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Abstract 

This paper presents a new one-step-ahead prediction interval for an unknown 

mean Gaussian autoregressive process (AR(p)) using the residual model. The proposed 

prediction interval is constructed by adding the multiplication of the correction factor and 

the percentile of sample errors in the estimated point forecast for an AR(p) process. The 

coverage probabilities of a new prediction interval and a standard prediction interval are 

also derived to be functionally independent of the population mean and the variance of 

the innovation process. The Monte Carlo simulation is used to investigate the behavior of 

this new prediction interval compared to the existing prediction interval based on their 

coverage probabilities and expected lengths. Simulation results have shown that almost 

cases of the new prediction interval have desired minimum coverage probabilities of 0.95 

and 0.90. Moreover, this new one is better than a standard prediction interval for all the 

autoregressive parameter values and all sample sizes considered in this paper. 

______________________________ 
Keywords: AR(p), coverage probability, expected length, prediction interval, residual 

model. 
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1. Introduction 

 Recently, there has been increasing interest in constructing prediction intervals 

for an autoregressive process, see for example the standard textbooks of Box et al. [1] 

and Wei [2]. The conditional prediction interval for an autoregressive moving average 

model was proposed by de Luna [3]. However, this prediction interval does not have 

minimum coverage probability at the nominal confidence level for small and moderate 

sample sizes. Several authors also used the bootstrap methods for calculating prediction 

intervals, see for example Kim [4-6], Alonso, et al. [7] and Clements and Kim [8] and 

references therein. Although prediction intervals based on bootstrap methods have more 

coverage probability than 1 α− , these methods are taken much time to calculate. Halkos 

and Kevork [9] proposed a prediction interval for a stationary AR(1) process with an 

almost unit root by considering the random walk as the true model. They found that their 

proposed prediction interval has less coverage probability than the nominal confidence 

level when 1φ  is close to one. In this paper, we emphasis constructing simple prediction 

intervals, based on the residual model described by Olive [10], for an unknown mean 

Gaussian autoregressive process (AR(p)). In addition, we have derived coverage 

probabilities of this new prediction intervals and a standard prediction interval for an 

AR(p) process. 

 The plan of the paper is as follows. In Section 2, a standard prediction interval 

for an unknown mean Gaussian AR(p) process is presented. Section 3 proposes a new 

prediction interval for an unknown mean Gaussian AR(p) process using the residual 

model. The Monte Carlo simulation results are given in Section 4. The conclusion is 

presented in Section 5. 
 
2. Standard Prediction Interval for an Unknown Mean Gaussian AR(p) Process 

Suppose { }; 1,2,3,...,tY t T=  is an unknown mean Gaussian AR(p) process 

satisfying 

1 1( ) ... ( )t t p t p tY Y Y eµ φ µ φ µ− −− = − + + − +            (1) 
 

where µ  is the population mean, 1,..., pφ φ  are the autoregressive parameters and te  are 

unobservable independent errors having zero mean and finite variance, 2~ (0, )t ee N σ . 

The equation (1) can be written symbolically in a compact form 

( )( )t tB Y eφ µ− =                (2) 
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where B  is the back-shift operator defined by j
t t jB Y Y −=  and ( )φ ⋅ is the thp degree 

polynomials in B  such that 1( ) 1 p
pz z zφ φ φ= − − − . The process in (2) is stationary 

when the roots of ( ) 0zφ =  is outside the unit circle. 

 Now we present the standard prediction interval for 1TY +  based on data 

1 2, ,..., .TY Y Y  It is well-known that, for known 1( , ,..., , )p eµ φ φ σ , the optimal predictor in the 

mean square sense, is 1 1( ... )( )p
p TB B Yµ φ φ µ++ + + − . Replacing the unknown 

1( , ,..., , )p eµ φ φ σ  by the estimators 1̂
ˆˆ ˆ( , ,..., , )p eµ φ φ σ . The approximate 1 α−  standard 

prediction interval for 1TY +  is  

1 1 1
2

ˆ ˆˆ ˆ ˆ( ... )( )p
S p T ePI B B Y Z αµ φ φ µ σ+

−

 
= + + + − ± ⋅ 

 
            (3) 

where  
1

2

Z α
−

 is a 1
2

thα − 
 

quantile of the standard normal distribution,  ˆ Yµ = , 1̂
ˆ,..., pφ φ  

are the ordinary least squares (OLS) estimators and 
 

2
1 1

12

ˆ ˆ( ( ) ( ))
ˆ

1

T

t t p t p
t p

e

Y Y Y Y Y Y

T p

φ φ
σ

− −
= +

− − − − − −
=

− −

∑ 

.           (4) 

 
In Theorem 1 below, we show the coverage probability of SPI . 

Theorem 1.   Suppose, from (1), 2
1 ~ (0, )T ee N σ+ , the coverage probability of SPI in (3), 

1( )T SP Y PI+ ∈ , is 1 2∆ − ∆  where 

1 1
1 1 11

2

ˆˆ ˆˆ ˆ( ... ) ( ... )p peT T
p p

e e e e e

Y YB B Z B Bα
σµ µ µ µφ φ φ φ

σ σ σ σ σ
+ +

−

    − − ∆ = Φ + + + + ⋅ − − + +           
, 

1 1
2 1 11

2

ˆˆ ˆˆ ˆ( ... ) ( ... )p peT T
p p

e e e e e

Y YB B Z B Bα
σµ µ µ µφ φ φ φ

σ σ σ σ σ
+ +

−

    − − ∆ = Φ + + + − ⋅ − − + +           
 

and ( )Φ ⋅  is the standard normal distribution function. 

Proof of Theorem 1. 

1( )T SP Y PI+ ∈  

1 1 1 1 11 1
2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ... )( ) ( ... )( )p p
p T e T p T eP B B Y Z Y B B Y Zα αµ φ φ µ σ µ φ φ µ σ+ + +

− −

 
 = + + + − − ⋅ ≤ ≤ + + + − + ⋅
  
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1 1 1 1 11
2

1 1 1
2

ˆ ˆˆ ˆ ˆ( ... )( ) ( ) ... ( )

ˆ ˆˆ ˆ ˆ( ... )( )

p
p T e T p T p T

p
p T e

B B Y Z Y Y e

P
B B Y Z

α

α

µ φ φ µ σ µ φ µ φ µ

µ φ φ µ σ

+ + − +
−

+
−

 + + + − − ⋅ ≤ + − + + − + ≤
 
 =
 + + + − + ⋅
 
   

1 1 1 1 11
2

1 1 1
2

ˆ ˆˆ ˆ ˆ( ... )( ) ( ... )( )

ˆ ˆˆ ˆ ˆ( ... )( )

p p
p T e p T T

p
p T e

B B Y Z B B Y e

P
B B Y Z

α

α

µ φ φ µ σ µ φ φ µ

µ φ φ µ σ

+ + +
−

+
−

 + + + − − ⋅ ≤ + + + − + ≤
 
 =
 + + + − + ⋅
 
 

 

1 1 1 1 11
2

1 1 1 11
2

ˆ ˆˆ ˆ ˆ( ... )( ) ( ... )( )

ˆ ˆˆ ˆ ˆ( ... )( ) ( ... )( )

p p
p T e p T T

p p
p T e p T

B B Y Z B B Y e

P
B B Y Z B B Y

α

α

µ φ φ µ σ µ φ φ µ

µ φ φ µ σ µ φ φ µ

+ + +
−

+ +
−

 + + + − − ⋅ − − + + − ≤ ≤
 
 =
 + + + − + ⋅ − − + + −
 
 

 

1 1 1
1 11

2

1 1
1 11

2

ˆˆ ˆˆ ˆ( ... ) ( ... )

ˆˆ ˆˆ ˆ( ... ) ( ... )

p peT T T
p p

e e e e e e

p peT T
p p

e e e e e

Y Y eB B Z B B

P
Y YB B Z B B

α

α

σµ µ µ µφ φ φ φ
σ σ σ σ σ σ

σµ µ µ µφ φ φ φ
σ σ σ σ σ

+ + +
−

+ +
−

    − −
+ + + − ⋅ − − + + ≤ ≤           

=  
   − − 

+ + + + ⋅ − − + +       
       

1 1
1 11

2

1 1
1 11

2

ˆˆ ˆˆ ˆ( ... ) ( ... )

ˆˆ ˆˆ ˆ( ... ) ( ... )

p peT T
p p

e e e e e

p peT T
p p

e e e e e

Y YB B Z B B

Y YB B Z B B

α

α

σµ µ µ µφ φ φ φ
σ σ σ σ σ

σµ µ µ µφ φ φ φ
σ σ σ σ σ

+ +
−

+ +
−

    − − = Φ + + + + ⋅ − − + +           
    − − −Φ + + + − ⋅ − − + +           

 

 

3. Prediction Interval for an Unknown Mean Gaussian AR(p) Process Using the 
Residual Model 

 Our aim for model (1) is to construct the prediction interval for 1TY +  based on 

data 1 2, ,..., .TY Y Y  It is well-known that, for known 1 2( , , , ..., )pµ φ φ φ , the optimal predictor, in 

the mean square sense, for model (1) is 1 1( ... )( )p
p TB B Yµ φ φ µ++ + + −  Replacing the 

unknown 1 2( , , , ..., )pµ φ φ φ  in this expression by estimators 1 2
ˆ ˆ ˆˆ( , , , ..., )pµ φ φ φ , we obtain the 

predictor 1 1
ˆ ˆˆ ˆ( ... )( )p

p TB B Yµ φ φ µ++ + + − . The approximate (1 )100%α−  prediction interval 

for 1TY +  of model (1) based on the residual model, described by Olive [10], is given by 

1 1 1 1 1
2 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ... )( ) , ( ... )( )p p
R p T T p T TPI B B Y a B B Y aα αµ φ φ µ ξ µ φ φ µ ξ+ +

−

 
 = + + + − + ⋅ + + + − + ⋅
  

        (5) 
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where  ˆ Yµ = ,  1̂
ˆ,..., pφ φ  are the ordinary least squares (OLS) estimators ,the residual of 

model (1) is ˆ
t tY Y−  and 

2
α̂ξ   is the sample / 2α  percentile of the residuals from model (1) 

and Ta  is the correction factor. Define 1 1T f
k Ta h
T T p

 = + +  − 
 where 

1( )T T
f f fh x X X x−= , 1

1

1

T

Tf

T p

Y
Yx

Y

−

− +

 
 
 
 =
 
 
   



, 

1 1

1 2

1 2

1

1

1

p p

p p

T T T p

Y Y Y

Y Y Y
X

Y Y Y

−

+

− − −

 
 
 =  
 
  





   



 and k  is a 

constant. The coverage probability of RPI  is found in Theorem 2. 

 
Theorem 2.   Suppose, from (1), 2

1 ~ (0, )T ee N σ+ , the coverage probability of RPI in (5), 

1( )T RP Y PI+ ∈ , is 3 4∆ − ∆  where 

1 1
3 1 11

2

ˆ ˆˆ ˆ ˆ( ... ) ( ... )p pT T T
p p

e e e e e

Y a YB B B Bα
µ µ µ µφ φ ξ φ φ
σ σ σ σ σ

+ +

−

    − −
∆ = Φ + + + + ⋅ − − + +         

,  

1 1
4 1 1

2

ˆ ˆˆ ˆ ˆ( ... ) ( ... )p pT T T
p p

e e e e e

Y a YB B B Bα
µ µ µ µφ φ ξ φ φ
σ σ σ σ σ

+ +
    − −

∆ = Φ + + + + ⋅ − − + +         
  

Proof of Theorem 2.            

1( )T RP Y PI+ ∈  

1 1 1 1 1 1
2 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ... )( ) ( ... )( )p p
p T T T p T TP B B Y a Y B B Y aα αµ φ φ µ ξ µ φ φ µ ξ+ + +

−

 
 = + + + − + ⋅ ≤ ≤ + + + − + ⋅
    

1 1 1 1 1
2

1 1 1
2

ˆ ˆ ˆˆ ˆ( ... )( ) ( ) ... ( )

ˆ ˆ ˆˆ ˆ( ... )( )

p
p T T T p T p T

p
p T T

B B Y a Y Y e

P
B B Y a

α

α

µ φ φ µ ξ µ φ µ φ µ

µ φ φ µ ξ

+ + − +

+
−

 + + + − + ⋅ ≤ + − + + − + ≤
 
 =
 + + + − + ⋅
 
   

1 1 1 1 1
2

1 1 1
2

ˆ ˆ ˆˆ ˆ( ... )( ) ( ... )( )

ˆ ˆ ˆˆ ˆ( ... )( )

p p
p T T p T T

p
p T T

B B Y a B B Y e

P
B B Y a

α

α

µ φ φ µ ξ µ φ φ µ

µ φ φ µ ξ

+ + +

+
−

 + + + − + ⋅ ≤ + + + − + ≤
 
 =
 + + + − + ⋅
 
   
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1 1 1 1 1
2

1 1 1 11
2

ˆ ˆ ˆˆ ˆ( ... )( ) ( ... )( )

ˆ ˆ ˆˆ ˆ( ... )( ) ( ... )( )

p p
p T T p T T

p p
p T T p T

B B Y a B B Y e
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B B Y a B B Y

α

α
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+ +
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 + + + − + ⋅ − − + + − ≤ ≤
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   

1 1 1
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1 1
1 11
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ˆ ˆˆ ˆ ˆ( ... ) ( ... )
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p pT T T T
p p

e e e e e e

p pT T T
p p

e e e e e

Y a Y eB B B B

P
Y a YB B B B

α

α

µ µ µ µφ φ ξ φ φ
σ σ σ σ σ σ

µ µ µ µφ φ ξ φ φ
σ σ σ σ σ

+ + +

+ +
−

    − −
+ + + + ⋅ − − + + ≤ ≤           

=  
   − − 

+ + + + ⋅ − − + +       
     

 

1 1
1 11

2

1 1
1 1

2

ˆ ˆˆ ˆ ˆ( ... ) ( ... )

ˆ ˆˆ ˆ ˆ( ... ) ( ... )

p pT T T
p p

e e e e e

p pT T T
p p

e e e e e

Y a YB B B B

Y a YB B B B

α

α

µ µ µ µφ φ ξ φ φ
σ σ σ σ σ

µ µ µ µφ φ ξ φ φ
σ σ σ σ σ

+ +
−

+ +

    − − = Φ + + + + ⋅ − − + +           
    − − −Φ + + + + ⋅ − − + +           

 

 In the next section, we present the simulation results, using Monte Carlo 

simulation, to estimate coverage probabilities and expected lengths of the prediction 

intervals (3) and (5) using the results of Theorems 1-2. 

 
4. Monte Carlo Simulation 

 In this section, we report the results of using the Monte Carlo simulation to 

investigate the estimated coverage probabilities of the prediction intervals (3), (5) and 

their expected lengths. We used R program to generate the data from an AR(3) process 

in model (1) with parameters 2( , )eµ σ = (0, 1), sample sizes; T = 25, 50, 100 and 250, The 

parameter values of the autoregressive process are chosen to include a wide range of 

real roots of the equation 11 0p
pB Bφ φ− − − = . The number of simulation runs, M = 

10,000 at level of significance α  = 0.05 and 0.10. The constant number k  in Ta  has 

been selected so that coverage probabilities of the prediction intervals in (5) are at least 

1 α− . We found, using the Monte Carlo simulation, that k = 7 and 9 are good choices for 

α  = 0.10 and 0.05 respectively. Tables 1-2 show estimated coverage probabilities of the 

prediction intervals (3) and (5), SPI  and RPI , and their expected lengths for an AR(3) 

process at α  = 0.05 and 0.10, respectively. As can be seen from Tables 1-2 and 

Figures 1-2, almost cases of the new prediction interval, RPI , has a minimum estimated 

coverage probability 1 α− , for all sample sizes and values of 1 2 3( , , )φ φ φ  considered 
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here. Consequently, the expected lengths of RPI  are longer than that of SPI  for all 

sample sizes since the prediction interval RPI  has more coverage probabilities than SPI . 

 
5. Conclusion 

 We have proposed a new one-step-ahead prediction interval for an unknown 

mean Gaussian autoregressive process (AR(p)). The standard prediction Interval and 

the prediction interval based on the residual model are proposed in this study. The 

prediction interval based on the residual model performs better than the standard 

prediction Interval in terms of the coverage probability. Therefore, if we prefer a 

prediction interval with minimum coverage probability equal to a pre-specified value 

1 α− , the prediction interval based on the residual model is preferable to the standard 

prediction Interval. 

 
Figure 1.  Comparison of the coverage probabilities of the prediction interval SPI  

and RPI whereα  = 0.05. 
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Figure 2.  Comparison of the coverage probabilities of the prediction interval SPI  

and RPI whereα  = 0.10. 
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Table1. The estimated coverage probabilities and expected lengths of a 95% one-step-
ahead prediction interval for AR(3) when 10,000M = , µ  = 0 and 2

eσ  = 1. 

T 1 2 3( , , )φ φ φ  
Coverage probability Expected length 

SPI  RPI  SPI  RPI  

25 (0, -0.65, 0.5) 0.8890 0.9562 3.6422 4.9908 
(0, -0.65, -0.5) 0.8965 0.9571 3.7070 5.0063 

(-0.4, -0.15, 0.3) 0.8892 0.9574 3.6183 4.9836 
(-0.4, -0.15, -0.3) 0.8929 0.9597 3.6390 5.0117 
(0.4, 0.15, 0.3) 0.8817 0.9527 3.5686 4.9409 
(0.4, 0.15, -0.3) 0.8905 0.9586 3.6288 5.0097 
(-0.8, -0.65, 0.2) 0.8921 0.9577 3.6970 5.0166 
(-0.8, -0.65, -0.2) 0.8941 0.9596 3.6631 5.0141 
(0.8, -0.65, 0.2) 0.8890 0.9582 3.6137 4.9990 
(0.8, -0.65, -0.2) 0.8914 0.9572 3.6479 5.0087 
(-0.95,-0.9,-0.5) 0.8952 0.9586 3.6996 5.0207 
(0.95, -0.9, 0.5) 0.8864 0.9564 3.6067 5.0003 

(1.75, -0.76, -0.1) 0.8923 0.9510 3.7043 4.9718 
(1.2, -0.3, -0.4) 0.8972 0.9531 3.8029 4.9482 
(0.8, -0.16, 0.2) 0.8828 0.9535 3.5975 4.9905 
(0.8, -0.16, -0.2) 0.8886 0.9579 3.6153 4.9979 
(0.55, 0.4, -0.5) 0.8902 0.9580 3.6370 5.0270 
(0.4, 0.3, 0.15) 0.8813 0.9531 3.5846 4.9768 
(0.4, 0.3, -0.15) 0.8856 0.9566 3.6010 4.9961 

(0, 0.15, 0.8) 0.8802 0.9523 3.5719 4.9313 
(0, 0.15, -0.8) 0.8929 0.9568 3.6604 4.9994 

(-0.8, -0.16, 0.2) 0.8900 0.9579 3.6271 4.9988 
(-0.8, -0.16, -0.2) 0.8935 0.9586 3.6559 5.0068 

(0, 0.65, 0.1) 0.8821 0.9531 3.5834 4.9711 
(0, 0.65, -0.1) 0.8832 0.9546 3.5832 4.9765 

(-0.4, 0.3, 0.15) 0.8886 0.9583 3.6174 5.0103 
(-0.4, 0.3, -0.15) 0.8887 0.9575 3.6177 4.9951 
(-1.2, -0.3, 0.4) 0.8966 0.9558 3.7219 4.9765 
(0, 0.9, 0.05) 0.8767 0.9508 3.5635 4.9328 
(0, 0.9, -0.05) 0.8795 0.9515 3.5780 4.9580 

(-0.55, 0.4, 0.5) 0.8856 0.9561 3.5963 4.9837 
50 (0, -0.65, 0.5) 0.9239 0.9542 3.7780 4.4235 

(0, -0.65, -0.5) 0.9258 0.9549 3.8095 4.4270 
(-0.4, -0.15, 0.3) 0.9237 0.9540 3.7700 4.4076 
(-0.4, -0.15, -0.3) 0.9244 0.9544 3.7792 4.4209 
(0.4, 0.15, 0.3) 0.9208 0.9521 3.7570 4.4041 
(0.4, 0.15, -0.3) 0.9248 0.9545 3.7778 4.4139 
(-0.8, -0.65, 0.2) 0.9248 0.9545 3.7907 4.4194 
(-0.8, -0.65, -0.2) 0.9255 0.9551 3.7911 4.4282 
(0.8, -0.65, 0.2) 0.9239 0.9543 3.7685 4.4119 
(0.8, -0.65, -0.2) 0.9251 0.9547 3.7921 4.4285 
(-0.95,-0.9,-0.5) 0.9257 0.9554 3.7989 4.4278 
(0.95, -0.9, 0.5) 0.9234 0.9538 3.7728 4.4113 

(1.75, -0.76, -0.1) 0.9239 0.9538 3.8001 4.4258 
(1.2, -0.3, -0.4) 0.9241 0.9539 3.7894 4.4183 
(0.8, -0.16, 0.2) 0.9226 0.9531 3.7714 4.4230 
(0.8, -0.16, -0.2) 0.9243 0.9546 3.7790 4.4241 
(0.55, 0.4, -0.5) 0.9235 0.9542 3.7672 4.4141 
(0.4, 0.3, 0.15) 0.9210 0.9526 3.7609 4.4085 
(0.4, 0.3, -0.15) 0.9233 0.9540 3.7712 4.4197 

(0, 0.15, 0.8) 0.9183 0.9508 3.7477 4.3900 
(0, 0.15, -0.8) 0.9242 0.9543 3.7818 4.4237 

(-0.8, -0.16, 0.2) 0.9249 0.9548 3.7784 4.4196 
(-0.8, -0.16, -0.2) 0.9249 0.9548 3.7815 4.4228 

(0, 0.65, 0.1) 0.9220 0.9531 3.7642 4.4110 
(0, 0.65, -0.1) 0.9228 0.9535 3.7650 4.4122 

(-0.4, 0.3, 0.15) 0.9235 0.9540 3.7712 4.4130 
(-0.4, 0.3, -0.15) 0.9242 0.9544 3.7729 4.4151 
(-1.2, -0.3, 0.4) 0.9248 0.9535 3.8154 4.4159 
(0, 0.9, 0.05) 0.9184 0.9504 3.7494 4.3939 
(0, 0.9, -0.05) 0.9198 0.9515 3.7600 4.4153 

(-0.55, 0.4, 0.5) 0.9240 0.9542 3.7758 4.4177 
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Table1. (continued) 

T 1 2 3( , , )φ φ φ  
Coverage probability Expected length 

SPI  RPI  SPI  RPI  
100 (0, -0.65, 0.5) 0.9382 0.9533 3.8515 4.1789 

(0, -0.65, -0.5) 0.9384 0.9533 3.8595 4.1789 
(-0.4, -0.15, 0.3) 0.9388 0.9539 3.8557 4.1837 
(-0.4, -0.15, -0.3) 0.9384 0.9534 3.8510 4.1736 
(0.4, 0.15, 0.3) 0.9375 0.9531 3.8518 4.1815 
(0.4, 0.15, -0.3) 0.9385 0.9534 3.8511 4.1743 
(-0.8, -0.65, 0.2) 0.9384 0.9534 3.8563 4.1790 
(-0.8, -0.65, -0.2) 0.9384 0.9532 3.8504 4.1692 
(0.8, -0.65, 0.2) 0.9384 0.9531 3.8525 4.1725 
(0.8, -0.65, -0.2) 0.9385 0.9536 3.8541 4.1794 
(-0.95,-0.9,-0.5) 0.9383 0.9533 3.8556 4.1760 
(0.95, -0.9, 0.5) 0.9379 0.9533 3.8474 4.1747 

(1.75, -0.76, -0.1) 0.9382 0.9534 3.8570 4.1853 
(1.2, -0.3, -0.4) 0.9381 0.9529 3.8540 4.1711 
(0.8, -0.16, 0.2) 0.9380 0.9532 3.8515 4.1797 
(0.8, -0.16, -0.2) 0.9386 0.9535 3.8537 4.1745 
(0.55, 0.4, -0.5) 0.9384 0.9533 3.8533 4.1783 
(0.4, 0.3, 0.15) 0.9371 0.9524 3.8438 4.1709 
(0.4, 0.3, -0.15) 0.9382 0.9530 3.8526 4.1749 

(0, 0.15, 0.8) 0.9354 0.9513 3.8339 4.1625 
(0, 0.15, -0.8) 0.9381 0.9534 3.8523 4.1812 

(-0.8, -0.16, 0.2) 0.9380 0.9530 3.8464 4.1685 
(-0.8, -0.16, -0.2) 0.9381 0.9533 3.8489 4.1764 

(0, 0.65, 0.1) 0.9373 0.9526 3.8424 4.1676 
(0, 0.65, -0.1) 0.9378 0.9528 3.8465 4.1712 

(-0.4, 0.3, 0.15) 0.9380 0.9531 3.8479 4.1726 
(-0.4, 0.3, -0.15) 0.9381 0.9531 3.8485 4.1728 
(-1.2, -0.3, 0.4) 0.9383 0.9531 3.8649 4.1757 
(0, 0.9, 0.05) 0.9358 0.9513 3.8361 4.1628 
(0, 0.9, -0.05) 0.9369 0.9526 3.8450 4.1752 

(-0.55, 0.4, 0.5) 0.9377 0.9529 3.8467 4.1755 
250 (0, -0.65, 0.5) 0.9454 0.9511 3.8910 4.0200 

(0, -0.65, -0.5) 0.9454 0.9511 3.8924 4.0195 
(-0.4, -0.15, 0.3) 0.9454 0.9511 3.8914 4.0193 
(-0.4, -0.15, -0.3) 0.9455 0.9512 3.8908 4.0187 
(0.4, 0.15, 0.3) 0.9454 0.9510 3.8913 4.0171 
(0.4, 0.15, -0.3) 0.9457 0.9514 3.8942 4.0218 
(-0.8, -0.65, 0.2) 0.9456 0.9512 3.8939 4.0189 
(-0.8, -0.65, -0.2) 0.9456 0.9511 3.8932 4.0181 
(0.8, -0.65, 0.2) 0.9455 0.9510 3.8911 4.0157 
(0.8, -0.65, -0.2) 0.9457 0.9513 3.8953 4.0222 
(-0.95,-0.9,-0.5) 0.9455 0.9511 3.8925 4.0200 
(0.95, -0.9, 0.5) 0.9455 0.9510 3.8920 4.0163 

(1.75, -0.76, -0.1) 0.9456 0.9512 3.8930 4.0223 
(1.2, -0.3, -0.4) 0.9456 0.9513 3.8968 4.0234 
(0.8, -0.16, 0.2) 0.9454 0.9510 3.8920 4.0180 
(0.8, -0.16, -0.2) 0.9454 0.9511 3.8901 4.0182 
(0.55, 0.4, -0.5) 0.9454 0.9511 3.8909 4.0194 
(0.4, 0.3, 0.15) 0.9454 0.9510 3.8909 4.0182 
(0.4, 0.3, -0.15) 0.9456 0.9511 3.8939 4.0186 

(0, 0.15, 0.8) 0.9451 0.9510 3.8912 4.0227 
(0, 0.15, -0.8) 0.9457 0.9513 3.8953 4.0224 

(-0.8, -0.16, 0.2) 0.9454 0.9510 3.8893 4.0164 
(-0.8, -0.16, -0.2) 0.9455 0.9510 3.8917 4.0166 

(0, 0.65, 0.1) 0.9453 0.9508 3.8909 4.0159 
(0, 0.65, -0.1) 0.9455 0.9513 3.8926 4.0215 

(-0.4, 0.3, 0.15) 0.9456 0.9512 3.8919 4.0196 
(-0.4, 0.3, -0.15) 0.9459 0.9513 3.8973 4.0228 
(-1.2, -0.3, 0.4) 0.9457 0.9514 3.8966 4.0238 
(0, 0.9, 0.05) 0.9447 0.9505 3.8872 4.0148 
(0, 0.9, -0.05) 0.9453 0.9511 3.8916 4.0217 

(-0.55, 0.4, 0.5) 0.9453 0.9509 3.8882 4.0155 
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Table2. The estimated coverage probabilities and expected lengths of a 90% one-step-
ahead prediction interval for AR(3) when 10,000M = , µ  = 0 and 2

eσ  = 1.  

T 1 2 3( , , )φ φ φ  
Coverage probability Expected length 

SPI  RPI  SPI  RPI  
25 (0, -0.65, 0.5) 0.8252 0.9075 3.0619 4.0640 

(0, -0.65, -0.5) 0.8306 0.9073 3.0997 4.0583 
(-0.4, -0.15, 0.3) 0.8266 0.9100 3.0469 4.0582 
(-0.4, -0.15, -0.3) 0.8278 0.9109 3.0525 4.0690 
(0.4, 0.15, 0.3) 0.8146 0.8993 3.0059 4.0232 
(0.4, 0.15, -0.3) 0.8250 0.9088 3.0364 4.0457 
(-0.8, -0.65, 0.2) 0.8274 0.9091 3.0910 4.0551 
(-0.8, -0.65, -0.2) 0.8285 0.9097 3.0646 4.0531 
(0.8, -0.65, 0.2) 0.8242 0.9092 3.0362 4.0531 
(0.8, -0.65, -0.2) 0.8265 0.9078 3.0607 4.0637 
(-0.95,-0.9,-0.5) 0.8301 0.9109 3.0958 4.0616 
(0.95, -0.9, 0.5) 0.8204 0.9056 3.0283 4.0461 

(1.75, -0.76, -0.1) 0.8271 0.8986 3.1182 4.0422 
(1.2, -0.3, -0.4) 0.8352 0.9033 3.2045 4.0245 
(0.8, -0.16, 0.2) 0.8150 0.9006 3.0118 4.0245 
(0.8, -0.16, -0.2) 0.8251 0.9092 3.0460 4.0676 
(0.55, 0.4, -0.5) 0.8244 0.9089 3.0440 4.0602 
(0.4, 0.3, 0.15) 0.8135 0.8997 2.9952 4.0077 
(0.4, 0.3, -0.15) 0.8218 0.9074 3.0272 4.0471 

(0, 0.15, 0.8) 0.8118 0.9001 2.9914 3.9927 
(0, 0.15, -0.8) 0.8290 0.9069 3.0730 4.0571 

(-0.8, -0.16, 0.2) 0.8269 0.9105 3.0574 4.0668 
(-0.8, -0.16, -0.2) 0.8270 0.9093 3.0583 4.0598 

(0, 0.65, 0.1) 0.8154 0.9024 3.0143 4.0489 
(0, 0.65, -0.1) 0.8184 0.9037 3.0224 4.0452 

(-0.4, 0.3, 0.15) 0.8249 0.9094 3.0381 4.0538 
(-0.4, 0.3, -0.15) 0.8251 0.9088 3.0476 4.0711 
(-1.2, -0.3, 0.4) 0.8329 0.9050 3.1327 4.0569 
(0, 0.9, 0.05) 0.8100 0.8977 2.9917 3.9933 
(0, 0.9, -0.05) 0.8089 0.8955 2.9883 4.0084 

(-0.55, 0.4, 0.5) 0.8207 0.9060 3.0272 4.0474 
50 (0, -0.65, 0.5) 0.8665 0.9112 3.1753 3.6889 

(0, -0.65, -0.5) 0.8665 0.9107 3.1907 3.6868 
(-0.4, -0.15, 0.3) 0.8658 0.9110 3.1677 3.6847 
(-0.4, -0.15, -0.3) 0.8667 0.9110 3.1688 3.6788 
(0.4, 0.15, 0.3) 0.8619 0.9079 3.1571 3.6764 
(0.4, 0.15, -0.3) 0.8666 0.9111 3.1688 3.6821 
(-0.8, -0.65, 0.2) 0.8669 0.9115 3.1842 3.6925 
(-0.8, -0.65, -0.2) 0.8675 0.9118 3.1773 3.6881 
(0.8, -0.65, 0.2) 0.8649 0.9100 3.1629 3.6791 
(0.8, -0.65, -0.2) 0.8671 0.9116 3.1812 3.6896 
(-0.95,-0.9,-0.5) 0.8674 0.9121 3.1864 3.6883 
(0.95, -0.9, 0.5) 0.8649 0.9102 3.1633 3.6824 

(1.75, -0.76, -0.1) 0.8656 0.9097 3.1858 3.6824 
(1.2, -0.3, -0.4) 0.8669 0.9100 3.1853 3.6863 
(0.8, -0.16, 0.2) 0.8628 0.9089 3.1598 3.6814 
(0.8, -0.16, -0.2) 0.8675 0.9121 3.1754 3.6932 
(0.55, 0.4, -0.5) 0.8662 0.9112 3.1709 3.6877 
(0.4, 0.3, 0.15) 0.8617 0.9082 3.1556 3.6750 
(0.4, 0.3, -0.15) 0.8655 0.9112 3.1693 3.6888 

(0, 0.15, 0.8) 0.8580 0.9054 3.1397 3.6543 
(0, 0.15, -0.8) 0.8651 0.9104 3.1704 3.6877 

(-0.8, -0.16, 0.2) 0.8664 0.9111 3.1692 3.6823 
(-0.8, -0.16, -0.2) 0.8659 0.9104 3.1707 3.6770 

(0, 0.65, 0.1) 0.8620 0.9081 3.1531 3.6731 
(0, 0.65, -0.1) 0.8642 0.9097 3.1614 3.6798 

(-0.4, 0.3, 0.15) 0.8650 0.9105 3.1647 3.6823 
(-0.4, 0.3, -0.15) 0.8663 0.9109 3.1747 3.6929 
(-1.2, -0.3, 0.4) 0.8677 0.9099 3.2006 3.6826 
(0, 0.9, 0.05) 0.8582 0.9052 3.1436 3.6595 
(0, 0.9, -0.05) 0.8604 0.9074 3.1529 3.6810 

(-0.55, 0.4, 0.5) 0.8649 0.9104 3.1640 3.6813 
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Table2. (continued) 

T 1 2 3( , , )φ φ φ  
Coverage probability Expected length 

SPI  RPI  SPI  RPI  
100 (0, -0.65, 0.5) 0.8839 0.9063 3.2327 3.4867 

(0, -0.65, -0.5) 0.8844 0.9070 3.2384 3.4903 
(-0.4, -0.15, 0.3) 0.8837 0.9062 3.2290 3.4844 
(-0.4, -0.15, -0.3) 0.8843 0.9068 3.2333 3.4895 
(0.4, 0.15, 0.3) 0.8832 0.9064 3.2322 3.4928 
(0.4, 0.15, -0.3) 0.8839 0.9064 3.2287 3.4830 
(-0.8, -0.65, 0.2) 0.8842 0.9066 3.2347 3.4883 
(-0.8, -0.65, -0.2) 0.8840 0.9064 3.2289 3.4815 
(0.8, -0.65, 0.2) 0.8842 0.9067 3.2302 3.4848 
(0.8, -0.65, -0.2) 0.8848 0.9071 3.2369 3.4922 
(-0.95,-0.9,-0.5) 0.8842 0.9067 3.2347 3.4862 
(0.95, -0.9, 0.5) 0.8837 0.9064 3.2305 3.4869 

(1.75, -0.76, -0.1) 0.8836 0.9061 3.2320 3.4864 
(1.2, -0.3, -0.4) 0.8840 0.9064 3.2363 3.4879 
(0.8, -0.16, 0.2) 0.8829 0.9055 3.2281 3.4817 
(0.8, -0.16, -0.2) 0.8837 0.9062 3.2284 3.4822 
(0.55, 0.4, -0.5) 0.8839 0.9058 3.2285 3.4784 
(0.4, 0.3, 0.15) 0.8824 0.9050 3.2250 3.4787 
(0.4, 0.3, -0.15) 0.8840 0.9062 3.2311 3.4846 

(0, 0.15, 0.8) 0.8807 0.9042 3.2237 3.4837 
(0, 0.15, -0.8) 0.8842 0.9067 3.2374 3.4948 

(-0.8, -0.16, 0.2) 0.8840 0.9063 3.2295 3.4813 
(-0.8, -0.16, -0.2) 0.8837 0.9060 3.2298 3.4841 

(0, 0.65, 0.1) 0.8833 0.9060 3.2296 3.4874 
(0, 0.65, -0.1) 0.8836 0.9064 3.2269 3.4846 

(-0.4, 0.3, 0.15) 0.8843 0.9067 3.2317 3.4858 
(-0.4, 0.3, -0.15) 0.8840 0.9067 3.2318 3.4889 
(-1.2, -0.3, 0.4) 0.8839 0.9061 3.2394 3.4841 
(0, 0.9, 0.05) 0.8801 0.9033 3.2175 3.4735 
(0, 0.9, -0.05) 0.8822 0.9054 3.2266 3.4863 

(-0.55, 0.4, 0.5) 0.8839 0.9064 3.2301 3.4861 
250 (0, -0.65, 0.5) 0.8938 0.9026 3.2672 3.3664 

(0, -0.65, -0.5) 0.8939 0.9030 3.2681 3.3700 
(-0.4, -0.15, 0.3) 0.8939 0.9028 3.2663 3.3664 
(-0.4, -0.15, -0.3) 0.8937 0.9028 3.2657 3.3672 
(0.4, 0.15, 0.3) 0.8936 0.9027 3.2665 3.3684 
(0.4, 0.15, -0.3) 0.8937 0.9028 3.2652 3.3673 
(-0.8, -0.65, 0.2) 0.8942 0.9031 3.2702 3.3713 
(-0.8, -0.65, -0.2) 0.8942 0.9033 3.2692 3.3729 
(0.8, -0.65, 0.2) 0.8940 0.9029 3.2667 3.3669 
(0.8, -0.65, -0.2) 0.8937 0.9030 3.2659 3.3688 
(-0.95,-0.9,-0.5) 0.8940 0.9031 3.2686 3.3722 
(0.95, -0.9, 0.5) 0.8934 0.9025 3.2627 3.3646 

(1.75, -0.76, -0.1) 0.8941 0.9031 3.2685 3.3693 
(1.2, -0.3, -0.4) 0.8937 0.9028 3.2669 3.3680 
(0.8, -0.16, 0.2) 0.8937 0.9027 3.2659 3.3677 
(0.8, -0.16, -0.2) 0.8940 0.9030 3.2676 3.3686 
(0.55, 0.4, -0.5) 0.8940 0.9030 3.2682 3.3688 
(0.4, 0.3, 0.15) 0.8932 0.9024 3.2618 3.3641 
(0.4, 0.3, -0.15) 0.8937 0.9026 3.2651 3.3657 

(0, 0.15, 0.8) 0.8927 0.9020 3.2613 3.3639 
(0, 0.15, -0.8) 0.8940 0.9030 3.2677 3.3694 

(-0.8, -0.16, 0.2) 0.8939 0.9029 3.2666 3.3686 
(-0.8, -0.16, -0.2) 0.8936 0.9029 3.2639 3.3671 

(0, 0.65, 0.1) 0.8936 0.9025 3.2652 3.3658 
(0, 0.65, -0.1) 0.8936 0.9025 3.2646 3.3658 

(-0.4, 0.3, 0.15) 0.8939 0.9031 3.2675 3.3711 
(-0.4, 0.3, -0.15) 0.8938 0.9027 3.2657 3.3667 
(-1.2, -0.3, 0.4) 0.8936 0.9028 3.2670 3.3683 
(0, 0.9, 0.05) 0.8930 0.9021 3.2645 3.3654 
(0, 0.9, -0.05) 0.8936 0.9029 3.2659 3.3694 

(-0.55, 0.4, 0.5) 0.8939 0.9031 3.2673 3.3709 
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