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Abstract 

This paper proposes an application of estimator for response mean Y given the 

value of an auxiliary variable X under simple linear regression model for incomplete 

longitudinal data and monotone missing data patterns. The proposed estimator, called 

Conditional Maximum Likelihood Estimator (CondMLE), is adapted from an Anderson’s 

factored likelihood function. Monte Carlo simulations was repeated 2,000 times for each 

situations in comparison of the coefficient of variations (CV) derived from CondMLE and 

Anderson’s estimator which generally regards no auxiliary variable in estimations. 

Essentially, regarding the results of the simulation study, CondMLE presented smaller 

CV than Anderson’s estimator, for sample size of 20, 30 and 50, regardless differences 

in the percentages of missing data and correlation coefficients of the response variables 

in the two occasions.    

______________________________ 
Keywords: factored likelihood function, longitudinal data, monotone missing data pattern, 

occasion. 
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1. Introduction 

Longitudinal studies are measurements of response variables which are 

continually operated on the same subjects over a period of time. Usually, this type of 

studies is occupied in measurements of changes in human body, typically in the 

identification of possible diseases, as well as in other studies where particular series of 

continual data are exclusively required. Nevertheless, since it is usually run on over 

years, a longitudinal study always entails a great deal of operational efforts and 

expenses. Yet, missing data are also always occurred, resulting in bias and inefficiency 

in the estimation of means, and also affecting the estimated mean of response variables 

in the study [1].  Consequently, data analysis for longitudinal studies should be carefully 

designed, so that incomplete data can be effectively analyzed.  

Usually, estimation of response mean for incomplete longitudinal data is 

analyzed using standard statistical methods, through which missing observations are 

simply ignored. However, a mention has to be noted that those missing-observation-

ignored methods are only appropriate for studies in which only a small number of 

missing data are occurred.  Nonetheless, when analyzing a large number of missing data, 

standard statistical approaches usually cause imprecision and also escalation in biases.  

In addition, this may either reduce or exaggerate statistical power (see [1-7] ), 

and each of these distortions can also lead to invalid conclusions.  In fact, a range of 

methods are used to impute non-response items in studies. However, the imputation 

methods usually cause under estimation of variance, and wrong inference of the 

response mean [1].  As a result, likelihood function based methods are usually employed 

to administer missing data.  For example, Lord [8] proposed a maximum likelihood 

estimator for trivariate normal population from file matching incomplete data which is 

shown in the form of 

11 1r 1,r 1 1n

21 2r

3,r 1 3n

y , ... , y , y , ... , y

y , ... , y
y , ... , y .

+

+

 

 

Furthermore, Edgett [9] found the maximum likelihood estimators for parameters of a 

trivariate normal distribution from univariate incomplete data which can be shown in the 

form of 

11 1r 1,r+1 1n

21 2r 2,r+1 2n

31 3r

y , ... , y ,  y , ... , y

y , ... , y , y , ... , y

y , ... , y .
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Moreover, Anderson [2] first introduced a factored likelihood function for normal 

data and estimated parameters of a multivariate normal population for monotone 

incomplete data. Particularly, in this paper another estimator of response mean, given 

application of auxiliary information for incomplete longitudinal data, under simple linear 

regression model with classical assumptions, is proposed.  The proposed estimator is 

developed from Anderson’s factored likelihood function, and is called CondMLE. 

 

2.  Methodology 
2.1 Estimators 

In this study, assume that missing completely at random data (MCAR), a drop 

out happening when probability is depended neither on the observed responses nor the 

responses with no dropped out [1],  is assumed in estimation of response mean. The 

methods used in estimation of response mean for monotone missing data are as 

following: 

2.1.1 Anderson’s estimator  

Let 1f  and 2|1f  be, respectively, the density of 1Y  and conditional density of 2Y  

given 1Y  where iY  is a random variable observed in occasion i, i = 1 or 2.     

Anderson’s factored likelihood function method is shown in equation (1) 

 
n r

2 2
1 1j 1 1 2|1 2j 0 2|1 1j 2|1

j 1 j 1
L(θ | Y )  =   f (y  | μ ,σ ) f (y  | β β y  , σ )

= =
+∏ ∏              (1) 

where   0 2 2|1 1β   =  μ  β μ−  

 2
2|1 12

1

σβ   =  ρ
σ

 

 2 2 2
2|1 12 2σ  =  (1 ρ )σ− . 

   

In this method, the mean of the response variable Y from multivariate normal 

distribution is computed when some observations are missed, and no auxiliary variable X 

is concerned: 11 12 1ny , y , ... , y  are assumed as data completely observed in the first 

occasion.  The Anderson’s estimator of response mean and variance in the first occasion 

are shown in equation (2).  Then, in the second occasion, when  n r−   observations are 

lost, there are only r subjects which can be observed, namely 21 22 2ry , y , ... , y  where 

0 r n< < .  The layout of this dataset is shown in Figure 1. 
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Occasion                  

     1            2  

   Observation      Y1         Y2                      

                        1 

                   

                               

   

                 r 

 

         n   

Figure 1. The monotone incomplete longitudinal dataset of Y. 

 

The Anderson’s estimator of response mean and variance in the second 

occasion are shown in equation (3).    

First occasion:        
n

Y 1 1j1Anderson
j=1

1μ̂   =   y  =  y
n∑                 

        
n

2 2
Y 1j 11Anderson

j=1

1σ̂   =  (y y )
n

−∑                                 (2) 

Second occasion:   Y 2 2|1 1 12Anderson
ˆμ̂ =   y   β (y y )′ ′− −            

   2 2 2 2
Y 2|1 2|1 Y2Anderson 1Anderson

ˆˆ ˆ ˆσ =  σ β σ+                     (3)        

 

where  

r

1j 1 2j 2
j=1

2|1 r
2

1j 1
j=1

(y y )(y y )

β̂     =   
(y y )

′ ′− −

′−

∑

∑
 

r r
2 2 2 2
2|1 2j 2 2|1 1j 1

j=1 j=1

1 ˆσ̂  =  (y y )   β (y y )
r

 
 ′ ′− − −
 
 
∑ ∑  

n

1 1j
j 1

1y    y
n =

= ∑     ,    
r

1 1j
j=1

1y  =  y
r

′ ∑       and     
r

2 2j
j=1

1y  =  y
r

′ ∑  
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2.1.2 The Proposed Estimator 

In estimation of response mean for incomplete longitudinal data in this study, 

auxiliary information is required for both occasions.  Rueda et al. [10] suggested the use 

of the auxiliary variable information, provided by one or several auxiliary variables, in the 

estimation of mean as a very usual technique and typically advantageous, particularly 

since powerful auxiliary information encourages reduction of biases and sampling errors.  

Therefore, the present study proposes an estimator which generally applies auxiliary 

variable- which is normally ignored in Anderson’s estimator- in the estimation of 

response mean, under the name of Conditional Maximum Likelihood Estimator, or 

CondMLE: Y |X x2 2 2 jCondML
ˆ =µ    

 In the first occasion, both response variable 1jY  and auxiliary variable 1jX  

where j = 1, 2, … , n are completely observed, that is, 11 11(x , y ),  12 12(x , y ),  …,  

1n 1n(x , y )  are observations from the first occasion. For the second occasion, only  r  

subjects can be observed, and 21 21(x , y ),  22 22(x , y ),  … , 2r 2r(x , y )  where 0 r n< <  are 

observations from the second occasion.  The layout of this dataset is shown in Figure 2. 

 

             Occasion           

         1                     2                  

Observation         Y1    X1           Y2    X2        

                              1 

         

                             

             

                                          r 

              

                    n   

Figure 2. The monotone incomplete longitudinal dataset of (X,Y). 

 

Moreover, a linear model is assumed and written as 

 

   Y   =  Xβ + ε                             (4) 
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where Y  is a (n + r ) 1×  vector of response which is distributed as normal and have no 

outliers, X is a (n + r ) 4×  matrix of auxiliary variables, 1 2β =  β β ′    is a 4 1×  vector of 

coefficient of simple linear regression model, and ε  is a (n + r ) 1×  vector of errors which 

is multivariate normally distributed with mean  (n   r)  10 + ×   and variance covariance matrix 

of ε  is as followed.   

   

2
1 r r (n r ) 12 r

2
(n r ) r 1 (n r ) (n r ) r

2
12 r r (n r ) 2 r (n+r ) (n+r )

σ σ

σ

σ σ

× −

ε − × − − ×

× − ×

 
 
 Σ =  
 
  

0

0 0

0

I I

I

I I

 

Note that mI  is an m m×  identity matrix, and m×p0  is a m p×  zero matrix.  Under model 

(4),  the likelihood function of parameter θ  can be written as  

( ) ( ) { }
rn n r 22 2 2 221 1j 2|1 2 j 12 1j2 2

j 1 j 11 2|1

1 1L( | ) 2 exp 2 exp
2 2

−−

= =

    
    θ ε = πσ − ε × πσ − ε − τ ε    σ σ      

∑ ∑         (5) 

where  11 12 1n 21 22 2r( , , ... , , , , ... , )′ε = ε ε ε ε ε ε , 2
12 12

1

σ
τ = ρ

σ
,   2 2 2

2|1 12 2(1 )σ = − ρ σ ,   

2
1j 1V(Y ) = σ ,   2

2 j 2V(Y ) = σ ,   1j 2 j 12Cov(Y ,Y ) = σ ,   and 1j 2 j 12Corr(Y ,Y ) = ρ . 

 

The conditional maximum likelihood estimator of E(Y|X), Y |X x2 2 2 jCondML
ˆ =µ , can 

be derived by solving ln L( | ) 0∂
θ ε =

∂θ
 where 2 2

10 11 1 20 21 2|1 12( , , , , , , )′θ = β β σ β β σ τ  and 

10 11, ,β β  2
1σ  are assumed to be known.  Therefore, the estimator of E(Y|X) under 

simple linear regression model for incomplete longitudinal data for the second 

occasion 〈1  is 

Y |x 20 21 2j2 2jCondML CondML CondML
ˆ ˆμ̂ β + β x=           ,     for  j 1,2, ..., r=    

where   

                                                           
〈1

 Detail is shown in dissertation of Juthaphorn Saekhoo, Simple Linear Regression 

Analysis for Incomplete Longitudinal Data, Doctoral dissertation, National Institute of 

Development Administration. 
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r r r

2 j 2 j 2 2 2 j 1j 2 1 1j 2 j 1 2
j 1 j 1 j 1

21 12 12 11CondML r r r
2 2 2 2 2 2
2 j 2 2 j 2 2 j 2

j 1 j 1 j 1

x y rx y x y rx y x x rx x
ˆ ˆˆ ˆ ,

x rx x rx x rx

= = =

= = =

     
     ′ ′ ′ ′ ′ ′− − −
     
     β = − τ + τ β
     
     ′ ′ ′− − −
     
     

∑ ∑ ∑

∑ ∑ ∑
 

 

20 2 21 2 12 1 10 11 1CondML CondML
ˆ ˆ ˆ ˆˆ (y x ) (y x )′ ′ ′ ′β = −β − τ −β −β , 

 

n

1j 1j 1 1
j=1

11 n
2 2

11j
j=1

x y nx y

β̂

x nx

 
 −
 
 =
 
 −
 
 

∑

∑
 ,       10 1 11 1

ˆ ˆβ  y β x= − ,       

 

12
Aˆ  
B

τ = , 

 

r r r r
2 2 2 2

1j 2j 1 2 11 1j 2j 1 22j 2 2j 2
j=1 j=1 j=1 j=1

r r r

2j 2j 2 2 2j 1j 2 1 11 2j 2j 2 2 1j 2j
j=1 j=1 j=1

ˆA = y y ry y x rx β x y rx y x rx

ˆx y rx y x y rx y β x y rx y x x

     
     ′ ′ ′ ′ ′ ′− − − − −
     
     

    
    ′ ′ ′ ′ ′ ′− − − + −
    
    

∑ ∑ ∑ ∑

∑ ∑ ∑
r

1 2
j=1

rx x ,
 
 ′ ′−
 
 
∑

 

 

2 2
r r r r

2 2 2
1j 10 11 1j 1j 10 11 1j 2j 1j 2 12j 2

j=1 j=1 j=1 j=1

r r r
2

11 1j 2j 1 2 2j 1j 2 1 11 1j 2j
j=1 j=1 j=1

1ˆ ˆ ˆ ˆB = (y β β x ) (y β β x ) x rx x y rx y
r

ˆ ˆ2β x x rx x x y rx y β x x

            ′ ′ ′− − − − − − − −             

  
  ′ ′ ′ ′+ − − −
  
  

∑ ∑ ∑ ∑

∑ ∑ ∑
2

1 2rx x
 
 ′ ′−
 
 
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n

1 1j
j=1

1x = x
n∑ ,   

n

1 1j
j=1

1y = y
n∑   , 

 

r

1 1j
j=1

1x = x
r

′ ∑ ,   
r

1 1j
j=1

1y = y
r

′ ∑   , 

 

r

2 2j
j=1

1x = x
r

′ ∑   and  
r

2 2j
j=1

1y = y
r

′ ∑ . 

 

2.2 Comparison between the Proposed Estimator and Anderson’s Estimator   

In order to empirically evaluate the proposed estimator, a simulation study was 

conducted.  A population for the first occasion (X1,Y1) and the second occasion (X2,Y2) of 

size N = 1,000,000 was generated and the models for (X1,Y1) and (X2,Y2)  are in the form 

of 1 1 1Y 1 2X= + + ε  and 2 2 2Y 3 4X= + + ε  where 1 ~ N(0,4)ε  , 2 ~ N(0,9)ε  respectively. 

The correlations of (Y1,Y2) were set at  0, 0.2, …, 1.  Samples of size n = 20, 30, 50 were 

repeatedly drawn at random with replacement for 2,000 times.  In each samples, 0, 10, 

20, … , 50 percent of cases were randomly dropped out which were represented as 

missing. 

In this study, 108 situations 
〈2

 are employed to compare the coefficient of 

variation (CV) 〈3 of CondMLE and Anderson’s estimator.  Since the value of response 

means for CondMLE and Anderson’s estimator are dissimilar, thus CV of the two 

estimators are instead compared.   

 

                                                           
〈2

   Six values of correlation, three values of sample size, and six percentage level of 

missing make 108 situations. 

  

〈3
  

Y2Anderson
Anderson

Y2Anderson

σ̂
CV

μ̂
=        ,    

Y |x2 2 CondML
CondML

Y |x2 2 CondML

σ̂
CV

μ̂

′

′
=  
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Table 1. Comparison of CV for CondMLE and Anderson’s estimator (Unit: percent). 

n 
12ρ
 

 

Non-missing 

data 

Missing 10 % Missing 20 % Missing 30% Missing 40% Missing 50% 

CVCondML CVAnderson CVCondML CVAnderson CVCondML CVAnderson CVCondML CVAnderson CVCondML CVAnderson CVCondML CVAnderson 

20 

 

0 

0.2 

0.4 

0.6 

0.8 

1.0 

3.88 

3.96 

3.99 

4.03 

4.07 

3.99 

17.72 

17.75 

17.76 

17.70 

17.83 

17.74 

4.08 

4.18 

4.20 

4.20 

4.29 

4.23 

17.69 

17.68 

17.70 

17.67 

17.80 

17.68 

4.40 

4.44 

4.46 

4.54 

4.52 

4.45 

17.61 

17.63 

17.63 

17.57 

17.69 

17.63 

4.65 

4.80 

4.80 

4.75 

4.90 

4.76 

17.54 

17.56 

17.60 

17.51 

17.62 

17.58 

5.08 

5.14 

5.03 

5.16 

5.25 

5.20 

17.48 

17.49 

17.58 

17.49 

17.60 

17.41 

5.50 

5.58 

5.72 

5.63 

5.71 

5.68 

17.40 

17.34 

17.42 

17.39 

17.47 

17.33 

30 

 

0 

0.2 

0.4 

0.6 

0.8 

1.0 

3.35 

3.19 

3.24 

3.20 

3.13 

3.20 

17.74 

17.77 

17.72 

17.76 

17.75 

17.77 

3.50 

3.35 

3.40 

3.36 

3.26 

3.40 

17.72 

17.73 

17.68 

17.75 

17.74 

17.72 

3.73 

3.56 

3.59 

3.56 

3.58 

3.55 

17.69 

17.71 

17.65 

17.71 

17.66 

17.71 

3.92 

3.83 

3.81 

3.87 

3.71 

3.86 

17.64 

17.64 

17.63 

17.61 

17.62 

17.68 

4.26 

4.19 

4.13 

4.14 

4.12 

4.22 

17.59 

17.61 

17.53 

17.53 

17.58 

17.64 

4.69 

4.55 

4.58 

4.43 

4.44 

4.57 

17.49 

17.45 

17.44 

17.58 

17.52 

17.49 

50 

 

0 

0.2 

0.4 

0.6 

0.8 

1.0 

2.55 

2.47 

2.52 

2.48 

2.57 

2.46 

17.72 

17.76 

17.75 

17.77 

17.79 

17.81 

2.71 

2.63 

2.66 

2.59 

2.71 

2.59 

17.70 

17.73 

17.74 

17.74 

17.78 

17.80 

2.85 

2.78 

2.80 

2.79 

2.81 

2.77 

17.67 

17.72 

17.71 

17.73 

17.75 

17.78 

3.01 

2.96 

3.00 

2.97 

2.97 

2.93 

17.66 

17.69 

17.69 

17.71 

17.71 

17.72 

3.27 

3.20 

3.28 

3.26 

3.28 

3.22 

17.60 

17.63 

17.61 

17.68 

17.65 

17.68 

3.59 

3.57 

3.58 

3.48 

3.57 

3.56 

17.50 

17.59 

17.60 

17.60 

17.62 

17.61 
 

Remark : 12 1j 2 jCorr(Y ,Y )ρ = is the correlation of response variable between the first and       

second occasion. 

 

Results of the simulation study show that CV of CondMLE is smaller than that of 

Anderson’s estimator for sample size 20, 30 and 50, at whatever percentage of missing 

and correlation coefficient of response variable between two occasions.  Furthermore, 

CondMLE produces smaller CV when the dataset contains large sample size and smaller 

number of missing data.  The results of simulation study are shown in Table 1. 

 

3.  Conclusion and Comments 

In this study, a response mean estimator for longitudinal studies with incomplete 

data, MCAR and monotone missing data pattern, is proposed and examined.  For the 
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first occasion, both response variable 1jY  and auxiliary variable 1jX  where j 1, 2, ..., n=  

are completely observed. Moreover, classical assumption for linear model of the 

relationship between response variable Y and auxiliary variable X is assumed. For the 

second occasion, when n r−  observations are lost, and there are only r observations, 

0 r n< < , collected from the second occasion. The estimator of response mean Y given 

the value of an auxiliary variable X for the second occasion is proposed.  It can be 

verified that such estimator is unbiased. 
〈4  Results from the Monte Carlo simulations 

showed that CondMLE presented lower CV than Anderson’s estimator which is an 

auxiliary-information-ignored estimator. In summary, it can be assumed that application 

of auxiliary information in the estimation of response mean Y can reduce bias and 

sampling error and thus can be more effective than estimations with no application of 

auxiliary information.  In addition, CV of CondMLE also decreased though the data set 

contained large sample size with any percentage of missing data, while CV of Anderson’s 

estimator presented no change though there were different percentages of missing data 

and sample sizes.  However, this simulation study showed that CondMLE became more 

efficiency when the dataset contains larger sample size and smaller amount of missing 

data are observed.  
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