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Abstract

This paper presents a new one-step-ahead prediction interval for an unknown
mean Gaussian autoregressive process (AR(p)) using the residual model. The proposed
prediction interval is constructed by adding the multiplication of the correction factor and
the percentile of sample errors in the estimated point forecast for an AR(p) process. The
coverage probabilities of a new prediction interval and a standard prediction interval are
also derived to be functionally independent of the population mean and the variance of
the innovation process. The Monte Carlo simulation is used to investigate the behavior of
this new prediction interval compared to the existing prediction interval based on their
coverage probabilities and expected lengths. Simulation results have shown that almost
cases of the new prediction interval have desired minimum coverage probabilities of 0.95
and 0.90. Moreover, this new one is better than a standard prediction interval for all the

autoregressive parameter values and all sample sizes considered in this paper.

Keywords: AR(p), coverage probability, expected length, prediction interval, residual
model.
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1.Introduction

Recently, there has been increasing interest in constructing prediction intervals
for an autoregressive process, see for example the standard textbooks of Box et al. [1]
and Wei [2]. The conditional prediction interval for an autoregressive moving average
model was proposed by de Luna [3]. However, this prediction interval does not have
minimum coverage probability at the nominal confidence level for small and moderate
sample sizes. Several authors also used the bootstrap methods for calculating prediction
intervals, see for example Kim [4-6], Alonso, et al. [7] and Clements and Kim [8] and
references therein. Although prediction intervals based on bootstrap methods have more
coverage probability than 1-« , these methods are taken much time to calculate. Halkos
and Kevork [9] proposed a prediction interval for a stationary AR(1) process with an
almost unit root by considering the random walk as the true model. They found that their
proposed prediction interval has less coverage probability than the nominal confidence

level when ¢, is close to one. In this paper, we emphasis constructing simple prediction

intervals, based on the residual model described by Olive [10], for an unknown mean
Gaussian autoregressive process (AR(p)). In addition, we have derived coverage
probabilities of this new prediction intervals and a standard prediction interval for an
AR(p) process.

The plan of the paper is as follows. In Section 2, a standard prediction interval
for an unknown mean Gaussian AR(p) process is presented. Section 3 proposes a hew
prediction interval for an unknown mean Gaussian AR(p) process using the residual
model. The Monte Carlo simulation results are given in Section 4. The conclusion is

presented in Section 5.

2. Standard Prediction Interval for an Unknown Mean Gaussian AR(p) Process

Suppose {Yl 1=123,...,T } is an unknown mean Gaussian AR(p) process
satisfying

Yt_lu:¢1(Ylfl_ll'l)+"'+¢p(Yt—p_ll'l)+et (1)

where 4 is the population mean, 4,..., ¢, are the autoregressive parameters and €, are

unobservable independent errors having zero mean and finite variance, e, ~ N(0,07) .

The equation (1) can be written symbolically in a compact form

#(B)(Y, — 1) = & @)



Wararit Panichkitkosolkul 31

where B is the back-shift operator defined by Bth:YH. and ¢() is the p™ degree
polynomials in B such that ¢(z)=1-¢z—---—¢,z" . The process in (2) is stationary
when the roots of ¢(z) = 0 is outside the unit circle.

Now we present the standard prediction interval for Y;,, based on data
Yy, Yy, Yr. It is well-known that, for known (u,4,,...,¢,,0,), the optimal predictor in the

mean square sense, is u+(#B+..+4,B")(Y;,-x) . Replacing the unknown

(t,4,--.9,,0,) by the estimators (ﬁ,qgl,...,(,;p,&e). The approximate 1-o standard

prediction interval for Y;, is

PI, = {m@sa..w?pwwm—mﬂla"}e} o

where Z1 . isa (1—%Jth quantile of the standard normal distribution, 4=Y, qgl,...,qbp
2
are the ordinary least squares (OLS) estimators and
c va 7 va " v )2
2 =Y =gV, =Y) = =g, (Y, =)

~2 t=p+1
o, = . 4
: I @)

In Theorem 1 below, we show the coverage probability of Pl .
Theorem 1. Suppose, from (1), e, ~ N(0,67) , the coverage probability of Pl in (3),
P(Y;,, €Plg),is A, —A, where

A :®[£+(AB+...+5po)[MJ+Z " -ﬁ—i—(¢l8+...+¢p8p)(m—ﬂJ] ,
— O,

Oe Oe Oe

A, :@[i+(@18+...+&psp)(m—ﬂ]z Y .&i(¢l3+m+¢p5p)(Yﬂ1ﬂJj
Ge O-e 1 O, Ge
and @(:) is the standard normal distribution function.

Proof of Theorem 1.
P(Y;,, €PIly)

= P[/}"’(¢lB+'--+¢po)(YT+l_[‘)_Zl a '&e S} US [‘+(¢lB+-'-+¢po)(YT+1_,LA‘)+Zl a 'O’:e‘|
2 2
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ﬁ+(¢lB+---+¢po)(YT+l_[‘)_Zlig'&e Sut+d(r -+ +dp(Yrp—p)+terag<
=P 2
ﬁ+(¢lB+---+¢po)(YT+1_,[‘)“‘Zl_g'&e

2

i+ BB+t GBI 1 =) =2 -G i (4B +..t 4pBP)(Yr g — 1) +er, <
-P 2
i+ BB+t §pBP Yy g =)+ 2 G

2

it (B4t BT a = ) =2 -G~ i (AB+ .t §pBP )Yy~ 4) Ser g <

2

=P R R R R
ﬁ+(¢lB+'"+¢po)(YT+1_ﬂ)+Zl_g "O¢ _/1_(¢.I.B+"'+¢po)(YT+1_IU)
L 2
L (hB+...+,BP) Yia—A) o2 (4B +..+4,BP) YT+1 #
o o I O Oe

=P

i+(¢ASLB+...+¢3PBD)(YT+1—%’]+21 . .ﬁ_i_(ﬁ5+.._+¢ Bp)[YTJrl ,u]
Oe . _

=®{£+(¢QB+...+;3pB")[—YT+1_[’J+zl “ ~ﬁ—i—(¢13+...+¢ Bp)[Yﬂl “]
€ 2

Oe

Oe e

—@[—A+(¢lB+ 44 BP)[M] Z a.ﬁ___(@3+ +4 Bp)[YT+l ﬂ]]
2 o o

3. Prediction Interval for an Unknown Mean Gaussian AR(p) Process Using the
Residual Model

Our aim for model (1) is to construct the prediction interval for Y;,, based on

data V,,Y,,.., Y;. It is well-known that, for known (y, ¢, 4,, ..., ¢p) , the optimal predictor, in
the mean square sense, for model (1) is pu+ (4B +...+4,B")(Y;,, — 1) Replacing the
unknown (u, ¢, ¢y, ..., ¢,) in this expression by estimators (i, ¢, ¢, ..., 4,) , we obtain the
predictor y+(¢15+ +¢ BP)(Y,;,, — &) - The approximate (1—«)100% prediction interval

for Y;,, of model (1) based on the residual model, described by Olive [10], is given by

Plr=| A+ (@B +.+gyBP) A +ar &, it (AB+..+ §pBP)Vr - ) +ar € 5)
2 2
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where [1:\7, ¢§1</§p are the ordinary least squares (OLS) estimators ,the residual of

model (1) is Y, —\ft and fa is the sample «/2 percentile of the residuals from model (1)
2

. . KY[T
and a, is the correction factor. Define aT:(1+?j ﬁ1/1+hf where

1Yy Yoy oY
Ty Tyy-1 i LYo Y Y2 ;
he =x5 (X" X) 7%, X¢=| Yo |, X =| | . . S |and k is a
1 Y Y72 0 Y7y

YT—p+1

constant. The coverage probability of Pl is found in Theorem 2.

Theorem 2. Suppose, from (1), e;,, ~ N(0,57), the coverage probability of Pl in (5),

P(Y;,, €Ply),is A,—A, where

A, —(D(ﬁ+(q§18+...+q3p8p)(wj+aT.69 } _”_(¢13+“_+¢p5p)[mj}’
O, O, O

1-£
e e 2 O O

A, —Q(ﬁ+(éB+...+&po){w]+aT.(Ea —'u—(¢lB+...+¢po){YT”_'u]]
O, O, O, O,

Proof of Theorem 2.
P(Y;., €Ply)

=P| a+(AB+..+¢BP) Ve — ) +ar &, <Yra< i+ (BB +..+4,BP)(Yr - i) +ar a
2 2

_fl+(‘/;15+---+¢po)(YT+1—,[l)+aT Lo Sp+dfr —p)+.+dp(Yr g p—p)+erg <

(@B + .+ §BP) ¥y — 1)+ - &

_ﬁ+(¢;15+---+¢po)(YT+1—[l)+aT 'égg Sp+(AB+..+9pBP)(Yrig — ) +ery <
2
[H'(?;lB+---+¢;po)(YT+1—ﬁ)+aT 'églig
2

|
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(BBt GyBP) Yy — i) o £y — (4Bt §BP) Yy~ ) Sep g <
2
A+ BB+t GoBPY Yy = @) +ar & o —p= (AB o+t §yBP) (Y1~ )
2

i+(¢;lB+“_+,,;po)[YT+1_—ﬂ]+a_T.ga _i_(%mmwap)[Ym_—ﬂJ <Bra
Oe Oe Oe 5 Oe Oe Oe

i+(¢§lB+,_+¢3po)(YT+1_—ﬂJ+a_T.g a_ﬂ_(ﬁg+._.+¢po)[YT+l—_ﬂ]
O, Og O¢ 1—5 O O¢

:¢[£+((}13+._.+5PBP)[M]
O,

Oe e

+a—T~§A a—i—(gb_LB+...+¢po)(YT+1—_”J]
o, 11— o© O,

e 2 e e
_® £+(¢@LB+...+¢3po)£m—_#J+a—T«§a i(¢lB+---+¢po)[YT+l_ﬂJ
O¢ Oe Oe 5 Oe Oe

In the next section, we present the simulation results, using Monte Carlo
simulation, to estimate coverage probabilities and expected lengths of the prediction

intervals (3) and (5) using the results of Theorems 1-2.

4. Monte Carlo Simulation
In this section, we report the results of using the Monte Carlo simulation to
investigate the estimated coverage probabilities of the prediction intervals (3), (5) and

their expected lengths. We used R program to generate the data from an AR(3) process
in model (1) with parameters (u,0?2) = (0, 1), sample sizes; T = 25, 50, 100 and 250, The
parameter values of the autoregressive process are chosen to include a wide range of
real roots of the equation 1—¢18—---—¢po =0. The number of simulation runs, M =
10,000 at level of significance o = 0.05 and 0.10. The constant number k in a, has

been selected so that coverage probabilities of the prediction intervals in (5) are at least
1-«a . We found, using the Monte Carlo simulation, that k = 7 and 9 are good choices for
a =0.10 and 0.05 respectively. Tables 1-2 show estimated coverage probabilities of the
prediction intervals (3) and (5), PI; and PI,, and their expected lengths for an AR(3)
process at ¢ = 0.05 and 0.10, respectively. As can be seen from Tables 1-2 and

Figures 1-2, almost cases of the new prediction interval, Pl , has a minimum estimated

coverage probability 1-«, for all sample sizes and values of (¢, ¢,, ¢,) considered
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here. Consequently, the expected lengths of Pl are longer than that of PIg for all

sample sizes since the prediction interval Pl, has more coverage probabilities than Pl .

5. Conclusion

We have proposed a new one-step-ahead prediction interval for an unknown
mean Gaussian autoregressive process (AR(p)). The standard prediction Interval and
the prediction interval based on the residual model are proposed in this study. The
prediction interval based on the residual model performs better than the standard
prediction Interval in terms of the coverage probability. Therefore, if we prefer a
prediction interval with minimum coverage probability equal to a pre-specified value
1-a, the prediction interval based on the residual model is preferable to the standard

prediction Interval.

T=25 T=50
g S
z - z =
E —_——temw = T =T E
(143 1] L
= = e s Ssmes s
DI: % — Dl: - T e T
% = MMW_/ % % |
z N — PFIZ z = — PFIS
Pt 2 | --- PIR S W | --- PIR
= [ I I I I I = I [ I I I I
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iu]
z o] z a7
2 5] e - I
_ _
E E —_——
o o e — o &
] — =]
> o 2 -
s — FIS T — Pis
Pt 2 | --- PIR S o --- PIR
[ [ I I I I I = I [ I I I I
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Figure 1. Comparison of the coverage probabilities of the prediction interval Pl
and Pl where o = 0.05.
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Figure 2. Comparison of the coverage probabilities of the prediction interval Pl
and Pl,wherea =0.10.
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Tablel. The estimated coverage probabilities and expected lengths of a 95% one-step-
ahead prediction interval for AR(3) when M =10,000, ¢ =0and ¢° = 1.

Coverage probability Expected length

T (4. ¢:.4:) PI, PI, PI, PI,
25 (0, -0.65, 0.5) 0.8890 0.9562 3.6422 4.9908
(0, -0.65, -0.5) 0.8965 0.9571 3.7070 5.0063
(-0.4,-0.15, 0.3 0.8892 0.9574 3.6183 4.9836
(-0.4,-0.15, -0.3) 0.8929 0.9597 3.6390 5.0117
(0.4, 0.15, 0.3) 0.8817 0.9527 3.5686 4.9409
(0.4, 0.15, -0.3) 0.8905 0.9586 3.6288 5.0097
(-0.8,-0.65, 0.2) 0.8921 0.9577 3.6970 5.0166
(-0.8, -0.65, -0.2) 0.8941 0.9596 3.6631 5.0141
(0.8, -0.65, 0.2) 0.8890 0.9582 3.6137 4.9990
(0.8, -0.65, -0.2) 0.8914 0.9572 3.6479 5.0087
(-0.95,-0.9,-0.5) 0.8952 0.9586 3.6996 5.0207
(0.95, -0.9, 0.5) 0.8864 0.9564 3.6067 5.0003
(1.75, -0.76, -0.1) 0.8923 0.9510 3.7043 4.9718
(1.2,-0.3, -0.4) 0.8972 0.9531 3.8029 4.9482
(0.8, -0.16, 0.2) 0.8828 0.9535 3.5975 4.9905
(0.8, -0.16, -0.2) 0.8886 0.9579 3.6153 4.9979
(0.55, 0.4, -0.5) 0.8902 0.9580 3.6370 5.0270
(0.4, 0.3, 0.15) 0.8813 0.9531 3.5846 4.9768
(0.4, 0.3,-0.15) 0.8856 0.9566 3.6010 4.9961
(0,0.15, 0.8 0.8802 0.9523 3.5719 4.9313
(0, 0.15, -0.8) 0.8929 0.9568 3.6604 4.9994
(-0.8,-0.16, 0.2) 0.8900 0.9579 3.6271 4.9988
(-0.8,-0.16, -0.2) 0.8935 0.9586 3.6559 5.0068
(0, 0.65, 0.1) 0.8821 0.9531 3.5834 4.9711
(0, 0.65, -0.1) 0.8832 0.9546 3.5832 4.9765
(-0.4, 0.3, 0.15) 0.8886 0.9583 3.6174 5.0103
(-0.4, 0.3, -0.15) 0.8887 0.9575 3.6177 4.9951
(-1.2,-0.3,0.4) 0.8966 0.9558 3.7219 4.9765
(0, 0.9, 0.05) 0.8767 0.9508 3.5635 4.9328
(0, 0.9, -0.05) 0.8795 0.9515 3.5780 4.9580
(-0.55, 0.4, 0.5) 0.8856 0.9561 3.5963 4.9837
50 (0, -0.65, 0.5) 0.9239 0.9542 3.7780 4.4235
(0, -0.65, -0.5) 0.9258 0.9549 3.8095 4.4270
(-0.4,-0.15, 0.3 0.9237 0.9540 3.7700 4.4076
(-0.4,-0.15, -0.3) 0.9244 0.9544 3.7792 4.4209
(0.4, 0.15, 0.3 0.9208 0.9521 3.7570 4.4041
(0.4, 0.15,-0.3) 0.9248 0.9545 3.7778 4.4139
(-0.8,-0.65, 0.2) 0.9248 0.9545 3.7907 4.4194
(-0.8, -0.65, -0.2) 0.9255 0.9551 3.7911 4.4282
(0.8, -0.65, 0.2) 0.9239 0.9543 3.7685 4.4119
(0.8, -0.65, -0.2) 0.9251 0.9547 3.7921 4.4285
(-0.95,-0.9,-0.5) 0.9257 0.9554 3.7989 4.4278
(0.95, -0.9, 0.5) 0.9234 0.9538 3.7728 4.4113
(1.75, -0.76, -0.1) 0.9239 0.9538 3.8001 4.4258
(1.2, -0.3, -0.4) 0.9241 0.9539 3.7894 4.4183
(0.8, -0.16, 0.2) 0.9226 0.9531 3.7714 4.4230
(0.8, -0.16, -0.2) 0.9243 0.9546 3.7790 4.4241
(0.55, 0.4, -0.5) 0.9235 0.9542 3.7672 4.4141
(0.4, 0.3, 0.15) 0.9210 0.9526 3.7609 4.4085
(0.4, 0.3,-0.15) 0.9233 0.9540 3.7712 4.4197
(0, 0.15, 0.8 0.9183 0.9508 3.7477 4.3900
(0, 0.15, -0.8) 0.9242 0.9543 3.7818 4.4237
(-0.8,-0.16, 0.2) 0.9249 0.9548 3.7784 4.4196
(-0.8,-0.16, -0.2) 0.9249 0.9548 3.7815 4.4228
(0, 0.65, 0.1) 0.9220 0.9531 3.7642 4.4110
(0, 0.65, -0.1) 0.9228 0.9535 3.7650 4.4122
(-0.4, 0.3, 0.15) 0.9235 0.9540 3.7712 4.4130
(-0.4, 0.3, -0.15) 0.9242 0.9544 3.7729 4.4151
(-1.2,-0.3,0.4) 0.9248 0.9535 3.8154 4.4159
(0, 0.9, 0.05) 0.9184 0.9504 3.7494 4.3939
(0, 0.9, -0.05) 0.9198 0.9515 3.7600 4.4153
(-0.55, 0.4, 0.5) 0.9240 0.9542 3.7758 4.4177
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Tablel. (continued)

( ) Coverage probability Expected length
T
AL PI PI, PI PI.
100 (0, -0.65, 0.5) 0.9382 0.9533 3.8515 4.1789
(0, -0.65, -0.5) 0.9384 0.9533 3.8595 4.1789
(-0.4,-0.15, 0.3) 0.9388 0.9539 3.8557 4.1837
(-0.4,-0.15, -0.3) 0.9384 0.9534 3.8510 4.1736
(0.4, 0.15, 0.3) 0.9375 0.9531 3.8518 4.1815
(0.4, 0.15,-0.3) 0.9385 0.9534 3.8511 41743
(-0.8,-0.65, 0.2) 0.9384 0.9534 3.8563 4.1790
(-0.8, -0.65, -0.2) 0.9384 0.9532 3.8504 4.1692
(0.8, -0.65, 0.2) 0.9384 0.9531 3.8525 4.1725
(0.8, -0.65, -0.2) 0.9385 0.9536 3.8541 4.1794
(-0.95,-0.9,-0.5) 0.9383 0.9533 3.8556 4.1760
(0.95, -0.9, 0.5) 0.9379 0.9533 3.8474 4.1747
(1.75, -0.76, -0.1) 0.9382 0.9534 3.8570 4.1853
(1.2, -0.3, -0.4) 0.9381 0.9529 3.8540 41711
(0.8, -0.16, 0.2) 0.9380 0.9532 3.8515 4.1797
(0.8, -0.16, -0.2) 0.9386 0.9535 3.8537 4.1745
(0.55, 0.4, -0.5) 0.9384 0.9533 3.8533 4.1783
(0.4, 0.3,0.15) 0.9371 0.9524 3.8438 4.1709
(0.4, 0.3, -0.15) 0.9382 0.9530 3.8526 4.1749
(0, 0.15, 0.8) 0.9354 0.9513 3.8339 4.1625
(0, 0.15, -0.8) 0.9381 0.9534 3.8523 4.1812
(-0.8,-0.16, 0.2) 0.9380 0.9530 3.8464 4.1685
(-0.8, -0.16, -0.2) 0.9381 0.9533 3.8489 4.1764
(0, 0.65, 0.1) 0.9373 0.9526 3.8424 4.1676
(0, 0.65, -0.1) 0.9378 0.9528 3.8465 41712
(-0.4, 0.3, 0.15) 0.9380 0.9531 3.8479 4.1726
(-0.4, 0.3, -0.15) 0.9381 0.9531 3.8485 4.1728
(-1.2,-0.3, 0.4) 0.9383 0.9531 3.8649 4.1757
(0, 0.9, 0.05) 0.9358 0.9513 3.8361 4.1628
(0, 0.9, -0.05) 0.9369 0.9526 3.8450 4.1752
(-0.55, 0.4, 0.5) 0.9377 0.9529 3.8467 4.1755
250 (0, -0.65, 0.5) 0.9454 0.9511 3.8910 4.0200
(0, -0.65, -0.5) 0.9454 0.9511 3.8924 4.0195
(-0.4,-0.15, 0.9) 0.9454 0.9511 3.8014 4.0193
(-0.4,-0.15,-0.3) 0.9455 0.9512 3.8908 4.0187
(0.4, 0.15, 0.3) 0.9454 0.9510 3.8913 4.0171
(0.4, 0.15,-0.3) 0.9457 0.9514 3.8942 4.0218
(-0.8,-0.65, 0.2) 0.9456 0.9512 3.8939 4.0189
(-0.8, -0.65, -0.2) 0.9456 0.9511 3.8932 4.0181
(0.8, -0.65, 0.2) 0.9455 0.9510 3.8911 4.0157
(0.8, -0.65, -0.2) 0.9457 0.9513 3.8953 4.0222
(-0.95,-0.9,-0.5) 0.9455 0.9511 3.8925 4.0200
(0.95, -0.9, 0.5) 0.9455 0.9510 3.8920 4.0163
(1.75, -0.76, -0.1) 0.9456 0.9512 3.8930 4.0223
(1.2,-03,-0.4) 0.9456 0.9513 3.8968 4.0234
(0.8, -0.16, 0.2) 0.9454 0.9510 3.8920 4.0180
(0.8, -0.16, -0.2) 0.9454 0.9511 3.8901 4.0182
(0.55, 0.4, -0.5) 0.9454 0.9511 3.8909 4.0194
(0.4, 0.3, 0.15) 0.9454 0.9510 3.8909 4.0182
(0.4, 0.3, -0.15) 0.9456 0.9511 3.8939 4.0186
(0,0.15, 0.8) 0.9451 0.9510 3.8912 4.0227
(0, 0.15, -0.8) 0.9457 0.9513 3.8953 4.0224
(-0.8,-0.16, 0.2) 0.9454 0.9510 3.8893 4.0164
(-0.8,-0.16, -0.2) 0.9455 0.9510 3.8917 4.0166
(0, 0.65, 0.1) 0.9453 0.9508 3.8909 4.0159
(0, 0.65, -0.1) 0.9455 0.9513 3.8926 4.0215
(-0.4, 0.3, 0.15) 0.9456 0.9512 3.8919 4.0196
(-0.4, 0.3, -0.15) 0.9459 0.9513 3.8973 4.0228
(-1.2,-0.3, 0.4) 0.9457 0.9514 3.8966 4.0238
(0, 0.9, 0.05) 0.9447 0.9505 3.8872 4.0148
(0, 0.9, -0.05) 0.9453 0.9511 3.8916 4.0217
(-0.55, 0.4, 0.5) 0.9453 0.9509 3.8882 4.0155
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Table2. The estimated coverage probabilities and expected lengths of a 90% one-step-
ahead prediction interval for AR(3) when M =10,000, ¢ =0and ¢° = 1.

(¢1 b4.8) Coverage probability Expected length
T P2
2193 Pl Pl Pl Pl

25 (0, -0.65, 0.5) 0.8252 0.9075 3.0619 4.0640
(0, -0.65, -0.5) 0.8306 0.9073 3.0997 4.0583
(-0.4,-0.15,0.3 0.8266 0.9100 3.0469 4.0582
(-0.4,-0.15, -0.3) 0.8278 0.9109 3.0525 4.0690
(0.4,0.15, 0.3) 0.8146 0.8993 3.0059 4.0232
(0.4, 0.15,-0.3) 0.8250 0.9088 3.0364 4.0457
(-0.8, -0.65, 0.2) 0.8274 0.9091 3.0910 4.0551
(-0.8, -0.65, -0.2) 0.8285 0.9097 3.0646 4.0531
(0.8, -0.65, 0.2) 0.8242 0.9092 3.0362 4.0531
(0.8, -0.65, -0.2) 0.8265 0.9078 3.0607 4.0637
(-0.95,-0.9,-0.5) 0.8301 0.9109 3.0958 4.0616
(0.95, -0.9, 0.5) 0.8204 0.9056 3.0283 4.0461
(1.75, -0.76, -0.1) 0.8271 0.8986 3.1182 4.0422
(1.2, -0.3,-0.4) 0.8352 0.9033 3.2045 4.0245
(0.8, -0.16, 0.2) 0.8150 0.9006 3.0118 4.0245
(0.8, -0.16, -0.2) 0.8251 0.9092 3.0460 4.0676
(0.55, 0.4, -0.5) 0.8244 0.9089 3.0440 4.0602
(0.4, 0.3,0.15) 0.8135 0.8997 2.9952 4.0077
(0.4, 0.3, -0.15) 0.8218 0.9074 3.0272 4.0471
(0, 0.15, 0.8) 0.8118 0.9001 2.9914 3.9927
(0, 0.15, -0.8) 0.8290 0.9069 3.0730 4.0571
(-0.8,-0.16, 0.2 0.8269 0.9105 3.0574 4.0668
(-0.8,-0.16, -0.2) 0.8270 0.9093 3.0583 4.0598
(0, 0.65, 0.1) 0.8154 0.9024 3.0143 4.0489
(0, 0.65, -0.1) 0.8184 0.9037 3.0224 4.0452
(-0.4, 0.3, 0.15) 0.8249 0.9094 3.0381 4.0538
(-0.4, 0.3, -0.15) 0.8251 0.9088 3.0476 4.0711
(-1.2,-0.3, 0.4) 0.8329 0.9050 3.1327 4.0569
(0, 0.9, 0.05) 0.8100 0.8977 2.9917 3.9933
(0, 0.9, -0.05) 0.8089 0.8955 2.9883 4.0084
(-0.55, 0.4, 0.5) 0.8207 0.9060 3.0272 4.0474
50 (0, -0.65, 0.5) 0.8665 0.9112 3.1753 3.6889
(0, -0.65, -0.5) 0.8665 0.9107 3.1907 3.6868
(-0.4,-0.15, 0.3) 0.8658 0.9110 3.1677 3.6847
(-0.4,-0.15, -0.3) 0.8667 0.9110 3.1688 3.6788
(0.4, 0.15, 0.3) 0.8619 0.9079 3.1571 3.6764
(0.4, 0.15, -0.3) 0.8666 0.9111 3.1688 3.6821
(-0.8, -0.65, 0.2) 0.8669 0.9115 3.1842 3.6925
(-0.8, -0.65, -0.2) 0.8675 0.9118 3.1773 3.6881
(0.8, -0.65, 0.2) 0.8649 0.9100 3.1629 3.6791
(0.8, -0.65, -0.2) 0.8671 0.9116 3.1812 3.6896
(-0.95,-0.9,-0.5) 0.8674 0.9121 3.1864 3.6883
(0.95, -0.9, 0.5) 0.8649 0.9102 3.1633 3.6824
(1.75, -0.76, -0.1) 0.8656 0.9097 3.1858 3.6824
(1.2, -0.3, -0.4) 0.8669 0.9100 3.1853 3.6863
(0.8, -0.16, 0.2) 0.8628 0.9089 3.1598 3.6814
(0.8, -0.16, -0.2) 0.8675 0.9121 3.1754 3.6932
(0.55, 0.4, -0.5) 0.8662 0.9112 3.1709 3.6877
(0.4, 0.3,0.15) 0.8617 0.9082 3.1556 3.6750
(0.4, 0.3,-0.15) 0.8655 0.9112 3.1693 3.6888
(0,0.15, 0.8) 0.8580 0.9054 3.1397 3.6543
(0, 0.15, -0.8) 0.8651 0.9104 3.1704 3.6877
(-0.8,-0.16, 0.2) 0.8664 0.9111 3.1692 3.6823
(-0.8,-0.16, -0.2) 0.8659 0.9104 3.1707 3.6770
(0, 0.65, 0.1) 0.8620 0.9081 3.1531 3.6731
(0, 0.65, -0.1) 0.8642 0.9097 3.1614 3.6798
(-0.4, 0.3, 0.15) 0.8650 0.9105 3.1647 3.6823
(-0.4, 0.3, -0.15) 0.8663 0.9109 3.1747 3.6929
(-1.2,-0.3,0.4) 0.8677 0.9099 3.2006 3.6826
(0, 0.9, 0.05) 0.8582 0.9052 3.1436 3.6595
(0, 0.9, -0.05) 0.8604 0.9074 3.1529 3.6810
(-0.55, 0.4, 0.5) 0.8649 0.9104 3.1640 3.6813
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Table2. (continued)

( ) Coverage probability Expected length
T
AL PI Pl PI PI.
100 (0, -0.65, 0.5) 0.8839 0.9063 3.2327 3.4867
(0, -0.65, -0.5) 0.8844 0.9070 3.2384 3.4903
(-0.4,-0.15, 0.3) 0.8837 0.9062 3.2290 3.4844
(-0.4, -0.15, -0.3) 0.8843 0.9068 3.2333 3.4895
(0.4, 0.15, 0.3) 0.8832 0.9064 3.2322 3.4928
(0.4, 0.15,-0.3) 0.8839 0.9064 3.2287 3.4830
(-0.8,-0.65, 0.2) 0.8842 0.9066 3.2347 3.4883
(-0.8, -0.65, -0.2) 0.8840 0.9064 3.2289 3.4815
(0.8, -0.65, 0.2) 0.8842 0.9067 3.2302 3.4848
(0.8, -0.65, -0.2) 0.8848 0.9071 3.2369 3.4922
(-0.95,-0.9,-0.5) 0.8842 0.9067 3.2347 3.4862
(0.95, -0.9, 0.5) 0.8837 0.9064 3.2305 3.4869
(1.75, -0.76, -0.1) 0.8836 0.9061 3.2320 3.4864
(1.2, -0.3, -0.4) 0.8840 0.9064 3.2363 3.4879
(0.8, -0.16, 0.2) 0.8829 0.9055 3.2281 3.4817
(0.8, -0.16, -0.2) 0.8837 0.9062 3.2284 3.4822
(0.55, 0.4, -0.5) 0.8839 0.9058 3.2285 3.4784
(0.4, 0.3,0.15) 0.8824 0.9050 3.2250 3.4787
(0.4, 0.3, -0.15) 0.8840 0.9062 3.2311 3.4846
(0, 0.15, 0.8) 0.8807 0.9042 3.2237 3.4837
(0, 0.15, -0.8) 0.8842 0.9067 3.2374 3.4948
(-0.8,-0.16, 0.2) 0.8840 0.9063 3.2295 3.4813
(-0.8, -0.16, -0.2) 0.8837 0.9060 3.2208 3.4841
(0, 0.65, 0.1) 0.8833 0.9060 3.2296 3.4874
(0, 0.65, -0.1) 0.8836 0.9064 3.2269 3.4846
(-0.4, 0.3, 0.15) 0.8843 0.9067 3.2317 3.4858
(-0.4, 0.3, -0.15) 0.8840 0.9067 3.2318 3.4889
(-1.2,-0.3, 0.4) 0.8839 0.9061 3.2394 3.4841
(0, 0.9, 0.05) 0.8801 0.9033 3.2175 3.4735
(0, 0.9, -0.05) 0.8822 0.9054 3.2266 3.4863
(-0.55, 0.4, 0.5) 0.8839 0.9064 3.2301 3.4861
250 (0, -0.65, 0.5) 0.8938 0.9026 3.2672 3.3664
(0, -0.65, -0.5) 0.8939 0.9030 3.2681 3.3700
(-0.4,-0.15, 0.9) 0.8939 0.9028 3.2663 3.3664
(-0.4,-0.15,-0.3) 0.8937 0.9028 3.2657 3.3672
(0.4, 0.15, 0.3) 0.8936 0.9027 3.2665 3.3684
(0.4, 0.15,-0.3) 0.8937 0.9028 3.2652 3.3673
(-0.8,-0.65, 0.2) 0.8942 0.9031 3.2702 3.3713
(-0.8, -0.65, -0.2) 0.8942 0.9033 3.2692 3.3729
(0.8, -0.65, 0.2) 0.8940 0.9029 3.2667 3.3669
(0.8, -0.65, -0.2) 0.8937 0.9030 3.2659 3.3688
(-0.95,-0.9,-0.5) 0.8940 0.9031 3.2686 3.3722
(0.95, -0.9, 0.5) 0.8934 0.9025 3.2627 3.3646
(1.75, -0.76, -0.1) 0.8941 0.9031 3.2685 3.3693
(1.2,-03,-0.4) 0.8937 0.9028 3.2669 3.3680
(0.8, -0.16, 0.2) 0.8937 0.9027 3.2659 3.3677
(0.8, -0.16, -0.2) 0.8940 0.9030 3.2676 3.3686
(0.55, 0.4, -0.5) 0.8940 0.9030 3.2682 3.3688
(0.4, 0.3, 0.15) 0.8932 0.9024 3.2618 3.3641
(0.4, 0.3, -0.15) 0.8937 0.9026 3.2651 3.3657
(0,0.15, 0.8) 0.8927 0.9020 3.2613 3.3639
(0, 0.15, -0.8) 0.8940 0.9030 3.2677 3.3694
(-0.8,-0.16, 0.2) 0.8939 0.9029 3.2666 3.3686
(-0.8,-0.16, -0.2) 0.8936 0.9029 3.2639 3.3671
(0, 0.65, 0.1) 0.8936 0.9025 3.2652 3.3658
(0, 0.65, -0.1) 0.8936 0.9025 3.2646 3.3658
(-0.4, 0.3, 0.15) 0.8939 0.9031 3.2675 3.3711
(-0.4, 0.3, -0.15) 0.8938 0.9027 3.2657 3.3667
(-1.2,-0.3, 0.4) 0.8936 0.9028 3.2670 3.3683
(0, 0.9, 0.05) 0.8930 0.9021 3.2645 3.3654
(0, 0.9, -0.05) 0.8936 0.9029 3.2659 3.3694
(-0.55, 0.4, 0.5) 0.8939 0.9031 3.2673 3.3709
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