the estimators of these

variances.
Because each of the n = kd units in a k — tuple simple Latin square sample has

the same probability of being selected, the first-order inclusion probability
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For distinct units u; and u; ,the second — order inclusion probability TTij depends

on one of the following 3 cases:

: : -2 :
(Case I) Units u; and u; are in the same row : There are [d J possible ways
to select the other k - 2 units in row 1 that do not correspond to units u; and u;, and (d-1)!
ways to select remaining units in the original SLSS. Then, for Case I
k(k —1)
Ty =
d(d -1)
(Case Il) Units u; and ujare in the same column : Units u; and u; will be in

different SLSS if they are in the same column. Then there are two units in row 1 that

correspond to these two SLSS. Like Case 1, there are [ ] possible ways to select

the other k - 2 units in row 1 that do not correspond to units u; and u;, and (d-1)! ways to
select remaining units in the original SLSS. Then, for Case I
k(k -1)
i = A
d(d-1)
(Case Ill) Units u; and uj are in different rows and columns : We have 2
possible cases to consider:
(i) If units u; and u; are in different rows and columns but are in the same SLSS,

d-1

there is a corresponding SLSS unit in row 1. Then there are ( J possible ways to
k-1

select the other k - 1 units in row 1. Because u; and u;are in the same SLSS, there are (d

- 2)! possible ways to select the other d — 2 units in that SLSS. Then for Case IlI(i):
(i) k

TT; = —.
d(d-1)

('ii ) If units u; and u; are in different rows and columns and are in different

SLSSs, we will first select one of the d - 2 possible units in the row of u; to be in the

SLSS containing u;. Then, pick the remaining k - 2 units in row 1 that do not correspond

to the two SLSSs containing u; and u;. Ther are[d - 2] possible selections. Last, there
k-2
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are (d-2)! possible ways to select the remaining units of the SLSS containing u; . Then,
for Case llI(ii):
! d(d -1)2
Combining the results from cases IlI(i ) and (ii ) when u; and u; are in different rows
()

. i
and columns yields = 7ot ﬂ'ij( ) or

ook kk-D@d-2)
" d(d-)) d(d -1)2

k?d —2k?+k _ k(kd — 2k +1)
dd-1>  dd-1°

) k(k-1)(d -2) .

2.2.2 The Horvitz — Thompson estimators

Other goals are to derive an estimator of the population total, the true variance of
this estimator, and an estimator of this variance. Horvitz — Thompson estimation [4] is
used to generate formulas for these three estimation goals.

When the inclusion probabilities for k — tuple simple Latin square sampling
designs are known, we can use these to estimate the population total (7 ), the true
variance of this estimator (var( T )) and estimator of this variance (vér(z:) )

The Horvitz — Thompson (HT) estimator [4] for k — tuple simple Latin square
sampling (k — tuple SLSS) designs has the same form as the estimator for the two

dimensional simple Latin square sampling (SLSS) designs case. The HT estimators
n n
- Yi ~ 1 Yi
T = Z— and U = —Z—
i=L 70 N = 7,
are design unbiased estimators of the population total (7 ) and mean (£ ) when N = d’

the population size and the summation is over the n units in the sample. The variance of

the estimator 7 is

N9 , N N 7
var(r) = ) (—-1y; +2 (——-Dyy;.
izzl: i |Z=1:JZ>; aus J

An estimator of this variance is
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g+ 2) Y Iy,

i=1 i Ty T

PR
Var(r)—izﬂ:( -

- 1 -
Because N = d° it follows directly that var(u) = o var(z) and

Ay Lo a - . Ay
var(y):d—4 var(z ). if 7> 0foralli, j=1,2 .., N, the estimator Var(z )is

unbiased in the design sense. Thus, vér(f )is an unbiased estimator for a k — tuple

SLSS.

3. k —tuple SLSS Examples
To evaluate the efficiency of k — tuple SLSS designs, the variance of the k — tuple
SLSS Horvitz — Thompson estimators will be compared to the variance of the estimators
under simple random sampling (SRS). The SRS estimators can be found in
Cochran [2] and Thompson [5]. Four populations exhibiting various levels of spatial

correlation will be compared in this study:

22 25 15 12 7 3 4 5
26 31 25 22 17 11 9 17
30 33 26 21 12 11 20 24
26 26 23 18 12 9 19 28
20 21 19 13 12 13 20 22
21 23 15 11 11 10 13 21
19 14 10 10 11 14 9 9
1512 8 7 4 7 7 9

Figure 1: (Population P1) An 8 x 8 grid with 7 = 1019 taken from Munholland and

Borkowski [1].

28 27 26 26 28 32 28 33 25 30
23 26 26 1 26 28 26 29 23 27
21 23 24 22 24 25 26 25 24 25
17 20 19 20 22 21 22 21 19 22
15 17 17 17 18 16 18 15 19 18
14 13 14 18 16 13 13 11 14 12
10 9 11 183 11 10 9 8 11 9

8 9 710 8 7 6 8 9 7

5 7 6 8 9 6 5 6 5 4

3 4 2 6 5 6 6 4 3 2

Figure 2: (Population P2) A 10 x 10 grid with 7 = 1570 and a top to bottom

decreasing trend.
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18 20 15 20 20 15 19 18 24 23 20 26 29 28 28 31 31 34 28 32
13 20 16 20 15 23 19 26 21 21 24 30 23 26 25 33 31 28 32 38
16 18 20 24 25 26 22 23 26 26 22 27 25 25 34 28 37 36 38 31
17 17 16 22 21 23 22 27 27 24 28 32 29 33 27 37 37 38 35 33
15 19 23 17 21 23 21 23 24 25 31 26 32 34 32 33 31 31 36 37
21 24 20 21 28 26 30 22 31 25 29 29 27 30 29 37 35 32 38 43
23 17 24 25 24 27 31 29 31 34 27 36 29 29 34 39 37 37 40 36
18 24 21 25 27 22 32 32 31 26 28 34 34 37 35 34 38 38 37 40
22 26 28 26 24 29 33 26 27 27 34 31 39 32 36 38 37 40 44 43
23 27 28 29 26 32 25 31 35 34 32 33 37 32 42 40 40 37 42 44
23 21 31 23 30 27 31 30 32 35 30 40 32 37 37 36 40 44 44 40
26 29 31 26 30 31 34 36 30 38 36 32 38 38 37 42 42 41 40 49
28 24 28 27 26 31 32 29 32 33 38 34 39 38 40 37 41 43 42 43
32 25 31 32 29 29 35 38 38 32 36 35 39 42 39 40 44 42 41 45
27 29 35 28 35 35 31 40 35 37 38 44 40 40 47 39 49 48 51 49
30 29 32 32 33 30 36 38 42 36 35 38 44 47 45 49 41 43 44 51
28 35 35 34 34 33 41 33 34 35 39 44 44 48 44 50 49 48 53 54
29 33 32 36 39 33 33 34 35 42 46 47 48 47 46 45 44 52 54 55
28 37 38 37 33 33 34 37 45 40 39 42 42 46 47 48 52 47 46 53
38 39 39 37 34 38 39 45 39 42 45 41 44 51 46 50 52 51 51 53

Figure 3: (Population P3) A 20 x 20 grid with 7 = 13354 with an increasing diagonal

trend.

NOROOROOOROOOONRONWR
OCOO0OONOROOWOMOOOOOR R ANER
COO0OO0OO0O0O0ORNONUROONRRR
corwNrOrRO~NONRTONMOROR
OCOONNRROOORWOWAWOR R R
COWROONNROONNWWNORON
COO0OORrROORARUIWNORPR WOOOOR
ORPRPRORONWRORWONOOOOOO
PRPOOONWRORRPRFRPROORNANORO
NROONNUINOORRROERONMNO
OCONOONNNORNROOUIWUNNA
PRPPRPNORPOORNOWRNORRLRONO
WONRRPRROONONOOORAMAUAOO
OCWOOORNRPAOOOOWWROWN R
OCOOROORRPRONNNRO®ORONNO
FNORRORNNRAONNOORORANER
CORRPRPNNNRPNNONAMONNNON
PRPPFRPOFRPOOOWNREFRWONENEENEER
NRRPRRUORNWNRARRWRNNOO
NROONWOWRARRMNOONOWRONERR

Figure 4: (Population P4) The 20 X 20 grid shown in Fig. 4 corresponds to the census
data studied by Rathbun and Cressie [6]. This population exhibits a weak spatial

correlation [7].
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4. Comparison Results

The variances of the new estimator for k — tuple SLSS were compared to the
variances of the estimator based on simple random sampling plans using both simulated
and real populations. The estimator variance results of this research study for
populations P1 to P4 are summarized in Table 1. These tables contain the variance of
the estimators using k — tuple SLSS and the SRS for samples of size n = 2d, 3d,...,
(d — 1)d. The population size N is 64 for P1, 100 for P2, and 400 for P3 and P4.

Table 1. The true variances of estimators of population total (var(?)) for SRS and k -

tuple SLSS designs for populations P1 — P4: Z,:SRS is the SRS estimator. fKTUPLE is the
k — tuple SLSS estimator.

The true variances of estimators of population total ( Var(T))

P1:d=8, T =1,019 P2:d=10, T =1,570 P3:d=20, T =13354 P4:d=20, T =584
Kk var var var var var var var var
" Tgs) |Tquee) | " | Ters) |(Tiqupe)| T | (Tors) [(Tirumie)| | (Ters) | (Firupie)

2 16 | 10,4491 | 2,892.31 20 [28,133.33 | 1,227.65 40 |272,162.80 | 29,852.98 | 40 | 13,870.92 | 12,908.54
3 24 | 5805.05 | 1,606.84 30 |16,411.11 716.13 60 |171,361.76 | 18,796.32 | 60 | 8,733.54 8,127.60
4 32 | 3,483.03 964.1 40 |10,550.00 460.37 80 |120,961.24 | 13,267.99 | 80 | 6,164.85 5,737.13
5 40 | 2,089.82 578.46 50 | 7,033.33 306.91 100 | 90,720.93 | 9,950.99 | 100 | 4,623.64 4,302.85
6 48 | 1,161.01 321.37 60 | 4,688.89 204.61 120 | 70,560.73 | 7,739.66 | 120 | 3,596.16 3,346.66
7 56 | 497.58 137.73 70 | 3,014.26 131.53 140 | 56,160.58 | 6,160.14 | 140 | 2,862.25 2,663.67
8 80 | 1,758.33 76.73 160 | 45,360.47 | 4,975.50 | 160 | 2,311.82 2,151.42
9 90 | 781.48 34.10 180 | 36,960.38 | 4,054.11 | 180 | 1,883.70 1,753.01
10 200 | 30,240.31 | 3,317.00 |200 | 1,541.21 1,434.28
11 220 | 24,742.07 | 2,713.91 | 220 | 1,260.99 1,173.50
12 240 | 20,160.21 | 2,211.33 | 240 | 1,027.48 956.19
13 260 | 16,283.24 | 1,786.08 | 260 829.88 772.31
14 280 | 12,960.13 | 1,421.57 | 280 660.52 614.69
15 300 | 10,080.10 | 1,105.67 | 300 513.74 478.09
16 320 | 7,560.08 829.25 | 320 385.30 358.57
17 340 | 5,336.53 585.35 | 340 271.98 253.11
18 360 | 3,360.03 368.56 | 360 171.25 159.36
19 380 | 1,591.60 174.58 380 81.12 75.49

For population P1 with d = 8 when the sample sizes are n = 16, 24, 32, 40, 48 and

56, the variances are much smaller using k — tuple SLSS designs in comparison to SRS

designs. The variances from SRS designs are approximately 3.6 times larger than the

variances from k — tuple SLSS designs with the same n.

For population P2 with d = 10 when the sample sizes are n = 20, 30, 40, 50, 60,

70, 80 and 90, the variances are much smaller using k — tuple SLSS designs in

comparison to SRS designs. The variances from SRS designs are approximately 22.9

times larger than the variances from k — tuple SLSS designs with the same n.

For population P3 with d = 20 when the sample sizes are n = 40, 60, 80, 100,...,

380, the variances are much smaller using k — tuple SLSS designs in comparison to SRS
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designs. The variances from SRS designs are approximately 9.1 times larger than the
variances from k — tuple SLSS designs with the same n.
For population P4 of the longleaf pine data with d = 20 when the sample sizes are
n = 40, 60, 80, 100,..., 380, the variances are slightly smaller using k — tuple SLSS
designs in comparison to SRS designs. The variances from SRS designs are
approximately only 1.1 times larger than the variances from k — tuple SLSS designs with
the same n. The reduction in variance is relatively small because the spatial correlation
is very weak. For populations P1, P2, and P3, the spatial correlation is much stronger,
and that is why k — tuple SLSS designs are much more efficient than SRS designs.
For every sample size across all four populations, the variance of the k — tuple
SLSS estimator is smaller than the variance of the SRS estimator. The reduction in
variance depends on both the type and strength of the spatial correlation. That is,
1) For the 10X 10 population P2, there is a vertical (north — south) trend and it had
the largest reductions in variance.
2) For the 8 X8 population P1 and the 20X 20 population P3 with strong diagonal
trends, there is still a large reduction, but not as large as the reduction in P2.
3) For the 20X 20 population P4, there are no trends. Even so, there is a small
reduction in the variance using a k — tuple SLSS. This is probably due to localized
pockets of higher tree counts. That is, a k — tuple SLSS is slightly less likely to include

multiple high count quadrats than a SRS, thereby reducing the variance.

5. Simulation Results
The estimated variance (vér(f)) of the estimators for k — tuple SLSS are

compared to the estimated variances of estimators based on simple random sampling

plans using all possible sample sizes for the four populations. The comparisons based
on calculated values of the estimated variance (vér(f)) of the estimators for k — tuple

SLSS and SRS taken over 1,000 simulated samples for each sample size, population,
and sampling method.

For each simulated sample, the estimated variance of the estimator was
computed. In this study, we used the Matlab® 7.1 program [8-10] to simulate the
sampling procedures and to calculate the estimated variances of the estimators of
population total for all sample sizes.

The results of this research study for populations P1 to P4 are summarized in

Table 4.2. This table contains the estimated variances of the estimators of population
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total for a SRS and k — tuple SLSS designs for each population P1 to P4 for samples of
sizen=2d,3d, ..., (d-1)d.

Table 2. Means of the estimated variances of estimators of population total (vér(?))
for SRS and k - tuple SLSS designs for populations P1 — P4: Z,:SRS is the SRS estimator.

fKTUPLE is the k — tuple SLSS estimator.

Means of the estimated variances of estimators of population total ( Vﬁr(f) )
‘ Pl:d=8, T =1,019 P2:d=10, T =1570 P3:d=20, T =13,354 P4:d=20, T =584
N Var(Tgs) | Var(Tges) | N Par(Fges) | Var(Frupe)| 0 | Var(Teps) | Var(Tyrueie) | N | Var(Tes) |VAr(7yruece)
2 16 |10,505.83 | 2,883.07 | 20 £8,014.91| 1,287.42 40 (270,840.66| 28,388.46 | 40 |14,018.15| 13,331.33
3 24 | 5,784.73 | 1,650.94 | 30 |l6,417.08 623.53 60 (172,396.22| 16,376.30 | 60 | 8,669.89 8,240.81
4 32 | 3,501.96 988.72 40 |10,579.02 416.22 80 (121,203.01| 12,473.87 | 80 | 6,124.48 5,731.11
5 40 | 2,089.28 582.02 50 |7,040.99 303.71 100 | 90,763.26 9,588.66 100 | 4,669.76 | 4,338.81
6 48 | 1,160.23 323.29 60 |4,680.49 199.60 120 | 70,996.81 7,575.28 120 | 3,609.98 | 3,367.03
7 56 498.29 137.41 70 [3,012.23 130.09 140 | 55,750.41 5,949.51 140 | 2,885.25 2,702.26
8 80 |1,757.04 77.58 160 | 45,199.61 4,813.69 160 | 2,292.96 2,185.14
9 90 | 782.04 33.80 180 | 36,826.01 3,920.32 180 | 1,887.85 1,784.04
10 200 | 30,279.71 3,191.72 200 | 1,550.52 1,448.98
11 220 | 24,808.51 2,619.91 220 | 1,259.38 1,180.89
12 240 | 20,215.85 2,143.82 240 | 1,031.06 960.77
13 260 | 16,284.01 1,751.08 260 | 829.53 777.09
14 280 | 12,938.17 1,402.64 280 | 663.49 619.16
15 300 | 10,094.69 1,095.41 300 | 515.52 482.30
16 320 | 7,561.31 827.88 320 | 384.41 360.64
17 340 | 5,333.49 586.99 340 | 271.24 254.05
18 360 | 3,361.29 368.62 360 | 171.47 159.66
19 380 | 1,589.59 174.43 380 | 81.23 75.63

For population P1 with d = 8 when the sample sizes are n = 16, 24, 32, 40, 48 and
56, the estimated variances are much smaller using k — tuple SLSS designs in
comparison to SRS designs when taken 1,000 simulated samples. The estimated
variances from SRS designs are approximately 3.6 times larger than the estimated
variances from k — tuple SLSS designs with the same n.

For population P2 with d = 10 when the sample sizes are n = 20, 30, 40, 50, 60,
70, 80 and 90, the estimated variances are much smaller using k — tuple SLSS designs
in comparison to SRS designs when taken 1,000 simulated samples. The estimated
variances from SRS designs are approximately 23.1 times larger than the estimated
variances from k — tuple SLSS designs with the same n.

For population P3 with d = 20 when the sample sizes are n = 40, 60, 80, 100,...,
380, the estimated variances are much smaller using k — tuple SLSS designs
in comparison to SRS designs when taken 1,000 simulated samples. The estimated
variances from SRS designs are approximately 9.1 times larger than the estimated
variances from k — tuple SLSS designs with the same n.
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For population P4 of the longleaf pine data with d = 20 when the sample sizes are
n = 40, 60, 80, 100,..., 380, the estimated variances are slightly smaller using k — tuple
SLSS designs in comparison to SRS designs when taken 1,000 simulated samples. The
estimated variances from SRS designs are approximately only 1.1 times larger than the
estimated variances from k — tuple SLSS designs with the same n. The reduction in
variance is relatively small because the spatial correlation is very weak. For populations
P1, P2, and P3, the spatial correlation is much stronger.

When we want to validate the unbiased property of the estimator of the variance
for each sampling design, we can find evidence in Tables 1 and Table 2. We can see
that the values of the true variances and mean estimated variances of estimators of the

population total almost have equal values. We know that for Horvitz-Thompson

estimation [4], E[var(z)] = var(z) for both SRS and k — tuple SLSS designs.

Therefore, we expect the average of vér(f) should be close to var(f) when taken

over 1,000 simulated samples for each sample size, population, and sampling method.
Although k — tuple SLSS designs are much more efficient than SRS designs (that

is, the estimated variance Vél’(fKTUPLE ) for a k — tuple SLSS design is smaller than the
estimated variance vér(fSRS) for a SRS design), it is possible for the estimated

variance for a k — tuple SLSS designs to be less than zero (Vér(f'KTUPLE) < 0)

especially for small k in populations P1 to P3. This is not a desirable result because we

know the true variance must be greater than 0.

6. Conclusions and Discussion

In this study, we extended simple Latin square sampling designs to larger sample
sizes, specifically to sample sizes of n = 2d, 3d, ....,(d — 1)d taken from this population
of N = d? guadrats. These sampling designs with n = kd will be called “k — tuple simple
Latin square sampling (k — tuple SLSS) " designs. New theoretical results were derived
that include determining the first — order and second — order inclusion probabilities used
in Horvitz — Thompson estimators of the population total 7 or mean £, the variances of

the estimator, and the estimator of the variance of the estimator of the population total.

We then compared (i) the k — tuple SLSS estimator variances (var(f)) with the

variances of 7 for simple random sampling (SRS) and (ii) the k — tuple SLSS estimator
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of the variances (vér(f)) with the variances of 7 for simple random sampling (SRS)

for four populations exhibiting various levels of spatial correlation.

For Horvitz — Thompson estimators [4], we derived the inclusion probabilities that
include determining the first — order and the second — order inclusion probabilities. The
SRS and k — tuple SLSS designs have the same first — order inclusion probabilities but
have different second — order inclusion probabilities. Also, these sampling designs have
unbiased estimators of the population total and have unbiased estimators of the true
variances of the estimators of the population total.

Moreover, we applied k — tuple SLSS designs to populations that are spatially
correlated that. The variances of estimator of population total for k — tuple SLSS designs
and simple random sampling designs were calculated and compared. The estimated
variances of the estimator of population total for k — tuple SLSS designs and for SRS
designs were also compared. This comparison was based on calculated statistics from
1,000 simulated samples for each sample size and population.

One practical benefit of this research study was k — tuple SLSS expanded the
possible sample sizes of SLSS + k designs from n = 2,3,...,2d — 1 to larger sample sizes
of size n = 2d, 34, ...., (d — 1)d. The researcher now has more choices of design size to
implement a sampling design that possesses the desirable spatial properties of simple
Latin square sampling designs.

These desirable spatial properties can lead to more precise estimation of a

population total or mean than would be achieved by simple random sampling.

7. Acknowledgements

We would like to thank Thammasat University for partial support this research.

References

[1] Munholland, P.L., and Borkowski, J.J., Simple Latin Square Sampling +1
designs, A Spatial Designs Using Quadrats, Biometrics, 1996;52:125-136.

[2] Cochran, W.G., Sampling Techniques, New York: Wiley, 1977.

[3] Borkowski, J.J., Simple Latin Square Sampling + k designs,
Communications in Statistics, Theory and Methods, 2003;32:215-237.

[4] Horvitz, D.G., and Thompson, D.J., A generalization of sampling without

replacement from a finite universe, Journal of the American Statistical
Association, 1952;47:663-685.
[5] Thompson, S.K., Sampling. New York, Wiley, 1992.



Jurairach Akanisthanon 107

(6]

(7]

(8]

9]

(10]

Rathbun, S.L., and Cressie,N., A space — time survival point process for a
longleaf pine forest in southern Georgia, Journal of the American Statistical
Association, 1994; 89, 1164-1174.

Cressie N., Statistics for Spatial Data, New York, Wiley, 1991.

Abdelwahab K, Ronald B.G., An introduction to numerical method: a MATLAB
approach, 2" ed, Taylor & Francis Groups, LLC, 2006.

Brian, R., Hunt, R.L., Lipsman, J.M., Rosengerg. A Guide to MATLAB for
Beginners and Experienced Users, 2" ed, Cambridge University Press, 2006.
Marc E.H., Programming in MATLAB, Brooks/cole, 2002.



	Thailand Statistician
	January 2010; 8(1) : 93-107
	www.statassoc.or.th

