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Abstract
This paper proposes an application of estimator for response mean Y given the
value of an auxiliary variable X under simple linear regression model for incomplete
longitudinal data and monotone missing data patterns. The proposed estimator, called
Conditional Maximum Likelihood Estimator (CondMLE), is adapted from an Anderson’s
factored likelihood function. Monte Carlo simulations was repeated 2,000 times for each
situations in comparison of the coefficient of variations (CV) derived from CondMLE and
Anderson’s estimator which generally regards no auxiliary variable in estimations.
Essentially, regarding the results of the simulation study, CondMLE presented smaller
CV than Anderson’s estimator, for sample size of 20, 30 and 50, regardless differences
in the percentages of missing data and correlation coefficients of the response variables

in the two occasions.
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1.Introduction

Longitudinal studies are measurements of response variables which are
continually operated on the same subjects over a period of time. Usually, this type of
studies is occupied in measurements of changes in human body, typically in the
identification of possible diseases, as well as in other studies where particular series of
continual data are exclusively required. Nevertheless, since it is usually run on over
years, a longitudinal study always entails a great deal of operational efforts and
expenses. Yet, missing data are also always occurred, resulting in bias and inefficiency
in the estimation of means, and also affecting the estimated mean of response variables
in the study [1]. Consequently, data analysis for longitudinal studies should be carefully
designed, so that incomplete data can be effectively analyzed.

Usually, estimation of response mean for incomplete longitudinal data is
analyzed using standard statistical methods, through which missing observations are
simply ignored. However, a mention has to be noted that those missing-observation-
ignored methods are only appropriate for studies in which only a small number of
missing data are occurred. Nonetheless, when analyzing a large number of missing data,
standard statistical approaches usually cause imprecision and also escalation in biases.

In addition, this may either reduce or exaggerate statistical power (see [1-7] ),
and each of these distortions can also lead to invalid conclusions. In fact, a range of
methods are used to impute non-response items in studies. However, the imputation
methods usually cause under estimation of variance, and wrong inference of the
response mean [1]. As a result, likelihood function based methods are usually employed
to administer missing data. For example, Lord [8] proposed a maximum likelihood
estimator for trivariate normal population from file matching incomplete data which is

shown in the form of

Y11 0 Yirs Yir410 0 Yin
Yo1: s Yor
Y3r+1r -1 Yan-

Furthermore, Edgett [9] found the maximum likelihood estimators for parameters of a
trivariate normal distribution from univariate incomplete data which can be shown in the
form of
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Moreover, Anderson [2] first introduced a factored likelihood function for normal
data and estimated parameters of a multivariate normal population for monotone
incomplete data. Particularly, in this paper another estimator of response mean, given
application of auxiliary information for incomplete longitudinal data, under simple linear
regression model with classical assumptions, is proposed. The proposed estimator is

developed from Anderson’s factored likelihood function, and is called CondMLE.

2. Methodology
2.1 Estimators

In this study, assume that missing completely at random data (MCAR), a drop
out happening when probability is depended neither on the observed responses nor the
responses with no dropped out [1], is assumed in estimation of response mean. The
methods used in estimation of response mean for monotone missing data are as
following:

2.1.1  Anderson’s estimator

Let f; and fy; be, respectively, the density of Y; and conditional density of Y,
given Y; whereY; is a random variable observed in occasioni,i =1 or 2.
Anderson'’s factored likelihood function method is shown in equation (1)
: 27 2
LO 1Y) = [Ta0q | ruoD] [f2002) | Bo +Baaysj » o210 1)
j=1 j=1

where By = py— Byt
_ . 0
Pop = po—=
01

2 2,2
oy = (1-pi2)os -

In this method, the mean of the response variable Y from multivariate normal
distribution is computed when some observations are missed, and no auxiliary variable X

is concerned: y,q,Yi5, ..., Y1, are assumed as data completely observed in the first

occasion. The Anderson’s estimator of response mean and variance in the first occasion
are shown in equation (2). Then, in the second occasion, when n-r observations are

lost, there are only r subjects which can be observed, namely y,q, yy, ... ,Y,, Where

0<r<n. The layout of this dataset is shown in Figure 1.
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Figure 1. The monotone incomplete longitudinal dataset of Y.

The Anderson’s estimator of response mean and variance in the second

occasion are shown in equation (3).
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2.1.2 The Proposed Estimator

In estimation of response mean for incomplete longitudinal data in this study,
auxiliary information is required for both occasions. Rueda et al. [10] suggested the use
of the auxiliary variable information, provided by one or several auxiliary variables, in the
estimation of mean as a very usual technique and typically advantageous, particularly
since powerful auxiliary information encourages reduction of biases and sampling errors.
Therefore, the present study proposes an estimator which generally applies auxiliary
variable- which is normally ignored in Anderson’s estimator- in the estimation of

response mean, under the name of Conditional Maximum Likelihood Estimator, or
CondMLE: ﬁYZlXZ:XZjCondML

In the first occasion, both response variable Y;; and auxiliary variable X;
where j = 1, 2, ... , n are completely observed, that is, (X1, ¥11), (X12,Y12), ---
(X1n, Y1n) are observations from the first occasion. For the second occasion, only r
subjects can be observed, and (X51, Y21), (X202, Y22), -+, (Xor, Yor) Where 0<r<n are

observations from the second occasion. The layout of this dataset is shown in Figure 2.

Occasion
1 2
Observation Y1 X Y2 X2
1 o o
r L 1L |
n L L |

Figure 2. The monotone incomplete longitudinal dataset of (X,Y).
Moreover, a linear model is assumed and written as

Y = Xp+e (4)
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where Y is a (n+r)x1 vector of response which is distributed as normal and have no

outliers, X is a (n +r)x4 matrix of auxiliary variables, = [ B B J isa 4x1 vector of
coefficient of simple linear regression model, and ¢ is a (n+r)x1 vector of errors which
is multivariate normally distributed with mean 0 (, , 1) .1 and variance covariance matrix

of ¢ is as followed.

2
oil; 0rx(n—r) opoly
2
I = O(n—r)xr Gll(n—r) 0(n—r)xr

2
ok Orxp-ry o2 (n+1 ) x (n+r)

Note that I, is an mxm identity matrix, and Oy, is @ mxp zero matrix. Under model

(4), the likelihood function of parameter 0 can be written as

n n _r r
N 1 2 2 1 2
L®le) = |(2n0f) 2exp| ~—5Def) ||| (2503 ) 2exp| ——=— 3 [e2) ~ T} )
201 i1 2091 i1
: c 2 2\ 2
where & = (eq1, €10, s €1y €21, €224 E2¢) s T2 = 912:2: oop = (I-pir)oy,
1

V(Yyj)=cf, V(Ysj)=c5, Cov(YyjYzj)=01,, and Corr(Yyj,Ys;)=pyz-
The conditional maximum likelihood estimator of E(Y|X), By 1Xo=x2jcongmt * S0
be derived by solving %In L(®le) = 0 where 8 = (Blo,Bll,of,Bzo,Bu,c%u,rn)’ and

Bio + P11 c% are assumed to be known. Therefore, the estimator of E(Y|X) under

simple linear regression model for incomplete longitudinal data for the second

(1
occasion = is
0 ) - B +B Xoi , for j=1,2,...r
WYaboiconame = P2coname T P2lconam ¥ )
where
(1

Detail is shown in dissertation of Juthaphorn Saekhoo, Simple Linear Regression

Analysis for Incomplete Longitudinal Data, Doctoral dissertation, National Institute of

Development Administration.
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2.2 Comparison between the Proposed Estimator and Anderson’s Estimator

In order to empirically evaluate the proposed estimator, a simulation study was
conducted. A population for the first occasion (X1,Y1) and the second occasion (X2,Y>) of
size N = 1,000,000 was generated and the models for (X1,Y1) and (Xz,Y2) are in the form
of Y;=1+2X;+¢ and Y, =3+4X,+¢e, where g ~N(0,4) , &, ~N(0,9) respectively.
The correlations of (Y1,Y2) were setat 0, 0.2, ..., 1. Samples of size n = 20, 30, 50 were
repeatedly drawn at random with replacement for 2,000 times. In each samples, 0, 10,
20, ... , 50 percent of cases were randomly dropped out which were represented as

missing.
. _— 2 .
In this study, 108 situations ( are employed to compare the coefficient of

(3

variation (CV) of CondMLE and Anderson’s estimator. Since the value of response

means for CondMLE and Anderson’'s estimator are dissimilar, thus CV of the two

estimators are instead compared.

2

Six values of correlation, three values of sample size, and six percentage level of

missing make 108 situations.

o Oy v
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Table 1. Comparison of CV for CondMLE and Anderson’s estimator (Unit: percent).

Non-missing Missing 10 % | Missing 20 % Missing 30% Missing 40% Missing 50%
n Py data
CVconamL | CVanderson | CVeondmL| CVanderson| CVeondw | CVanderson| CVcondw | CVanderson| CVcondmL | CVanderson| CVconamt | CVanderson
0 3.88 17.72 4.08 17.69 4.40 17.61 4.65 17.54 5.08 17.48 5.50 17.40
0.2 3.96 17.75 4.18 17.68 4.44 17.63 4.80 17.56 5.14 17.49 5.58 17.34
20 0.4 3.99 17.76 4.20 17.70 4.46 17.63 4.80 17.60 5.03 17.58 5.72 17.42
0.6 4.03 17.70 4.20 17.67 454 17.57 4.75 17.51 5.16 17.49 5.63 17.39
0.8 4.07 17.83 4.29 17.80 452 17.69 4.90 17.62 5.25 17.60 5.71 17.47
1.0 3.99 17.74 423 17.68 4.45 17.63 4.76 17.58 5.20 17.41 5.68 17.33
0 3.35 17.74 3.50 17.72 3.73 17.69 3.92 17.64 4.26 17.59 4.69 17.49
0.2 3.19 17.77 3.35 17.73 3.56 17.71 3.83 17.64 4.19 17.61 4.55 17.45
30 0.4 3.24 17.72 3.40 17.68 3.59 17.65 3.81 17.63 4.13 17.53 4.58 17.44
0.6 3.20 17.76 3.36 17.75 3.56 17.71 3.87 17.61 4.14 17.53 4.43 17.58
0.8 313 17.75 3.26 17.74 3.58 17.66 3.71 17.62 412 17.58 4.44 17.52
1.0 3.20 17.77 3.40 17.72 3.55 17.71 3.86 17.68 4.22 17.64 4.57 17.49
0 2.55 17.72 271 17.70 2.85 17.67 3.01 17.66 3.27 17.60 3.59 17.50
0.2 2.47 17.76 2.63 17.73 2.78 17.72 2.96 17.69 3.20 17.63 3.57 17.59
50 0.4 2.52 17.75 2.66 17.74 2.80 17.71 3.00 17.69 3.28 17.61 3.58 17.60
0.6 2.48 17.77 2.59 17.74 2.79 17.73 2.97 17.71 3.26 17.68 3.48 17.60
0.8 2.57 17.79 271 17.78 2.81 17.75 2.97 17.71 3.28 17.65 3.57 17.62
1.0 2.46 17.81 2.59 17.80 2.77 17.78 2.93 17.72 3.22 17.68 3.56 17.61
Remark correlation of response variable between the first and

Dy = Corr(Ylj,Yzj) is the

second occasion.

Results of the simulation study show that CV of CondMLE is smaller than that of

Anderson’s estimator for sample size 20, 30 and 50, at whatever percentage of missing

and correlation coefficient of response variable between two occasions.

Furthermore,

CondMLE produces smaller CV when the dataset contains large sample size and smaller

number of missing data. The results of simulation study are shown in Table 1.

3. Conclusion and Comments

In this study, a response mean estimator for longitudinal studies with incomplete

data, MCAR and monotone missing data pattern, is proposed and examined. For the
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first occasion, both response variable Ylj and auxiliary variable le where j=1, 2, .., n

are completely observed. Moreover, classical assumption for linear model of the
relationship between response variable Y and auxiliary variable X is assumed. For the
second occasion, when n—r observations are lost, and there are only r observations,
0<r<n, collected from the second occasion. The estimator of response mean Y given

the value of an auxiliary variable X for the second occasion is proposed. It can be
verified that such estimator is unbiased. ¢ Results from the Monte Carlo simulations

showed that CondMLE presented lower CV than Anderson’'s estimator which is an
auxiliary-information-ignored estimator. In summary, it can be assumed that application
of auxiliary information in the estimation of response mean Y can reduce bias and
sampling error and thus can be more effective than estimations with no application of
auxiliary information. In addition, CV of CondMLE also decreased though the data set
contained large sample size with any percentage of missing data, while CV of Anderson’s
estimator presented no change though there were different percentages of missing data
and sample sizes. However, this simulation study showed that CondMLE became more
efficiency when the dataset contains larger sample size and smaller amount of missing

data are observed.
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