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Abstract

In this study we presented a new class of probability sampling designs, simple
latin cubic sampling +1 sampling designs that were developed from simple latin square
sampling designs by focus on three-dimensional, with the specific goals of deriving an
estimator of the population total, true variances of these estimators, and estimators of
these variances. And the Horvitz-Thompson estimation method will be the primary
method used to generate these estimator. These designs when compared with simple
random, stratified, and systematic sampling will provide estimator with smaller variance
for simulation population with spatial correlation and assume that the survey region can

be partitioned into three-dimensional grid of d? equalized three-dimensional.
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1.Introduction

In many biological, sociological, agricultural and geological studies, the
population of interest is a region that is partitioned into quadrates which represent the
sampling units. The variable of interest is some characteristic that can be measured in
each quadrate. After taking a sample of these quadrates by a particular sampling design

and recording the measurement for the variable of interest, this information can be used
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to estimate a parameter of the population. Furthermore, suppose that the variable of
interest has a positive spatial correlation which means neighboring units tend to have
more similar values than units that are far apart. This type of spatial correlation is
presented in many biological and geological populations. Therefore, it is desirable for
present sampling units to be scattered throughout the population to assure a
representative sample with good spatial coverage.

Sampling designs which produce an appropriate coverage of the population
will increase the precision of the parameter estimator [1], and a spatially well-distributed
sample may also be advantageous for estimating a population parameter. For example,
if spatial correlation is presented, an estimator of abundance could be more precise
when based on data arising from sampled quadrates that are well distributed over the
study region. Unfortunately, simple random sampling of quadrates does not guarantee
that a particular sample will provide good coverage over the region. In a one-dimensional
population, systematic and stratified sampling with a random sample taken in each
stratum is traditional sampling designs that cover the population region [2].

For two-dimensional populations new probability sampling designs that yield
spatially well-distributed samples will be presented. These designs, called “simple latin
square sampling + k designs, were developed by Borkowski [3] from simple latin square
designs. In these sampling designs the sample size equals the square root of the
population size. These sampling designs which are alternatives to other sampling
designs for two-dimensional populations can provide better sample coverage than either
systematic or simple random sampling. Also, the corresponding estimators are generally
more efficient than those obtained from the latter designs when the population is spatially
correlated.

Suppose that a population is partitioned into a square grid of d’ substrata
according to two stratification criteria such that d strata are formed from each criterion.
Historically, the term latin square sample refers to a sample of d substrata such that
exactly one substratum from each of the square’s rows and columns is selected. A
sampling unit is then randomly selected within each chosen substratum. This sampling
design has been called a variety of hames, including lattice sampling [4,5] latin square
stratification [6] and multiple stratification [7]

Typically, the data may be collected from a one-dimensional or two-
dimensional study region. Although previous research has been limited to one or two-
dimensional problems, applications of three-dimensional volumetric data are becoming

increasingly available in a wide range of scientific and technical disciplines. The spatial
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objects of our world have an intrinsic three-dimensional nature, and they have often been
neglected in spatial systems and processes. We can expect such data to yield valuable
insights about many important systems in our three-dimensional world. Accounting for
uncertainty in three-dimensional shapes is important in a large number of scientific and
engineering areas, such as biometrics, biomedical imaging, and data mining. For
example, Geographical Information Systems (GIS), which map geometric data, are
nowadays restricted to the handling of two-dimensional information. But increasingly the
third dimension becomes more and more relevant for application domains like pollution
control, water supply, soil engineering, mining, urban planning and aviation [8]. However,
the statistics of these three-dimensional models have not been widely explored. The
statistics are similar to those commonly found in other fields of the physical, biological,
and earth sciences.

For these various reasons, we are interested in the extension of simple latin
square sampling design principles and theory to applications in three-dimensional
sampling frames. The research will focus on three-dimensional simple latin square
sampling +1 designs with the specific goals of deriving an estimator of the population
total, an estimator of the population mean, the true variances of these two estimators,
and estimators of these variances. We will call the new sampling designs that “simple
latin cubic sampling designs "denoted SLCS are modifications of sample latin square
sampling +1 designs (SLSS+1) ,which were introduced by Munholland and Borkowski
[9]. And the Horvitz-Thompson estimation method will be the primary method used to

generate these estimators.

2. Simple Latin Cubic Sampling Designs

Simple latin cubic sampling designs (denoted SLCS) are modifications of
sample latin square sampling designs (SLSS), which were introduced by Munholland
and Borkowski [9]. The SLSS designs will be extended to three dimensions by applying
simple latin square sampling design principles and theory to three-dimensional sampling
frames, and the researcher’s goal is to estimate the population total (t). Assume that the
survey region can be partitioned into a d xd xd three-dimensional grid of d® equalized
three-dimensional rectangular solid which will be referred to as “cubic”. Thus the cubic
are form the population of sampling units.

For each cubic, let y be the response of interest. The values of the population

units with respect to the characteristic y under study will be denoted by y4, y,,....,YN

where N= d*. Here y; denotes the value of the unit bearing labels i with respect to the
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variable y. Suppose a sample of n = d cubic are selected from the grid of d® cubics via a
sampling design, and the y-values are recorded. Let the three dimensions be referred to
as “layer”, “row”, and “column”, and let (I, r, c) denote the cubic at layer = |, row = r, and
column = c. The following algorithm contains the three steps for selecting the units when
the sampling design is a SLCS.

Step 1: Take a SLSS of size d in the two-dimensional square of d xd
quadrats. That is, generate a permutation of the numbers 1, 2 ,..., d and then
sequentially assign the numbers in the permutation to the columns while moving down
the rows.

Step 2: Generate a random permutation (as, ay, ..., aq4) of the integers 1,2,...d.

Step 3: Assign the SLSS unitin row r to layer a, forr=1,2,...,d.

An example of selectinga SLCS when d = 4 will now be presented. In Step 1, a
SLSS of units (r, ¢) = (1, 1), (2, 2), (3, 4), and (4, 3) was selected. Figure 1 shows the

results for this SLSS with the e’s represent the sampling units.

112|3]|4

Figure 1. An example of selecting units in SLSS.
A random permutation (3, 1, 2, 4) of the integers 1, 2, 3, 4 is generated. Layers 3, 2, 1,
and 4 are then assigned to the SLSS units in rows 1 to 4, respectively. These layers

yield a SLCS of (3, 1, 1), (1, 2, 2), (2, 3, 4), and (4, 4, 3) shown in Figure 2.

Layer 1 Layer 2 Layer 3 Layer 4

1({2]3|4 112|134 112(13]4 1|2

Al W] N|
Al Wl N| -

Figure 2. Generating a SLCS from the SLSS in Figure 1.
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3. Simple Latin Cubic Sample +1 Designs
A more general design can be easily defined by initially selecting an SLCS

and subsequently drawing k additional units to give an SLSS+k where 1<k <(d —1). An

approach to increasing sample size, we focus on the simplest case with k=1. A SLCS+1
fall into the classical designs framework in that samples generated by the design have
corresponding selection probabilities that are independent of y-values.

In these sampling designs, the sample size can be d +1 which is a
modification of simple latin cubic designs. A simple latin cubic sample +1 design
(SLCS+1) is composed of two sets of sampling units:

(i) dsampling units from a SLCS, and

(i) one additional sampling unit which is a cubic selected from the d-d

remaining units.

Suppose a sample of n = d + 1 units are selected from the d® cubic via a
sampling design, and for each cubic, let y be the response of interest. The following
algorithm contains the steps for selecting the units in a SLCS+1 :

Step 1: Take a SLSS in the two-dimensional square of dxd quadrats.

Step 2: Generate a SCLS from this SLSS.

Step 3: Randomly select a cubic from the d*d remaining cubic.

An example of a simple latin cubic sample of size d=4 from a population of 64
units generated by the permutation (1, 2, 4, 3) yields the SLSS indicated with e’'s in
Figure 1. Let (3, 1, 2, 4) be a random permutation of the integers 1,2,3,4. Assign the
SLSS unitin row 1 to layer 3, in row 2 to layer 1, in row 3 to layer 2, and in row 4 to layer
4 This generates a SLCS with units (I, r, ¢) = (3, 1, 1), (1, 2, 2), (2, 3, 4), and (4, 4, 3).
The SLCS show in Figure 2. The additional unit (+) is randomly chosen from the
remaining 60 units to give a simple latin cubic sample +1. The SLCS+1 design for d = 4
and the additional unit is shown in Figure 3.

Layer 1 Layer 2 Layer 3 Layer 4

1123 |4 112|3]|4 1123 |4 112 (3

+1

Al W[ N P~
Al W N P

Figure 3. Example of SLCS+1 where d=4.




18 Thailand Statistician, 2009; 7(1):13-27

There are three major benefits to selecting the +1units with this algorithm:

(i) the +1 unit is an extension of the SLCS. That is, the additional one unit
spans another layer, row, and column, and thereby continues to provide
a sample of cubic that is spatially well-distributed,

(i) the joint inclusion probability in the Horvitz-Thompson estimator is
greater than 0 for all pairs of cubic. This guarantees that the estimator of

the variance will be unbiased.

4. Simple Latin Cubic Sample - k Design

If suppose the researcher does not have enough resources to sample at least
d + 1 units. Assume a maximum of d -k (k =0, 1,.., d — 2 ) units could be sampled.
Another class of designs that allows these smaller sample sizes are known as simple
latin cubic sampling - k designs (SLCS-k). The units in a SLSS-k are a subset of
sampling units from any SLSS. A SLCS-k can be generated by randomly selecting (d - k)
points from a randomly generated SLCS.

An example of a simple latin cubic sample of size d = 4 with units (I, r, ¢) = (3,
1, 1), (1, 2, 2), (2, 3, 4), and (4, 4, 3) is shown in Figure 2. An example of a SLCS - 1
design for d = 4 is shown in Figure 4.

Layer 1 Layer 2 Layer 3 Layer 4

1123 |4 1(2|3 |4 1123 |4 1|2

Al W] N| P
Al W N| P

Figure 4. Example of SLCS-1 where d = 4.

5. Estimation of Population Total

Horvitz-Thompson [10] provided an estimator of the population total z for
sampling designs having unequal unit selection probabilities, and sampling is done
without replacement from a finite-population which the inclusion probabilities include

necessary to determine the estimator variances and the estimators of these variances.




Kanlaya Boonlha 19

For Simple Latin Cubic Sample + 1 Designs

The first-order inclusion probability i is the probability unit u; will be included

by a sampling design. Because every unit has the same probability of being included in

aSLCS+1, x fori=1,2,..., d® is defined as 7 =(d +1)/d®.

The second-order inclusion probability ﬂij is the probability units u; and u; for i,
=1, 2,..., d®, will both be included by a sampling design. To obtain ﬂij for SLCS+1

design, three cases need to be considered:

case |: If the sampling units are located in the same row or column or layers,
then both units will be included if and only if one of them, say u; is in the initial SLCS with
probability 1/d? , and u; is selected as additional unit with probability ]/(d3 —d) (or vice

versa). When u; and u; are in the same row or column or layers, the second-order
inclusion probability is
2
T3 0
d°(d“-1)

case lI: If the sampling units u; and u; are in different rows, columns and layers,
then either (i) both units are in the SLCS, or (ii) one of them is in the SLCS and the other

is chosen as addition unit. Since there [(d —2)!]2(d3 —d) possible samples when u;

and u; are both members of the SLCS, the probability associated with this case II(i)

I :1/(d2(d —1)2). There are 2[[(d —1)!]2 —[(d —2)!]2] possible SLCS in u; or y;

(but not both) is member of SLCS. Thus, the probability associated with casell(ii) is

is 7ri

7 =20 2/ (@2@-12@?-1).
Combining the results from case Il when u; and u; appear in different rows

columns and layers, yields the probability,

o (d? +2d —5)
i @2(@-12@@2-1)
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For Simple Latin Cubic Sample -k Designs
If the researcher does not have enough resources and have sample at least d

+1 unit. Assume a maximum of d - k (where k = 0, 1,.. , d - 2) units could be sampled.

The first-order inclusion probability 7, is T = (d —k)/d3 .
The second order inclusion probability ﬂ'ij if the sampling units are located in

the same row or column or layer, then z.. =0 . However, when the sampling units are in

1)
different rows and columns the second order inclusion probability is
(d=k)(d-k-1)
d°(d-1
When the goal is to estimate 7 and the 7 are known, Horvitz and Thompson

[10] estimators are used. Simple latin cubic sampling (SLCS+1) has the same Horvitz-

Thompson estimator as the two-dimensional simple latin square sampling (SLSS) case.

AN
That is, 7 = .Zyi/ni when n= 2, 3, ..., d, d+1.These estimators are design

unbiased estimators of z where N= d* is the size of the population and the summation is
over the n units in the sample. The variance of the estimator ; is
A N N N
var(z) =Y [i—l}yi2+22 > i—l i
=l 7 .

i= i=1j>1 ﬂi”ij J

An estimator of this variance is

A A n 1- ”i 2 n n 1 1
var(z) = 3 L4253 Y | ————— .Yy .
i=1 7ri2 ! i=1]>1 ﬂ-iﬂ-ij 77” "]
If 7Z'ij >0 for alli,j=1, 2,...,N then the estimator the variance of 7 is unbiased in the

VANEVAN
design sense [3]. Thus, var(r) is an unbiased estimator for a SLCS+1.

6. Simulation Results
In this study, we compared sampling designs when sampling from

populations having no or positive spatial correlation. These simulation studies have three
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populations: no spatial trends (P1), has a strong top-to-bottom (one-dimensional) spatial
trend (P2), and has a strong diagonal (two-dimensional) spatial trend (P3).The variances
of Horvitz-Thompson estimators of the population total for SLCS+1 and SLCS-k,
stratified SLCS+1 and SLCS-k designs, and systematic SLCS+1 and SLCS-k designs
were compared, respectively, to the variances of the Horvitz-Thompson estimators for
the population for SRS, stratified SRS, and systematic SRS designs. The simulated
population data were generated by using MATLAB version 7. Each sampling situation is
repeated 100 times and the average variance of the estimator for population total was
calculated. The simulation results are reported in Tables 1, 2 and 3.

From Table 1, to evaluate the efficiency of estimators of the population total,
the variances of the estimators from SLCS+1 and SLCS-k are compared to the
variances of the estimators for SRS without replacement. For population sizes d’=5° 8%,
10° the average of the 100 variances of the estimators were calculated for sample sizes
n=2,3,.,d, d+1 which correspond to the smallest SLCS-k (n = 2,3,..d) design to the
largest SLCS+1 (n = d+1) design.

The reduction in variance depends on type of the spatial correlation that is
present in the population. When there is no spatial trend (P1), there are negligible
differences between the variances of SLCS+1 or SLCS-k estimator and the variance of
the SRS estimator. This is an expected result because there is no benefit to having a
spatially well-distributed sample in a population exhibiting spatial randomness. If the
population has a strong top-to-bottom (one-dimensional) spatial trend (P2) or a strong
diagonal (two-dimensional) spatial trend (P3), then the variances of SLCS+1 and SLCS—
k estimators are smaller than the corresponding SRS estimator variances. Also, the
variances of the SLCS estimators are not necessarily a decreasing function of sample
size. The variance will decrease from sample size n = 2 to n = d, but it may then increase
whenn=d+ 1.

The results in Table 2 show that populations were stratified in the following
ways: for d’= 83, 8 strata were formed from adjacent cubes composed of dh3=43 cubics,
for d°= 10°, 8 strata were formed from adjacent cubes of dn>=5 cubics, and for d°= 203, 6
strata were formed in two different ways: (i) 64 strata were formed from adjacent cubes
of dy>=5° cubics and (i) 8 strata were formed from adjacent cubes of dn>=10° cubics. For
each of these stratified populations, the average variances of the estimators were
calculated for sample sizes n, = 2, 3,...,drt1 which correspond to smallest stratified

SLCS-k to the largest stratified SLCS+1 designs. Also, for each population spatial
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pattern, the average variances of stratified SLCS-k and SLCS+1 design estimators are
smaller than the average variances of the corresponding stratified SRS estimator.
Table 1. The average variances of estimators for population total with simple random

sampling (SRS) and simple latin cubic sampling (SLCS) designs for three populations.

The average variances of estimators for population total.
N Kk n P1 P2 P3
var(Zrs) Tm(fslcs) var(Zsrs) var(Zgcs) var (Fsrs) E(fslcs)

52| 3| 2| 154E+4 1.54E+4 1.71E+4 1.33E+4 9.29E+4 7.40E+4
2| 3] 102644 1.02E+4 1.13E+4 6.25E+4 6.14E+4 3.62E+4
1| 4] 756E44 7.56E+4 8.42E+4 2.72E+4 457E+4 1.73E+4
0| S| 6.00E+ 5.99E+4 6.68E+4 5.96E+4 3.63E+4 5.98E+4
1| 6] 496E+4 4.95E+4 5.52E+4 1.37E+4 3.00E+4 9.29E+4
8| 6| 2| 263E+4 2.63E+4 7.14E+4 6.17E+4 3.71E+4 3.22E+4
23| 175E4 1.75E+4 4.75E+4 3.45E+4 2.4TE+4 1.82E+4
4| 4| 131E+4 1.31E+4 3.55E+4 2.10E+4 1.85E+4 1.12E+4
31 5| 105E44 1.05E+4 2.84E+4 1.29E+4 1.47E+4 6.96E+4
2| 6| g70E+a 8.69E+4 2.36E+4 7.43E+4 1.23E+4 4.15E+4
7| 74444 7.43E+4 2.02E+4 3.55E+4 1.05E+4 2.15E+4
O 8| gsoEsa 6.49E+4 1.76E+4 6.4TE+4 9.15E+4 6.49E+4
19| 57744 5.76E+4 1.56E+4 2.27E+4 8.12E+4 1.43E+4
10° | 7| 2| 1.00E+4 1.00E+4 4.22E+4 3.77E+4 2.16E+4 1.94E+4
® 1 3| Ge7Ea 6.67E+4 2.81E+4 2.21E+4 1.44E+4 1.14E+4
5| 4| 500E+4 5.00E+4 2.11E+4 1.43E+4 1.08E+4 7.38E+4
41 5| 300E+4 3.99E+4 1.68E+4 9.57E+4 8.63E+4 4.99E+4
3| 6| 33344 3.32E+4 1.40E+4 6.45E+4 7.18E+4 3.39E+4
B 7| 2esE4a 2.85E+4 1.20E+4 4.21E+4 6.15E+4 2.25E+4
2| 8| 24944 2.49E+4 1.05E+4 2.54E+4 5.38E+4 1.40E+4
Tloo| 221k 2.21E+4 9.32E+4 1.24E+4 4.77E+4 7.31E+4
0110 | 1g99g4a 1.99E+4 8.38E+4 1.98E+4 4.29E+4 1.99E+4
L1111 gogsa 1.80E+4 7.61E+4 8.62E+4 3.90E+4 5.22E+4

N = number of population unit in each stratum, n= number of sample unit in each stratum
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Table 2. Strata formed from adjacent dn>=4> cubic. The average variances of estimators
for population total with stratified random sampling and stratified latin cubic sampling+1

designs for three populations.

The average variances of estimators for population total.
3
d kK | ny P1 P2 P3
d3 A — . A — . — . A
(dy) var(gt) var(Zgics) var(7gt) var( ggics) var(7gt) var(Zggyes)
8| -2 2 3.15E+4 3.14E+4 2.34E+4 1.69E+4 1.33E+4 1.00E+4
@ | 1 3 2.06E+4 2.06E+4 1.53E+4 6.63E+4 8.72E+4 4.35E+4
0 4 1.52E+4 1.51E+4 1.13E+4 1.51E+4 6.43E+4 1.51E+4
+1 5 1.20E+4 1.19E+4 8.90E+4 2.84E+4 5.06E+4 2.02E+4
10° | -3 2 1.20E+4 1.20E+4 1.35E+4 1.05E+4 7.35E+4 5.85E+4
6y | -2 3 7.93E+4 7.96E+4 8.93E+4 4.93E+4 4.86E+4 2.86E+4
-1 4 5.90E+4 5.93E+4 6.64E+4 2.14E+4 3.62E+4 1.37E+4
0 5 4.68E+4 4.72E+4 5.27E+4 4.72E+4 2.87E+4 4.72E+4
+1 6 3.87E+4 3.89E+4 4.35E+4 1.08E+4 2.37E+4 7.34E+4
20° | -3 2 9.80E+4 9.79E+4 1.09E+4 8.46E+4 5.94E+4 4.73E+4
6y | -2 3 6.48E+4 6.46E+4 7.19E+4 3.97E+4 3.93E+4 2.31E+4
-1 4 4.82E+4 4.80E+4 5.35E+4 1.73E+4 2.92E+4 1.11E+4
0 5 3.82E+4 3.81E+4 4.24E+4 3.81E+4 2.32E+4 3.81E+4
+1 6 3.16E+4 3.15E+4 3.51E+4 8.69E+4 1.92E+4 5.93E+4
20° | -8 2 8.01E+4 8.01E+4 3.38E+4 3.01E+4 1.73E+4 1.55E+4
0% | -7 3 5.34E+4 5.34E+4 2.25E+4 1.76E+4 1.15E+4 9.09E+4
-6 4 4.00E+4 4.00E+4 1.68E+4 1.14E+4 8.63E+4 5.90E+4
5 5 3.20E+4 3.19E+4 1.35E+4 7.65E+4 6.89E+4 3.99E+4
-4 6 2.66E+4 2.66E+4 1.12E+4 5.15E+4 5.74E+4 2.71E+4
-3 7 2.28E+4 2.28E+4 9.60E+4 3.37E+4 4.91E+4 1.80E+4
-2 8 1.99E+4 1.99E+4 8.39E+4 2.03E+4 4.30E+4 1.12E+4
-1 9 1.77E+4 1.77E+4 7.45E+4 9.91E+4 3.81E+4 5.84E+4
0| 10 1.59E+4 1.59E+4 6.70E+4 1.59E+4 3.43E+4 1.59E+4
+1 | 11 1.44E+4 1.44E+4 6.08E+4 6.90E+4 3.11E+4 4.17E+4

nn = hnumber of sample unit in each stratum, dh3: number of population in each stratum
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The reduction in average variance depends on the type of spatial correlation.
For the populations having no spatial trend (P1), the differences are negligible between
the average variances of the estimator for stratified SLCS-k or SLCS+1 and the stratified
SRS of equal size. For the populations having a strong top-to-bottom (one-dimensional)
spatial trend (P2) or a strong diagonal (two-dimensional) spatial trend (P3), the
estimators for stratified SLCS-k and SLCS+1 designs are more efficient than the
corresponding stratified SRS estimators for each sample size. Also, the average
variances of the stratified SLCS estimators are not necessarily a decreasing function of
within-stratum sample size n,. The average variance will decrease from n, = 2 to nn = dh,
but it may then increase for n, = d + 1.

According to Table 3, consider the common sampling situation when primary
units are selected systematic random sampling designs. The simulated populations were
systematically partitioned in the following ways: for d® = 8° there were dy’= 4° primary
units each containing 8 secondary units, for d® = 10° there were dy>=5° primary units
each containing 8 secondary units, for d*= 20° there were two cases: 0] dn>=5° primary
units each containing 64 secondary units and (i) dn’=10° primary units each containing 8
secondary units.

The reduction in average variance depends on the type of spatial correlation.
For the populations having no spatial trend (P1), the differences are negligible between
the average variances of the estimator for the systematic SLCS-k or SLCS+1 and the
systematic SRS of equal size. For the populations having a strong top-to-bottom (one-
dimensional) spatial trend (P2) or a strong diagonal (two-dimensional) spatial trend (P3),
the estimators for systematic SLCS-k and SLCS+1 designs are more efficient than the
corresponding systematic SRS estimators for each sample size. Also, the average
variances of the systematic SLCS estimators are not necessarily a decreasing function
of within-stratum sample size n,. The average variance will decrease from n, = 2 to np =

dn, but it may then increase for np = dp + 1.
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Table 3. The average variances of estimators for population total with systematic

random sampling and systematic latin cubic sampling+1 designs for three populations.

The average variances of estimators for population total.
d3
NS P1 P2 P3
(dy) —
Vaf(TAsys ) E(isysslcs) var(Zeys) E(’csysslcs) var(Zgys) var(Zgyesics)
g 2| 2 3.06E+4 3.05E+4 1.65E+4 1.12E+4 8.36E+4 5.76E+4
@ | 1| 3
2.01E+4 2.00E+4 1.08E+4 3.85E+4 5.48E+4 2.02E+4
0| 4 1.48E+4 1.47E+4 7.96E+4 1.47E+4 4.04E+4 1.47E+4
+1| 5
1.16E+4 1.16E+4 6.26E+4 1.43E+4 3.18E+4 7.74E+4
10| 3| 2 1.23E+4 1.23E+4 1.00E+4 7.62E+4 5.08E+4 3.87E+4
&y | -2 3
8.15E+4 8.15E+4 6.64E+4 3.41E+4 3.36E+4 1.75E+4
14 6.06E+4 6.06E+4 4.94E+4 1.31E+4 2.50E+4 6.85E+4
0] 5 4.81E+4 4.80E+4 3.92E+4 4.79E+4 1.98E+4 4.80E+4
+1| 6
3.98E+4 3.97E+4 3.24E+4 5.95E+4 1.64E+4 3.17E+4
20| 3| 2 1.04E+4 1.04E+4 6.36E+4 4.81E+4 3.19E+4 2.41E+4
&y | -2 3
6.85E+4 6.84E+4 4.21E+4 2.14E+4 2.11E+4 1.07E+4
14 5.10E+4 5.08E+4 3.13E+4 8.06E+4 1.57E+4 4.05E+4
0] 5 4.04E+4 4.02E+4 2.48E+4 4.02E+4 1.24E+4 4.02E+4
+1| 6
3.34E+4 3.33E+4 2.05E+4 3.59E+4 1.03E+4 1.81E+4
20| 8| 2 8.03E+4 8.03E+4 2.65E+4 2.35E+4 1.33E+4 1.18E+4
@ady| 7| 3 5.35E+4 5.35E+4 1.76E+4 1.37E+4 8.84E+4 6.90E+4
6| 4 4.01E+4 4.01E+4 1.32E+4 8.84E+4 6.62E+4 4.44E+4
5| 5 3.20E+4 3.20E+4 1.05E+4 5.90E+4 5.20E+4 2.97E+4
4| 6 2.67E+4 2.67E+4 8.78E+4 3.94E+4 4.40E+4 1.98E+4
3| 7
2.28E+4 2.28E+4 7.52E+4 2.54E+4 3.77E+4 1.28E+4
2] 8 2.00E+4 1.99E+4 6.57E+4 1.49E+4 3.30E+4 7.53E+4
N 1.77E+4 1.77E+4 5.84E+4 6.70E+4 2.93E+4 3.44E+4
0/ 10
1.59E+4 1.59E+4 5.25E+4 1.59E+4 2.63E+4 1.59E+4
+1 | 11
1.45E+4 1.45E+4 4.77E+4 4.51E+4 2.39E+4 2.33E+4

Ny = number of sample unitin each unit, , dr3= number of population in each stratum
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7. Conclusion and Discussion

In this study we expanded simple latin square sampling designs to three
dimension called “simple latin cubic sample +1 designs (SLCS+1)” and “simple latin
cubic sample -k designs (SLCS-k)”. Assume that the survey region can be partitioned
intoa dxdxd three-dimensional grid of d® equisized three-dimensional rectangular
solids which will be referred to as “cubics”. The cubics form the population of sampling
units. In these sampling designs, the possible sample sizesaren=2,3, ...,d,d+ 1. A
SLCS+1 design is composed of two sets of sampling units: (i) d sampling units (cubics)
from a SLCS, and (i) one additional sampling unit selected from the

d>-d remaining cubics. For a SLCS+1 design, one unit is sampled from each the row and

column and layer in the population of dxdxd of sampling units.

Horvitz-Thompson estimators are unbiased estimators of the population total,
and because SLCS+1 and SLCS-k have the same first-order inclusion probabilities as
SRS, the corresponding Horvitz-Thompson estimators of the population total are
equivalent. The estimator of the variance of a Horvitz-Thompson estimator of the
population total is unbiased for a SLCS+1 but not for a SLCS-k because the second-
order inclusion probability for a SLCS-k is zero when two sampling units are located in
the same row or column or layer.

The results from this study are in agreement with the simple latin square
sampling (SLSS) results in Borkowski [3]. That is, for every sample size the variance of
the SLCS-k and SLCS+1 estimator is smaller than the variance of the SRS estimator.
The largest reduction in variance occurred with the population having the strong diagonal
trend, followed by population with the north—south trend. For the populations having no
spatial trends, the differences between estimator variances was negligible. The same
conclusions hold for the estimator variance assuming stratified SLCS-k or SLCS+1, or
assuming systematic SLCS-k and SLCS+1.

Hence, SLCS-k and SLCS+1 design, when compared to simple random,
stratified, and systematic sampling will provide estimators with smaller variance when

spatial correlation exists.
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