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Abstract 

Statistical Process Control (SPC) chart for detecting small shifts in parameter of 

distributions are widely used in quality control and other area of applications is an 

Exponentially Weighted Moving Average (EWMA) procedure. The objective of this paper 

is to implement an explicit formula for characteristics of  EWMA as Average Run Length 

(ARL) – the expectation of false alarm times and Average Delay time (AD) – the 

expectation of delay of true alarm times in case of Weibull distribution. Using the simple 

transformation technique, we obtain the explicit expressions for evaluating ARL and AD 

when observations are Weibull by taking power of such observations. The accuracy of 

results is compared with Monte Carlo simulations. In addition, we present the table of 

optimal parameter values for Weibull EWMA designs and the comparisons of 

performance of EWMA versus CUSUM charts are considered. 

______________________________ 
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1. Introduction 
  Statistical Process Control (SPC) charts are widely used for monitoring, 

measuring, controlling and improving quality of production in many areas of applications, 

for in stance industry and manufacturing, finance and economics, epidemiology and 

health care, environmental sciences and in other fields. Typically, SPC charts are 

studied under assumption that observations are Normal distributed. In many real 

applications, however, observations are frequently non-Normal, e.g. with Bernoulli, 

Poisson, Exponential, and Weibull distributions. 

 One of the popularly important characteristics for SPC charts is Average Run Length 

(ARL) – the expectation of an alarm time )(τ is taken to signal (wrongly) about a 

possible change. Ideally, an acceptable ARL of in-control process should be enough 

large and a small ARL when the process is out-of-control, so-called Average Delay (AD) 

- the expectation of delay for true alarm time.  

 In literature one can find many methods for evaluating ARL and AD for EWMA 

procedure have been studied. Robert [1], the first who introduced the ARL of EWMA by 

using simulations derived nomograms for the ARL in case of Gaussian distribution. 

Brook and Evans [2] approximated the run length of EWMA by using a finite-state 

Markov Chain Approach (MCA). Crowder [3] used a system of Integral Equations (IE) to 

find both ARL and AD. Later, Lucas and Saccucci [4] evaluated ARL by using a finite-

state MCA similar to Brook and Evans [2] and also studied the optimal EWMA designs. 

Borror [5] examined the ARL performance of EWMA chart for both skewed and heavy-

tailed symmetric non-normal distributions using MCA. EWMA control charts for 

Exponential distribution are introduced by Gan [6] who calculated the ARL by using the 

differential equations. Sukparungsee and Novikov [7, 8] derived an analytical closed-

form formula for determining the characteristics of EWMA charts for the cases of 

Gaussian and some non-Gaussian distributions by use of a martingale-based technique. 

Recently, the explicit formulas of ARL and AD for Exponential EWMA charts have been 

found by Areepong and Novikov [9].  

 MC is simple to program but usually it is related to a large number of sample 

trajectories (very time consuming). Moreover, it is difficult to study for optimal designs 

though it is convenient to control accuracy of analytical approximations.  

 MCA is considered as a most popular technique (Lucas and Saccucci [4]). It is based 

on use of matrix inversions for approximating Markov Chain. As far as we know there are 

no theoretical results on accuracy of this procedure besides just direct comparisons with 

MC. 
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 IE is the most advanced method but it requires intensive programming or special 

software to implement even for the case of Gaussian distribution [3, 10, 11]. 

 Martingale-based technique is innovation tool, effective alternatives to traditional 

approaches, fast and easily to implement but it can be derived the chart characteristics 

for the case of light-tailed distributions. 

 In this paper we derived analytical formulas for ARL and AD of EWMA charts when 

observations are Weibull distributed. Originally, our derivations are based on results of 

Novikov [12] who found explicit formulae for the expectations of alarm times for first-

order autoregressive processes and Areepong and Novikov [9] who implemented to 

evaluating ARL and AD for Exponential EWMA charts from the former. We suggest 

implementing for derivative chart characteristics of Weibull EWMA charts by transforming 

from Weibull to Exponential distribution. In addition, we compare our analytical results for 

ARL and AD with results from simulations and the optimal parameter values for Weibull 

EWMA designs are addressed. 

 

2. EWMA and CUSUM Procedures and Theirs Properties. 
 In this paper we consider SPC charts under the assumption that sequential 

observations ,...,, 21 ξξ  are independent random variables with a distribution function 

( )α,xF , the parameter 0αα =  before a change-point time ∞≤θ  ("in-control" state; 

∞=θ  means that there are no change at all) and 0 αα >  after the change-point time 

θ  ("out-of-control" state).  

 All popular charts like Shewhart, Cumulative Sum (CUSUM) and EWMA charts (see 

e.g. [13-15] are based on use of stopping times .τ  The typical condition on choice of the 

stopping times τ  is the following: 

,)( TE =∞ τ                                                                                                        (1) 

where T  is given (usually large). Let (.)∞E  denote that the expectation under 

distribution ),( 0αxF  (in-control) that the change-point occurs at point θ  (where 

∞≤θ ). In literature on quality control the quantity )(τ∞E  is called as Average Run 

Length (ARL) of the algorithm. Then, by definition, ( )τ∞= EARL  and the typical 

practical constraint is  

.TARL =  
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Another typical constraint consists in minimizing of the quantity 

 ( ) ( ),1sup θτθτα θθ ≥+−= EQ                                                               (2) 

where (.)θE  is the expectation under distribution ),( αxF  (out-of-control) and α  is 

the value of parameter after the change-point. We restrict on the special case, usually 

1=θ . The quantity )(1 τE  is called as average delay time (AD) and one could expect 

that a sequential chart has a near optimal performance if its AD is close to a minimal 

value. 

 They are many other criteria for optimality of SPC (see e.g. [16-18]); however, in 

practice, ARL and AD remain the most popular characteristics which are convenient to 

use for comparisons of different charts. 

EWMA chart is defined as a recursive form 

 . ... ,2 ,1    ,)1( 1 =+−= − tXX ttt ληλ                                                       (3) 

Typically, smoothing parameter ( )1 ,0∈λ , ( )tt g ξη =  and tX is the weighted 

average between current and previous observations. The target mean is supposed to be 

steady and the initial value 0X  is usually chosen to be the process mean 0α . The 

alarm time for this type of procedure is the following: 

{ }.:0inf hXt th >>=τ

   The ARL of the EWMA chart depends on the control limit )(h  and the smoothing  

parameter ).(λ  Moreover, the optimal design parameters ),( hλ  are given by 

minimizing AD under constraint (1). In this paper we compare our results with CUSUM 

procedure, thus we shall briefly overview the CUSUM chart.  

 The standard CUSUM chart is defined by the following statistics 

( )( ) ,   ... ,2 ,1    ,0,max 01 yYtqYY ttt ==+= − ξ                                          (4)

 
where 

( )
( )

( )
( )00 ,

,log
,
,log)(

α
α

α
αξ

xf
xf

xdF
xdFq t ==

 and 0Y is an initial value. 
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Under the assumptions that the ),( αxF  is absolute continuous with respect 

to ).,( 0αxF  In literature one could find some modification of algorithms (see in [13]). 

The alarm time for this type of procedure is typically 

{ },:0inf AYt tA >>=τ

 where A  is a control limit. 

CUSUM is usually considered as a candidate for the optimal algorithm. Its performance 

could be below the performance of EWMA [4,6-8] for moderate values of ARL and 

detecting small changes. 

 

3. Explicit Formulas for Evaluating ARL and AD for Weibull EWMA Chart. 
The first-order autoregressive (AR(1)) process is defined as a solution of equation 

 ... ,2 ,1     ;1 =+= − tZZ ttt ηρ and ,0 zZ =                                            (5) 

where we assume that independent random variables tη  have the standard 

Exponential distribution ( )( ),1~ Exptη  z  and ρ  are given constants and 0Z  is initial 

value. 

Set { }.:0inf bZt tb >>=τ  For this case Novikov [12] obtained the following formula  

( ) ( ) ( )    ,1/ zQbQE b −+= ρτ                                                                 (6) 

where 

( ) ( ) .
!
,)(

1

1∑
∞

=

−=
m

m
m

m
zzQ ρρρ

                                                                      (7) 

The function 1),( −mρρ  in Equation (3) is q-Pochhamer symbols from the theory of q-

series (see e.g. [Andrews et al. [19]): 

( ) ( ) ( ) .1,  ,,:1 0
1

1 ==−∏
=

− ργργγρ
m

j
m

j                   

In Equation (5), setting λρ −= 1  and 
λ
1

=z  one can check that ./ λγτ hb =  This 

implies that ARL of the one-sided EWMA procedure for the case of Exponential 

distribution with 10 =α  is the following 
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( ) ,11
)1(







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where  

 
( )( ) ( ) .

!
1,11)(

1

1∑
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=
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=

m

m
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m
zzQ λλλ

                                                   (9) 

 

 Similar, the closed-form formula for AD (that is when observations are exponentially 

distributed with parameterα  is 

 ( ) ( ) ,11
11 






−+








−

==
αλλαλ

τ QhQEAD h                            (10) 

where )(zQ  is defined in Equation (9). Some of these results have already been 

published in Areepong and Novikov [9]. 

 Let ,...2,1, =ttξ be sequentially observed independent random variables. The 

change-point models are the following: 

( )
( )




>+=
−=

. ..., ,1 ,;     ,
1 ..., ,2 ,1;    ,

~
0

0

ααθθα
θα

ξ
trWeibull
trWeibull

t  

A Weibull distribution is defined by the following function: 

( ) .0 ;     ≥=>






−

xexP
rx

t
αξ  

A common method used to transform the Weibull distribution to the Exponential 

distribution is to take power r  of the Weibull observations. For example, if the Weibull 

distribution has the form: 

( ) ,
rx

t exP






−

=> αξ  

then taking the power r  we get 
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and therefore )( xP r
t >ξ  has the Exponential distribution with .)( rr

tE αξ =  

Therefore, if ),(~ αξ rWeibullt  then )(~ rr
t Exp αξ  and ).1(~ Expr

t
t α

ξ
η =  

 

For the Weibull distribution, we define the EWMA recurrence relation by: 

( ) 1    ,1 01 =+−= − XXX t
r

tt ηλαλ                                   (11) 

with the stopping time 

{ }.:0inf hZt th >>=τ  

Equation (11) can be transformed to the AR(1) form of Equation (5) with 

)1(~ Expr
t

t α
ξ

η =  by the substitutions  

,~
r

t
t

XX
λα

=  ,1~
0 rX

λα
=  ),1( λρ −=  .r

t
t α

ξ
η =  

The EWMA equation is then: 

( ) rttt XXX
λα

ηλ 1~   ,~1~
01 =+−= −  

with the stopping time 

.~:0inf






 >>= rtH

hXt
λα

τ  

Therefore, it can be seen that the ARL and AD for the case of a Weibull distribution can 

also be calculated by using the closed-form formulas for the Exponential distribution. The 

explicit formulas are as follows: 
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
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
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−

==
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where )(xQ  is defined in Equation (9). 

 

4. Comparison of Formulas with Simulations  
In Table 1, we compare the numerical results for ARL and AD with Equation 

(12) and (13) with Monte Carlo simulation both for EWMA with 

09206.0,76672.1 == λh  and CUSUM with .495.4=A  We always simulate 106 

sample trajectories by using the package R. 

 Obviously, the numerical results from suggested formulas are very close to 

Monte Carlo simulation. Besides, EWMA and CUSUM show a similar performance when 

α  is greater than 1.4. However, when α  relatively close to 1 (in-control value), EWMA 

shows a better performance than the corresponding CUSUM scheme. Note that, 

calculations with exact formulas (12) and (13) are much faster. For example, when 

1=α , computing time based on our technique takes less than 1 second while CPU 

time required for simulations for both EWMA and CUSUM run 23843.1 and 41912.3 

seconds respectively as shown in Table 2. 

 

The numerical procedure for obtaining optimal parameters for EWMA designs 

 1. Select an acceptable in-control value of ARL and decide on the change parameter 

value α  for an out-of-control state. 

 2. For given α  and T, find optimal values of *λ and *h  to minimise the AD values 

given by Equation (13) subject to the constraint that ARL=T in Equation (12), i.e. *λ and 

*h are solutions of the optimality problem: 

( ) .11
1

min
,







−+








−

=
λαλλαλ rrh

QhQAD  
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Subject to: 

( ) ,11
1







−+








−

==
λλλ

QhQTARL  

where )(xQ  is defined in Equation (9). 

In Table 3 we present AD as a function of λ  for ARL=500, 1000, 3000 and 5000. For 

example, given ARL=500 and 5.1=α , calculations with formula (13) give *AD =9.333 

for the optimal set of parameters 72788.1,10250.0 ** == hλ . This optimal AD value 

agrees with the value of *AD =9.345 that we computed from MC for the same 

parameter values. 
 

Table 1. Comparison ARL and AD by suggested formulas with Monte Carlo simulations 

),( 2αr  ARL and AD 

Formula 

(12),(13) 

Monte Carlo simulations 

EWMA CUSUM  

(2,1.02) 999.861 999.610 [0.996]a  1000.930 [1.008] 

(2,1.12) 138.679 138.720 [0.066]  158.420 [0.158] 

(2,1.22) 45.731 45.710 [0.023]  49.028 [0.045] 

(2,1.32) 23.496 23.495 [0.013]  23.753 [0.027] 

(2,1.42) 15.074 15.070 [0.008]  14.296 [0.011] 

(2,1.52) 10.915 10.926 [0.006] 10.289 [0.008] 

(2,1.62) 8.500 8.507 [0.005] 7.718 [0.006] 

(2,1.72) 6.945 6.942 [0.004] 6.312 [0.004] 

(2,1.82) 5.869 5.864 [0.004] 5.291 [0.004] 

(2,1.92) 5.085 5.087 [0.003] 4.561 [0.003] 

(2,2.02) 4.491 4.491 [0.003] 3.999 [0.003] 

(2,2.52) 2.897 2.897 [0.002] 2.652 [0.002] 

(2,3.02) 2.217 2.217 [0.002] 2.025 [0.001] 

(2,5.02) 1.394 1.395 [0.001] 1.328 [0.001] 
                    astandard deviation. 
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Figure1: Comparison of AD calculated by explicit formula for EWMA and simulated 

by CUSUM for Weibull observations 
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Table 2. Comparison CPU Times by suggested formulas with Monte Carlo 

simulations 

),( 2αr  CPU Times (seconds) 

Formula 

(12),(13) 

Monte Carlo simulations 

EWMA CUSUM  

(2,1.02) 0.13 23843.1 41912.3 

(2,1.12) 0.14 3125.8 6626.7 

(2,1.22) 0.13 1217.5 2163.1 

(2,1.32) 0.14 577.4 1075.4 

(2,1.42) 0.13 377.1 681.1 

(2,1.52) 0.14 266.3 486.2 

(2,1.62) 0.14 211.7 370.0 

(2,1.72) 0.14 181.2 308.4 

(2,1.82) 0.13 153.3 264.8 

(2,1.92) 0.14 135.8 230.0 

(2,2.02) 0.13 115.2 196.5 

(2,2.52) 0.13 86.2 131.3 

(2,3.02) 0.13 64.2 109.3 

(2,5.02) 0.13 46.6 68.5 
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Table 3. Optimal parameters and AD of one-sided Weibull EWMA by suggested formula. 

T ),( 2αr  *λ  *h  *AD  AD  by 

simulations 

T=500 (2,1.52) 

(2,1.72) 

(2,2.02) 

(2,3.02) 

0.10250 

0.15406 

0.22673 

0.42078 

1.72788 

2.00271 

2.36935 

3.31407 

9.333 

5.997 

3.853 

1.916 

9.345 [0.021]b 

5.998 [0.004] 

3.852 [0.009] 

1.974 [0.001] 

T=1000 (2,1.52) 

(2,1.72) 

(2,2.02) 

(2,3.02) 

0.09206 

0.13805 

0.20423 

0.38662 

1.76672 

2.04556 

2.42482 

3.43084 

10.915 

6.849 

4.294 

2.039 

10.901 [0.023] 

6.855 [0.004] 

4.292 [0.003] 

2.039 [0.001] 

T=3000 (2,1.52) 

(2,1.72) 

(2,2.02) 

(2,3.02) 

0.07632 

0.11551 

0.17311 

0.33784 

1.79212 

2.07748 

2.47226 

3.55300 

13.514 

8.238 

5.010 

2.236 

13.485 [0.028] 

8.234 [0.005] 

5.012 [0.003] 

2.234 [0.001] 

T=5000 (2,1.52) 

(2,1.72) 

(2,2.02) 

(2,3.02) 

0.07010 

0.10668 

0.16087 

0.31796 

1.79671 

2.08446 

2.48471 

3.59266 

14.751 

8.896 

5.347 

2.329 

14.747 [0.029] 

8.895 [0.006] 

5.346 [0.004] 

2.331 [0.002] 

                bstandard deviation.  

5. Conclusion 
We have presented that the explicit formulas for ARL and AD of one-sided 

EWMA charts for the case of an Exponential distribution can be applied to Weibull 

distribution. We have shown that suggested formulas are very accurate, and are easy to 

calculate and program. The suggested formulas obviously take the computational times 

much less than Monte Carlo (MC) simulation. Using the formulas, we have been able to 

provide tables for the optimal weights, boundaries and approximations for ARL and AD 

for one-sided EWMA charts for the Weibull distribution. The performance comparison of 

the control charts has been based on Average Run Length (ARL) and Average Delay 

(AD) criteria. For Weibull distribution when given ARL=1000, we have shown that the 

performance of EWMA chart is superior to CUSUM for small changes. On the contrary, 

the performance of EWMA is inferior to CUSUM chart for moderate to large changes. 
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