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Abstract 

In this study we presented a new class of probability sampling designs, simple 

latin cubic sampling +1 sampling designs that were developed from simple latin square 

sampling designs by focus on three-dimensional, with the specific goals of deriving an 

estimator of the population total, true variances of these estimators, and estimators of 

these variances.  And the Horvitz-Thompson estimation method will be the primary 

method used to generate these estimator. These designs when compared with simple 

random, stratified, and systematic sampling will provide estimator with smaller variance 

for simulation population with spatial correlation and assume that the survey region can 

be partitioned into three-dimensional grid of d3 equalized three-dimensional. 

______________________________ 
Keywords: Horvitz–Thompson estimators, Latin square sampling, sampling designs. 

 
1. Introduction 

 In many biological, sociological, agricultural and geological studies, the 

population of interest is a region that is partitioned into quadrates which represent the 

sampling units. The variable of interest is some characteristic that can be measured in 

each quadrate. After taking a sample of these quadrates by a particular sampling design 

and recording the measurement for the variable of interest, this information can be used 
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to estimate a parameter of the population. Furthermore, suppose that the variable of 

interest has a positive spatial correlation which means neighboring units tend to have 

more similar values than units that are far apart. This type of spatial correlation is 

presented in many biological and geological populations. Therefore, it is desirable for 

present sampling units to be scattered throughout the population to assure a 

representative sample with good spatial coverage. 

 Sampling designs which produce an appropriate coverage of the population 

will increase the precision of the parameter estimator [1], and a spatially well-distributed 

sample may also be advantageous for estimating a population parameter. For example, 

if spatial correlation is presented, an estimator of abundance could be more precise 

when based on data arising from sampled quadrates that are well distributed over the 

study region. Unfortunately, simple random sampling of quadrates does not guarantee 

that a particular sample will provide good coverage over the region. In a one-dimensional 

population, systematic and stratified sampling with a random sample taken in each 

stratum is traditional sampling designs that cover the population region [2]. 

 For two-dimensional populations new probability sampling designs that yield 

spatially well-distributed samples will be presented. These designs, called “simple latin 

square sampling ± k designs, were developed by Borkowski [3] from simple latin square 

designs. In these sampling designs the sample size equals the square root of the 

population size. These sampling designs which are alternatives to other sampling 

designs for two-dimensional populations can provide better sample coverage than either 

systematic or simple random sampling. Also, the corresponding estimators are generally 

more efficient than those obtained from the latter designs when the population is spatially 

correlated. 

 Suppose that a population is partitioned into a square grid of d2 substrata 

according to two stratification criteria such that d strata are formed from each criterion. 

Historically, the term latin square sample refers to a sample of d substrata such that 

exactly one substratum from each of the square’s rows and columns is selected. A 

sampling unit is then randomly selected within each chosen substratum. This sampling 

design has been called a variety of names, including lattice sampling [4,5] latin square 

stratification [6] and multiple stratification [7] 

 Typically, the data may be collected from a one-dimensional or two- 

dimensional study region. Although previous research has been limited to one or two- 

dimensional problems, applications of three-dimensional volumetric data are becoming 

increasingly available in a wide range of scientific and technical disciplines. The spatial 
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objects of our world have an intrinsic three-dimensional nature, and they have often been 

neglected in spatial systems and processes. We can expect such data to yield valuable 

insights about many important systems in our three-dimensional world. Accounting for 

uncertainty in three-dimensional shapes is important in a large number of scientific and 

engineering areas, such as biometrics, biomedical imaging, and data mining. For 

example, Geographical Information Systems (GIS), which map geometric data, are 

nowadays restricted to the handling of two-dimensional information. But increasingly the 

third dimension becomes more and more relevant for application domains like pollution 

control, water supply, soil engineering, mining, urban planning and aviation [8]. However, 

the statistics of these three-dimensional models have not been widely explored. The 

statistics are similar to those commonly found in other fields of the physical, biological, 

and earth sciences.  

 For these various reasons, we are interested in the extension of simple latin 

square sampling design principles and theory to applications in three-dimensional 

sampling frames.  The research will focus on three-dimensional simple latin square 

sampling +1 designs with the specific goals of deriving an estimator of the population 

total, an estimator of the population mean, the true variances of these two estimators, 

and estimators of these variances. We will call the new sampling designs that  “simple 

latin cubic sampling designs ”denoted SLCS are modifications of sample latin square 

sampling +1 designs (SLSS+1) ,which were introduced by Munholland and Borkowski 

[9]. And the Horvitz-Thompson estimation method will be the primary method used to 

generate these estimators. 

 
2. Simple Latin Cubic Sampling Designs 

 Simple latin cubic sampling designs (denoted SLCS) are modifications of 

sample latin square sampling designs (SLSS), which were introduced by Munholland 

and Borkowski [9]. The SLSS designs will be extended to three dimensions by applying 

simple latin square sampling design principles and theory to three-dimensional sampling 

frames, and the researcher’s goal is to estimate the population total (τ). Assume that the 

survey region can be partitioned into a ddd ××  three-dimensional grid of d3 equalized 

three-dimensional rectangular solid which will be referred to as “cubic”.  Thus the cubic 

are form the population of sampling units.   

 For each cubic, let y be the response of interest. The values of the population 

units with respect to the characteristic y under study will be denoted by Nyyy ,....,, 21  

where N= d3. Here iy  denotes the value of the unit bearing labels i with respect to the 
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variable y.  Suppose a sample of n = d cubic are selected from the grid of d3 cubics via a 

sampling design, and the y-values are recorded. Let the three dimensions be referred to 

as “layer”, “row”,  and  “column”,  and let (l, r, c) denote the cubic at layer = l, row = r, and 

column = c. The following algorithm contains the three steps for selecting the units when 

the sampling design is a SLCS.  

Step 1:  Take a SLSS of size d in the two-dimensional square of dd ×  

quadrats. That is, generate a permutation of the numbers 1, 2 ,…, d and then 

sequentially assign the numbers in the permutation to the columns while moving down 

the rows. 

Step 2: Generate a random permutation (a1, a2, …, ad) of the integers 1,2,…d.   

Step 3: Assign the SLSS unit in row r  to layer ar  for r = 1,2,…,d. 

An example of selecting a SLCS when d = 4 will now be presented. In Step 1, a 

SLSS of units (r,  c) = (1, 1), (2, 2), (3, 4), and (4, 3) was selected. Figure 1 shows the 

results for this SLSS with the  •’s represent the sampling units.  

 1 2 3 4 

1 •    

2  •   

3    • 

4   •  

                       
 Figure 1.  An example of selecting units in SLSS. 

 

A random permutation (3, 1, 2, 4) of the integers 1, 2, 3, 4 is generated. Layers 3, 2, 1, 

and 4 are then assigned to the SLSS units in rows 1 to 4, respectively.  These layers 

yield a SLCS of (3, 1, 1), (1, 2, 2), (2, 3, 4), and (4, 4, 3) shown in Figure 2. 

 

         Layer 1                      Layer  2                             Layer 3                          Layer 4 
 1 2 3 4   1 2 3 4   1 2 3 4   1 2 3 4 

1      1      1 •     1     

2  •    2      2      2     

3      3    •  3      3     

4      4      4      4   •  

 
Figure 2.   Generating a SLCS from the SLSS in Figure 1. 
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3.  Simple Latin Cubic Sample +1 Designs 

 A more general design can be easily defined by initially selecting an SLCS 

and subsequently drawing k additional units to give an SLSS+k  where )1(1 −≤≤ dk . An 

approach to increasing sample size, we focus on the simplest case with k=1. A SLCS+1 

fall into the classical designs framework in that samples generated by the design have 

corresponding selection probabilities that are independent of y-values. 

 In these sampling designs, the sample size can be d +1 which is a 

modification of simple latin cubic designs. A simple latin cubic sample +1 design 

(SLCS+1) is composed of two sets of sampling units:  

(i) d sampling units from a SLCS, and 

(ii) one additional sampling unit which is a cubic selected from the d3 - d 

remaining units.  

 Suppose a sample of n = d + 1 units are selected from the d3 cubic via a 

sampling design, and for each cubic, let y be the response of interest. The following 

algorithm contains the steps for selecting the units in a SLCS+1 : 

Step 1:   Take a SLSS in the two-dimensional square of d× d  quadrats.  

Step 2:    Generate a SCLS from this SLSS. 

Step 3:    Randomly select a cubic from the d3- d remaining cubic. 

An example of a simple latin cubic sample of size d=4 from a population of 64 

units generated by the permutation (1, 2, 4, 3) yields the SLSS indicated with •’s in 

Figure 1. Let (3, 1, 2, 4) be a random permutation of the integers 1,2,3,4. Assign the 

SLSS unit in row 1 to layer 3, in row 2 to layer 1, in row 3 to layer 2, and in row 4 to layer 

4  This generates a SLCS with units (l , r, c) = (3, 1, 1), (1, 2, 2), (2, 3, 4), and (4, 4, 3). 

The SLCS show in Figure 2. The additional unit (+) is randomly chosen from the 

remaining 60 units to give a simple latin cubic sample +1. The SLCS+1 design for d = 4 

and the additional unit is shown in Figure 3. 

      Layer 1                           Layer  2                                  Layer 3                         Layer 4 

 1 2 3 4   1 2 3 4   1 2 3 4   1 2 3 4 

1      1      1 •     1     

2  •    2      2    +1  2     

3      3    •  3      3     

4      4      4      4   •  

 
Figure 3.  Example of SLCS+1 where d=4. 
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 There are three major benefits to selecting the +1units with this algorithm:  

(i) the +1 unit is an extension of the SLCS. That is, the additional one unit 

spans another layer, row, and column, and thereby continues to provide 

a sample of cubic that is spatially well-distributed, 

(ii) the joint inclusion probability in the Horvitz-Thompson estimator is 

greater than 0 for all pairs of cubic. This guarantees that the estimator of 

the variance will be unbiased. 

 
4.  Simple Latin Cubic Sample - k Design     

If suppose the researcher does not have enough resources to sample at least  

d + 1 units. Assume a maximum of d - k ( k = 0, 1,.., d – 2 ) units could be sampled. 

Another class of designs that allows these smaller sample sizes are known as simple 

latin cubic sampling - k designs (SLCS-k). The units in a SLSS-k are a subset of 

sampling units from any SLSS. A SLCS-k can be generated by randomly selecting (d - k) 

points from a randomly generated SLCS. 

An example of a simple latin cubic sample of size d = 4 with units (l, r, c) = (3, 

1, 1), (1, 2, 2), (2, 3, 4), and (4, 4, 3) is shown in Figure 2. An example of a SLCS - 1 

design for d = 4 is shown in Figure 4. 

 

                Layer 1                 Layer 2                                 Layer 3                           Layer 4 

 1 2 3 4   1 2 3 4   1 2 3 4   1 2 3 4 

1      1      1      1     

2  •    2      2      2     

3      3    •  3      3     

4      4      4      4   •  

 
Figure 4.   Example of SLCS-1 where d = 4. 

 

5. Estimation of Population Total 

 Horvitz-Thompson [10] provided an estimator of the population total τ  for 

sampling designs having unequal unit selection probabilities, and sampling is done 

without replacement from a finite-population which the inclusion probabilities include 

necessary to determine the estimator variances and the estimators of these variances.  

 



Kanlaya Boonlha         19 

For Simple Latin Cubic Sample + 1 Designs 

The first-order inclusion probability iπ is the probability unit ui will be included 

by a sampling design. Because every unit has the same probability of being   included in 

a SLCS+1, iπ for i =1, 2,…, d3   is defined as 3)1( ddi +=π . 

The second-order inclusion probability ijπ  is the probability units ui and uj for i, 

j=1, 2,…, d3, will both be included by a sampling design. To obtain ijπ  for SLCS+1 

design, three cases need to be considered:  

case I:  If the sampling units are located in the same row or column or layers, 

then both units will be included if and only if one of them, say ui is in the initial SLCS with 

probability 21 d , and uj is selected as additional unit with probability )3(1 dd −   (or vice 

versa). When ui and uj are in the same row or column or layers, the second-order 

inclusion probability is 

)12(3
2

−
=

dd
ijπ . 

 case II:  If the sampling units ui and uj are in different rows, columns and layers, 

then either (i) both units are in the SLCS, or (ii) one of them is in the SLCS and the other 

is chosen as addition unit. Since there )3(2])!2[( ddd −− possible samples when ui 

and uj are both members of the SLCS, the probability associated with this case II(i) 

is )2)1(2/(1 −= ddijπ . There are ]2])!2[(2])!1[[(2 −−− dd  possible SLCS in ui or uj 

(but not both) is member of SLCS. Thus, the probability associated with caseII(ii) is

 
))12(2)1(2()2(2 −−−= dddd

ij
π . 

Combining the results from case II when ui and uj appear in different rows 

columns and layers, yields the probability, 

                                           ))12(2)1(2(

)522(

−−

−+
=

ddd

dd
ij

π .
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For Simple Latin Cubic Sample -k Designs 

If the researcher does not have enough resources and have sample at least d 

+1 unit. Assume a maximum of d - k (where k = 0, 1,.. , d - 2) units could be sampled. 

The first-order inclusion probability iπ is 
 

3)( dkdi −=π .
 

The second order inclusion probability ijπ if the sampling units are located in 

the same row or column or layer, then 0=ijπ . However, when the sampling units are in 

different rows and columns the second order inclusion probability is 
 

                                    3)1(3
)1)((

−

−−−
=

dd

kdkd
ijπ . 

When the goal is to estimate τ  and the iπ  are known, Horvitz and Thompson 

[10] estimators are used. Simple latin cubic sampling (SLCS+1) has the same Horvitz-

Thompson estimator as the two-dimensional simple latin square sampling (SLSS) case.  

That is, ∑
=

=
∧ n

i
iiy

1
πτ when n= 2, 3, …, d, d+1.These estimators are design 

unbiased estimators of τ  where N= d3 is the size of the population and the summation is 

over the n units in the sample.  The variance of the estimator 
∧

τ  is 

                                   ∑
=

∑
>

−+∑
=

−=
∧





























 N

i jyiy
N

j iji
iy

N

i i 1 1
1122

1
11)var(

πππ
τ . 

An estimator of this variance is 

                                           ∑
=

∑
>

−+∑
=

−
=

∧∧
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




























 n

i jyiy
n

j ijiji
iy

n

i i

i
1 1

1122
1 2

1
)(var

ππππ

π
τ . 

If ijπ > 0 for  all i, j =1, 2, . . . ,N then the estimator the variance of 
∧

τ  is unbiased in the 

design sense [3]. Thus, )(var
∧∧
τ is an unbiased estimator for a SLCS+1. 

 
6. Simulation Results 

 In this study, we compared sampling designs when sampling from 

populations having no or positive spatial correlation. These simulation studies have three 
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populations: no spatial trends (P1), has a strong top-to-bottom (one-dimensional) spatial 

trend (P2), and has a strong diagonal (two-dimensional) spatial trend (P3).The variances 

of Horvitz-Thompson estimators of the population total for SLCS+1 and SLCS-k, 

stratified SLCS+1 and SLCS-k designs, and systematic SLCS+1 and SLCS-k designs 

were compared, respectively, to the variances of the Horvitz-Thompson estimators for 

the population for SRS, stratified SRS, and systematic SRS designs. The simulated 

population data were generated by using MATLAB version 7. Each sampling situation is 

repeated 100 times and the average variance of the estimator for population total was 

calculated. The simulation results are reported in Tables 1, 2 and 3. 

 From Table 1, to evaluate the efficiency of estimators of the population total, 

the variances of the estimators from SLCS+1 and SLCS-k are compared to the 

variances of the estimators for SRS without replacement. For population sizes d3= 53, 83, 

103, the average of the 100 variances of the estimators were calculated for sample sizes 

n = 2, 3, .., d, d+1  which correspond to the smallest SLCS-k (n = 2,3,..d) design to the 

largest SLCS+1 (n = d+1)  design.  

The reduction in variance depends on type of the spatial correlation that is 

present in the population. When there is no spatial trend (P1), there are negligible 

differences between the variances of SLCS+1 or SLCS-k estimator and the variance of 

the SRS estimator. This is an expected result because there is no benefit to having a 

spatially well-distributed sample in a population exhibiting spatial randomness. If the 

population has a strong top-to-bottom (one-dimensional) spatial trend (P2) or a strong 

diagonal (two-dimensional) spatial trend (P3), then the variances of SLCS+1 and SLCS–

k estimators are smaller than the corresponding SRS estimator variances. Also, the 

variances of the SLCS estimators are not necessarily a decreasing function of sample 

size. The variance will decrease from sample size n = 2 to n = d, but it may then increase 

when n = d + 1.  

The results in Table 2 show that populations were stratified in the following 

ways: for d3= 83, 8 strata were formed from adjacent cubes composed of dh
3=43 cubics, 

for d3= 103, 8 strata were formed from adjacent cubes of dh
3=53 cubics, and for d3= 203, 6 

strata were formed in two different ways: (i) 64 strata were formed from adjacent cubes 

of dh
3=53 cubics and (ii) 8 strata were formed from adjacent cubes of dh

3=103 cubics. For 

each of these stratified populations, the average variances of the estimators were 

calculated for sample sizes nh = 2, 3,…,dh+1 which correspond to smallest stratified 

SLCS-k to the largest stratified SLCS+1 designs. Also, for each population spatial 
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pattern, the average variances of stratified SLCS-k and SLCS+1 design estimators are 

smaller than the average variances of the corresponding stratified SRS estimator.  

Table 1. The average variances of estimators for population total with simple random 

sampling (SRS) and simple latin cubic sampling (SLCS) designs for three populations.  

N k n 

The average variances of estimators for population total. 

P1 P2 P3 

)ˆ(var srsτ  )ˆ(var slcsτ  )ˆ(var srsτ  )ˆ(var slcsτ  )ˆ(var srsτ  )ˆ(var slcsτ  

 

53 

 

-3 

 

2 1.54E+4 1.54E+4 1.71E+4 1.33E+4 9.29E+4 7.40E+4 

 -2 3 1.02E+4 1.02E+4 1.13E+4 6.25E+4 6.14E+4 3.62E+4 

 -1 4 7.56E+4 7.56E+4 8.42E+4 2.72E+4 4.57E+4 1.73E+4 

 0 5 6.00E+4 5.99E+4 6.68E+4 5.96E+4 3.63E+4 5.98E+4 

 +1 6 4.96E+4 4.95E+4 5.52E+4 1.37E+4 3.00E+4 9.29E+4 

 

83 

 

-6 

 

2 2.63E+4 2.63E+4 7.14E+4 6.17E+4 3.71E+4 3.22E+4 

 -5 3 1.75E+4 1.75E+4 4.75E+4 3.45E+4 2.47E+4 1.82E+4 

 -4 4 1.31E+4 1.31E+4 3.55E+4 2.10E+4 1.85E+4 1.12E+4 

 -3 5 1.05E+4 1.05E+4 2.84E+4 1.29E+4 1.47E+4 6.96E+4 

 -2 6 8.70E+4 8.69E+4 2.36E+4 7.43E+4 1.23E+4 4.15E+4 

 -1 7 7.44E+4 7.43E+4 2.02E+4 3.55E+4 1.05E+4 2.15E+4 

 0 8 6.50E+4 6.49E+4 1.76E+4 6.47E+4 9.15E+4 6.49E+4 

 +1 9 5.77E+4 5.76E+4 1.56E+4 2.27E+4 8.12E+4 1.43E+4 

 

103 

 

-7 

 

2 1.00E+4 1.00E+4 4.22E+4 3.77E+4 2.16E+4 1.94E+4 

-6 3 6.67E+4 6.67E+4 2.81E+4 2.21E+4 1.44E+4 1.14E+4 

 -5 4 5.00E+4 5.00E+4 2.11E+4 1.43E+4 1.08E+4 7.38E+4 

 -4 5 3.99E+4 3.99E+4 1.68E+4 9.57E+4 8.63E+4 4.99E+4 

 -3 6 3.33E+4 3.32E+4 1.40E+4 6.45E+4 7.18E+4 3.39E+4 

 -3 7 2.85E+4 2.85E+4 1.20E+4 4.21E+4 6.15E+4 2.25E+4 

 -2 8 2.49E+4 2.49E+4 1.05E+4 2.54E+4 5.38E+4 1.40E+4 

 -1 9 2.21E+4 2.21E+4 9.32E+4 1.24E+4 4.77E+4 7.31E+4 

 0 10 1.99E+4 1.99E+4 8.38E+4 1.98E+4 4.29E+4 1.99E+4 

 +1 11 1.80E+4 1.80E+4 7.61E+4 8.62E+4 3.90E+4 5.22E+4 

N = number of population unit in each stratum, n= number of sample unit in each stratum 
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Table 2. Strata formed from adjacent dh
3=43 cubic. The average variances of estimators 

for population total with stratified random sampling and stratified latin cubic sampling+1 

designs for three populations.  
 

k nh 

The average variances of estimators for population total. 

d3 P1 P2 P3 

( 3
hd ) )ˆ(var stτ  )ˆ(var stslcsτ  )ˆ(var stτ  )ˆ(var stslcsτ  )ˆ(var stτ  )ˆ(var stslcsτ  

 

83 

(43) 

 

-2 

 

2 

 

3.15E+4 

 

3.14E+4 

 

2.34E+4 

 

1.69E+4 

 

1.33E+4 

 

1.00E+4 

-1 3 2.06E+4 2.06E+4 1.53E+4 6.63E+4 8.72E+4 4.35E+4 

 0 4 1.52E+4 1.51E+4 1.13E+4 1.51E+4 6.43E+4 1.51E+4 

 +1 5 1.20E+4 1.19E+4 8.90E+4 2.84E+4 5.06E+4 2.02E+4 

 

103 

(53) 

 

-3 

 

2 

 

1.20E+4 

 

1.20E+4 

 

1.35E+4 

 

1.05E+4 

 

7.35E+4 

 

5.85E+4 

-2 3 7.93E+4 7.96E+4 8.93E+4 4.93E+4 4.86E+4 2.86E+4 

 -1 4 5.90E+4 5.93E+4 6.64E+4 2.14E+4 3.62E+4 1.37E+4 

 0 5 4.68E+4 4.72E+4 5.27E+4 4.72E+4 2.87E+4 4.72E+4 

 +1 6 3.87E+4 3.89E+4 4.35E+4 1.08E+4 2.37E+4 7.34E+4 

 

203 

(53) 

 

-3 

 

2 

 

9.80E+4 

 

9.79E+4 

 

1.09E+4 

 

8.46E+4 

 

5.94E+4 

 

4.73E+4 

-2 3 6.48E+4 6.46E+4 7.19E+4 3.97E+4 3.93E+4 2.31E+4 

 -1 4 4.82E+4 4.80E+4 5.35E+4 1.73E+4 2.92E+4 1.11E+4 

 0 5 3.82E+4 3.81E+4 4.24E+4 3.81E+4 2.32E+4 3.81E+4 

 +1 6 3.16E+4 3.15E+4 3.51E+4 8.69E+4 1.92E+4 5.93E+4 

 

203 

(103) 

 

-8 

 

2 

 

8.01E+4 

 

8.01E+4 

 

3.38E+4 

 

3.01E+4 

 

1.73E+4 

 

1.55E+4 

-7 3 5.34E+4 5.34E+4 2.25E+4 1.76E+4 1.15E+4 9.09E+4 

 -6 4 4.00E+4 4.00E+4 1.68E+4 1.14E+4 8.63E+4 5.90E+4 

 -5 5 3.20E+4 3.19E+4 1.35E+4 7.65E+4 6.89E+4 3.99E+4 

 -4 6 2.66E+4 2.66E+4 1.12E+4 5.15E+4 5.74E+4 2.71E+4 

 -3 7 2.28E+4 2.28E+4 9.60E+4 3.37E+4 4.91E+4 1.80E+4 

 -2 8 1.99E+4 1.99E+4 8.39E+4 2.03E+4 4.30E+4 1.12E+4 

 -1 9 1.77E+4 1.77E+4 7.45E+4 9.91E+4 3.81E+4 5.84E+4 

 0 10 1.59E+4 1.59E+4 6.70E+4 1.59E+4 3.43E+4 1.59E+4 

 +1 11 1.44E+4 1.44E+4 6.08E+4 6.90E+4 3.11E+4 4.17E+4 

 

nh = number of sample unit in each stratum, dh
3= number of population in each stratum 
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The reduction in average variance depends on the type of spatial correlation. 

For the populations having no spatial trend (P1), the differences are negligible between 

the average variances of the estimator for stratified SLCS-k or SLCS+1 and the stratified 

SRS of equal size. For the populations having a strong top-to-bottom (one-dimensional) 

spatial trend (P2) or a strong diagonal (two-dimensional) spatial trend (P3), the 

estimators for stratified SLCS-k and SLCS+1 designs are more efficient than the 

corresponding stratified SRS estimators for each sample size. Also, the average 

variances of the stratified SLCS estimators are not necessarily a decreasing function of 

within-stratum sample size nh. The average variance will decrease from nh = 2 to nh = dh, 

but it may then increase for nh = dh + 1.  

According to Table 3, consider the common sampling situation when primary 

units are selected systematic random sampling designs. The simulated populations were 

systematically partitioned in the following ways: for d3 = 83 there were dh
3= 43 primary 

units each containing 8 secondary units, for d3 = 103 there were dh
3=53 primary units 

each containing 8 secondary units, for d3= 203 there were two cases: (i) dh
3=53 primary 

units each containing 64 secondary units and (ii) dh
3=103 primary units each containing 8 

secondary units. 

The reduction in average variance depends on the type of spatial correlation. 

For the populations having no spatial trend (P1), the differences are negligible between 

the average variances of the estimator for the systematic SLCS-k or SLCS+1 and the 

systematic SRS of equal size. For the populations having a strong top-to-bottom (one-

dimensional) spatial trend (P2) or a strong diagonal (two-dimensional) spatial trend (P3), 

the estimators for systematic SLCS-k and SLCS+1 designs are more efficient than the 

corresponding systematic SRS estimators for each sample size. Also, the average 

variances of the systematic SLCS estimators are not necessarily a decreasing function 

of within-stratum sample size nh. The average variance will decrease from nh = 2 to nh = 

dh, but it may then increase for nh = dh + 1.  
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Table 3. The average variances of estimators for population total with systematic 

random sampling and systematic latin cubic sampling+1 designs for three populations. 

d3 

( 3
hd ) 

 k nh 

The average variances of estimators for population total. 

P1 P2 P3 

)ˆ(var sysτ  )ˆ(var sysslcsτ
 

)ˆ(var sysτ
 

)ˆ(var sysslcsτ
 

)ˆ(var sysτ  )ˆ(var sysslcsτ
 

 

83 

(43) 

 

-2 

 

2 3.06E+4 3.05E+4 1.65E+4 1.12E+4 8.36E+4 5.76E+4 

-1 3 
2.01E+4 2.00E+4 1.08E+4 3.85E+4 5.48E+4 2.02E+4 

0 4 1.48E+4 1.47E+4 7.96E+4 1.47E+4 4.04E+4 1.47E+4 

 +1 5 
1.16E+4 1.16E+4 6.26E+4 1.43E+4 3.18E+4 7.74E+4 

 

103 

(53) 

 

-3 

 

2 1.23E+4 1.23E+4 1.00E+4 7.62E+4 5.08E+4 3.87E+4 

-2 3 
8.15E+4 8.15E+4 6.64E+4 3.41E+4 3.36E+4 1.75E+4 

-1 4 6.06E+4 6.06E+4 4.94E+4 1.31E+4 2.50E+4 6.85E+4 

 0 5 4.81E+4 4.80E+4 3.92E+4 4.79E+4 1.98E+4 4.80E+4 

 +1 6 
3.98E+4 3.97E+4 3.24E+4 5.95E+4 1.64E+4 3.17E+4 

 

203 

(53) 

 

-3 

 

2 1.04E+4 1.04E+4 6.36E+4 4.81E+4 3.19E+4 2.41E+4 

-2 3 
6.85E+4 6.84E+4 4.21E+4 2.14E+4 2.11E+4 1.07E+4 

-1 4 5.10E+4 5.08E+4 3.13E+4 8.06E+4 1.57E+4 4.05E+4 

 0 5 4.04E+4 4.02E+4 2.48E+4 4.02E+4 1.24E+4 4.02E+4 

 +1 6 
3.34E+4 3.33E+4 2.05E+4 3.59E+4 1.03E+4 1.81E+4 

 

203 

(103) 

 

-8 

 

2 8.03E+4 8.03E+4 2.65E+4 2.35E+4 1.33E+4 1.18E+4 

-7 3 5.35E+4 5.35E+4 1.76E+4 1.37E+4 8.84E+4 6.90E+4 

 -6 4 4.01E+4 4.01E+4 1.32E+4 8.84E+4 6.62E+4 4.44E+4 

 -5 5 3.20E+4 3.20E+4 1.05E+4 5.90E+4 5.29E+4 2.97E+4 

 -4 6 2.67E+4 2.67E+4 8.78E+4 3.94E+4 4.40E+4 1.98E+4 

 -3 7 
2.28E+4 2.28E+4 7.52E+4 2.54E+4 3.77E+4 1.28E+4 

 -2 8 2.00E+4 1.99E+4 6.57E+4 1.49E+4 3.30E+4 7.53E+4 

 -1 9 1.77E+4 1.77E+4 5.84E+4 6.70E+4 2.93E+4 3.44E+4 

 0 10 
1.59E+4 1.59E+4 5.25E+4 1.59E+4 2.63E+4 1.59E+4 

 +1 11 
1.45E+4 1.45E+4 4.77E+4 4.51E+4 2.39E+4 2.33E+4 

 

nh = number of sample unit in each unit, , dh
3= number of population in each stratum 
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7. Conclusion and Discussion 

In this study we expanded simple latin square sampling designs to three 

dimension called “simple latin cubic sample +1 designs (SLCS+1)” and “simple latin 

cubic sample -k designs (SLCS-k)”. Assume that the survey region can be partitioned 

into a ddd ××  three-dimensional grid of d3 equisized three-dimensional rectangular 

solids which will be referred to as “cubics”. The cubics form the population of sampling 

units.  In these sampling designs, the possible sample sizes are n = 2, 3, …, d, d + 1. A 

SLCS+1 design is composed of two sets of sampling units: (i) d sampling units (cubics) 

from a SLCS, and (ii) one additional sampling unit selected from the  

d3-d remaining cubics. For a SLCS+1 design, one unit is sampled from each the row and 

column and layer in the population of ddd ×× of sampling units. 

  Horvitz-Thompson estimators are unbiased estimators of the population total, 

and because SLCS+1 and SLCS-k have the same first-order inclusion probabilities as 

SRS, the corresponding Horvitz-Thompson estimators of the population total are 

equivalent. The estimator of the variance of a Horvitz-Thompson estimator of the 

population total is unbiased for a SLCS+1 but not for a SLCS-k because the second-

order inclusion probability for a SLCS-k is zero when two sampling units are located in 

the same row or column or layer.  

 The results from this study are in agreement with the simple latin square 

sampling (SLSS) results in Borkowski [3]. That is, for every sample size the variance of 

the SLCS-k and SLCS+1 estimator is smaller than the variance of the SRS estimator. 

The largest reduction in variance occurred with the population having the strong diagonal 

trend, followed by population with the north–south trend. For the populations having no 

spatial trends, the differences between estimator variances was negligible. The same 

conclusions hold for the estimator variance assuming stratified SLCS-k or SLCS+1, or 

assuming systematic SLCS-k and SLCS+1. 

 Hence, SLCS-k and SLCS+1 design, when compared to simple random, 

stratified, and systematic sampling will provide estimators with smaller variance when 

spatial correlation exists.  
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