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Abstract

It is known from Diebold and Kilian [1] and Niwitpong [2] that a preliminary
Dickey-Fuller unit root test [3] is useful for a one-step-ahead forecast of the trend of an
AR(1) process and an unknown mean Gaussian AR(1) process respectively. In this
paper, the more powerful preliminary unit root tests, based on the weighted symmetric
estimator described by Fuller [4], Pantula et al. [6] and Shin and So [5], are compared
with Dickey-Fuller unit root test. Monte Carlo simulation results are given to compare the
relative efficiencies of predictors using the scaled prediction mean squares error for an

unknown mean AR(1) process after preliminary unit root tests.
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1. Introduction

Applications in econometrics of an unknown mean Gaussian AR(1) process
have been described by Hamilton [6]. In addition, Hamilton described the need to use the
unit root test to find the correct model for the series of the nominal interest rate of the
United States from 1947-1949 and the real GNP for the United States from 1947-1989,
see Figures 17.2-17.3 of Hamilton ([6], pp. 503). Hamilton described that there is no
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guarantee in economic theory suggesting that the nominal interest rate series should be
a deterministic time trend model, although Figure 17.2 shows an upward trend over the
sample data. The model for these data might be a random walk without trend or a
stationary process model with a constant term. Therefore, the interesting question arises
whether a one-step-ahead prediction of the true model of the nominal interest rate series
should be computed from a random walk model or a stationary model. To answer this
question, the unit root testing of Dickey and Fuller [3] will be used to choose between
these models. We further construct a one-step-ahead prediction for an unknown mean
Gaussian AR(1) process when p is close to one from the result of unit root test.

Diebold and Kilian [1] and Niwitpong [2] used a simple Dickey-Fuller unit root
test as a preliminary test to improve the forecast from the trend of the Gaussian AR(1)
process and an unknown mean Gaussian AR(1) process, when the autoregressive
parameter is near one. These authors used prediction mean squares error (PMSE) and
scaled PMSE respectively, as the criteria to assess a forecast from an AR(1) process.
Diebold and Kilian also pointed out that the more powerful unit root tests might help to
improve a forecast from a near non-stationary process. It is, therefore, of interest to use
preliminary unit root tests that are more powerful than the Dickey-Fuller unit root test
when computing a one-step-ahead forecast from an unknown mean AR(1) process. In
this paper we consider the weighted symmetric unit root tests which are more powerful
tests than Dickey-Fuller tests, see e.g. Pantula et al. [7] and Shin and So [5] for the
preliminary unit root tests compared to Dickey-Fuller unit root tests. As in Niwitpong [2],
we use the scaled PMSE as a criterion to assess a one-step-ahead forecast from an
AR(1) process. This scaled PMSE was proved by Niwitpong [2] to be functionally

independent of (4, o ). This important result allows us to set (1, o )=(0,1) in
Monte Carlo simulation and the results are valid for all values of
parameters (,u, o ) This leads to a great reduction in computational effort. In this paper

we also report the relative efficiencies of the scaled PMSE and scaled PMSE after
preliminary unit root tests as in Niwitpong [2].

In section 2, preliminary unit root tests are reviewed. Section 3 describes the
scaled PMSE after the preliminary unit root test. For the estimators of (/5, ,[l) , We prove
that the scaled PMSE after the preliminary unit root test is functionally independent of

(,u, o ). This important result implies that this scaled PMSE is a function of L - This
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quantity is evaluated by Monte Carlo simulations that are reported in Section 4. The

conclusion is presented in Section 5.

2. Review of Unit Root Tests

The unknown mean Gaussian AR(1) process Yt satisfies

Yo—u=p( —p)+e @
where pe(-11) and the €,t=2,3,..,T are independent and identically

N(0, o) distributed.
Niwitpong [2] considered the hypothesis testing case 2 of Hamilton ([6], pp. 490

- 495). The null hypothesis H0 and the alternative hypothesis Ha are as follows,
H0 p= 1 and Ha p< 1. Dickey and Fuller [3] proposed two unit root tests based
on the ordinary least squares (OLS) estimator for the null hypothesis Ho- The unit root

tests based on the OLS estimator, denoted by ,50 , are

Ko = T(p=L)and z - (se(p) (A-1) = (ﬁo—l){i(Yt.rY')zroal

T _ _
150 _ Zt=2(TYt_Y)(Yt_l)z_Y)'Y_:-l-—liYt and
t=1

Zt:z (YH -Y

ot = (MY (Y -V =5y (Yey V)

The weighted symmetric unit root tests described by Pantula et al. [7] and Shin and So [5]

Ky = T(/A)W —l) and
Tw = (Se([)w ))71([)\/\/ _1) = ([)W —:I.)[IZ:?;(Yt_l_Y—)2 +T71:;(Yt —Y_)2:| O'\;/l
where

L ZIT:Z(YI _Y_)(YH _Y_)

Pw — —
Y (YT T -
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G = (12 ST~ () + S a1~ =5, (1,7

t=2
and W, = (t-1)/T.
The quantiles of these statistics; 12‘0, fo, I%W and zA'W estimated by simulation,

for H, : p =1 are provided in Fuller [4]. The hypothesis H, : p =1 is rejected if these
test statistics are less than the corresponding critical values in Fuller [4]. Shin and So [5]
and Pantula et al. [7] pointed out that the statistic fw is shown to be the most powerful
unit root tests. We will therefore use these statistics; k, 7,, &K, and 7, for prior

analyzing the data, then we construct the prediction mean square error suited to these
data based on the results of unit root tests.

3. The scaled prediction mean square error after a preliminary unit root test
In this section, we review the scaled PMSE and the scaled PMSE after

preliminary unit root tests as noted by Niwitpong [2].

Suppose Yt is an unknown mean AR(1) process specified by (1). Our aim for model (1),
whether the hypothesis Ha is satisfied or not, is to predict YT+1' based on data

Y., Y,, ..., Y7 . If H is satisfied then Y, =Y, , + €, and the predictor of Y.

Tl based on

data Y, Y,,..., Yy is Y7 . If H, is satisfied then Y, — 2 = p(Y,; — 1) + €, and the
predictor of Y; ,, based ondata Y,, Y,,..., Y; is i+ p(Y; — fi). For the predictor
Y; of Y; . the error is

Bo(Vs Yo Yr Yo ) =€y = (Vr — 1) + p(Yr — pa).
Also, for the predictor z2+ p(Y; — 1) of Y;,; , the erroris

ﬂl(YllYZ""'YT7YT+1) = eT+1+(,u_/3)_ /S(YT _/})"'p(YT _/u)-

Now consider a preliminary unit root test based on the statistic 120 .

+1°

We may write the sample space Q= A, U A, where A, and A, are the events

that the hypothesis H o is accepted and rejected respectively.
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Let
A, Yy Yr Y0) = B (YL Y, Yo Yy ) tif e A
AV, Yo o Yo Yo 1) = BV Y, Ve, Yo ) tif o e A,
Let PMSE, denote the PMSE after a preliminary unit root test. In other words,
PMSE, = E(¢(Y,,Y, ,..Y; 'YT+1)2)
The scaled PMSE, is defined to be PMSE , / % .In other words, the scaled
PMSE; is
1 2
E(?¢(Y1,Y2,...,YT,YT+1) ).

The following argument shows that this quantity does not depend on (,u, o’ )

PMSE 1
P _ E(?¢(Y11Y2!""YT 7YT+1)2)

> =
o

- E[?wvl,vz,..m,vmf('(Avw>+'<A2""”j

= E[izﬂo (Ylasz---YT ’YT+1)2 I (A11a))j+ E(izﬂl(YﬂYZ’“'YT ’YT+1)2 I (Aya)))
o (o2

where
I (A,®)=1: if A, <C, and 0 oherwise
and
(A, w)=1: if A; <C, and 0 oherwise
where  A;,1=12,3,4 are, respectively, the statistics 7, K, 7,, and &, and

G, i =1,2,3,4 is acorresponding critical values in Fuller [4]. Niwitpong [2] proved
that, p,, is a function of (X, X,,..., X;) when we define
X;=(;—w)lo,v=(u-p)lo and n; =e; | o. Forthe estimator

/3 = /3w , the weighted symmetric estimator of o, and the estimator ,& = ,&0 ,the
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sample mean of (Y,,Y,,Y,,...,Y; ), we may show that g, is a function of

(X, X,,...X;) and

éﬁO(YI'YZ""’YT ’YT+1)2 :(%_FWJ = (77T+1 +(p-DX, )2

and

1 ey, (=)= p(¥; = i)+ p(Y _ﬂ)jz
S B Y Yy Y )P =] T :
o’ AURLEEA L)) ( s -

=(m+a-ﬁ)(u—ﬁ>+(p—ﬁ>m—u)jz=(n Pt (o DX,
o p T+ T

which are functions of (X, X,,..., X7, 7;,;) and p. Thus,

1 1
?ﬁo (Yl’YZ""YTYT+1)2 I (A, @)and ?ﬂl(YllYZ’ "'YTYT+1)2 (A, @)
are functions of (X, X,,..., Xy, 7r,,) and p . As pointed out in Niwitpong [2], the

distribution of (X, X,,..., X1, 7;,;) does not depend on (4, o). Hence

E[izﬂo(YliYZ’-"YTYTﬂ)ZI(Ai’a))j and E[izﬂl(Yl’YZ""YTYTﬂ)ZI(Azia))j
o o

do not depend on (x, 0'2) i.e. they are functions of p.

It is also straightforward to show that the statistics f’o , 120, fW and IE'W have

probability distributions which do not depend on (x, %) .

4. Monte Carlo simulation estimation of scaled PMSE

The scaled PMSE and the scaled PI\/ISEp are estimated using Monte Carlo
simulation. As shown in the previous section, these quantities do not depend on
(u, 0%), we therefore set (1, o>) = (0,1) in these simulations. Suppose that each

Monte Carlo simulation consists of M independent runs. Let the observed values of

Xt,vand ,5 be denoted by Xt(k),v(k) and ﬁ(k) respectively for the K th run. We

estimate the scaled PMSE by (see, Niwitpong [2])
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M ~ ~ 2
D@ WO+ (p— 54X )
v .

1+

From the previous section, the scaled F’MSEp is equal to
2 A A 2
E((mr1+ (0= )" 1(A,@) )+ E (. + @A)+ (0= D)X ) 1 (A, ).
Niwitpong [5] has shown that this scaled F’MSEp is estimated by
w2 L 2 () (k) )y 002 [ L
1+ ((p-Dx) o + 2 (@= W + (o p4)x) o

keM, keM,

where M is the set of simulation runs for which H  fails to reject and M, is the set

of simulation runs for which H'51 fails to rejects accepted. In a similar way to the Monte

Carlo simulation estimator used in Niwitpong [2], this Monte Carlo simulation estimator

includes some variance reduction.

The relative efficiency of the predictor based on the estimators (,[10 , /3\/\/) using

the scaled PMSE | compared to the predictor based on the estimators (Lo, )

using the scaled PMSE is defined to be

scaled PMSE,
scaled PMSE

We chose p=0.1,...,0.9,0.95,0.97,0.99 and T= 25, 50, 100 and 250. Al
simulations were performed using programs written in S-PLUS, with M = 1000 at level

significance & = 0.05. The relative efficiencies of the estimators (i, 2, ) using the

scaled PMSE | compared to the estimators (&y, Py ) using the scaled PMSE are

reported in Table 1. As can be seen from this table, we have gained the efficiency of the

estimators (4, B, ) using the scaled PMSE, when p approaches 1 and

T= 25, 50 and 100 for all preliminary unit root tests considered here. Table 1 also

shows that all preliminary unit root tests considered here perform similarly to improve the

forecast from an AR(1) process when p approaches one. However, the preliminary t-
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type unit roots tests of Dickey-Fuller and the weighted symmetric estimator are slightly

superior to other unit root tests.

Table 1: The relative efficiency of the estimators (ﬁo,lﬁw) using the scaled
F’MSEp compared to the estimators (/}O,/A)W) using the scaled PMSE in an AR(1)

process, for p=0.1,...,0.9, 0.95,0.97,0.99, T= 25, 50, 100 and 250, M =1000
and o =0.05.

o) T=25 T =50

0.99 | 0.8936 0.9247 0.9142 0.9917 0.9523 0.9573 0.9545 0.9618

0.97 | 0.9232 0.9294 0.9271 0.9270 0.9641 0.9670 0.9636 0.9704

0.95 | 0.9329 0.9422 0.9334 0.9517 0.9681 0.9780 0.9762 0.9837

0.90 | 0.9496 0.9656 0.9646 0.9654 1.0036 1.0032 1.0194 1.0142

0.80 | 1.0295 1.0385 1.0330 1.0426 1.0682 1.0508 1.0511 1.0523

0.70 | 1.0937 1.0873 1.0878 1.0948 1.0694 1.0392 1.0386 1.0397

0.60 | 0.1310 1.0985 1.0967 1.1157 1.0317 1.0141 1.0131 1.0089

0.50 | 1.1517 11141 1.0933 1.0912 1.0045 1.0000 1.0050 1.0000

0.40 | 1.1457 1.0770 1.0711 1.0501 1.0000 1.0000 1.0000 1.0000

0.30 | 1.0797 1.0307 1.0284 1.0247 1.0000 1.0000 1.0000 1.0000

0.20 | 1.0491 1.0231 1.0375 1.0153 1.0000 1.0000 1.0000 1.0000

0.10 | 1.0447 1.0060 1.0167 1.0095 1.0000 1.0000 1.0000 1.0000

0.99 | 0.9747 0.9794 0.9796 0.9917 0.9523 0.9573 0.9545 0.9618

0.97 | 0.9869 0.9945 0.9931 0.9933 1.0077 1.0067 1.0000 1.0077

0.95 | 1.0057 1.0055 1.0060 1.0091 1.0149 1.0119 1.0000 1.0103

0.90 | 1.0313 1.0240 1.0257 1.0244 1.0045 1.0002 1.0000 1.0000

0.80 | 1.0206 1.0059 1.0085 1.0051 1.0000 1.0000 1.0000 1.0000

0.70 | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.60 | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.50 | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.40 | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.30 | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.20 | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.10 | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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5. Discussion and Conclusion

The referee comments that all statistics and scaled PMSE considered in this
paper are all function of (X, X, ,..., X7 ), which is independent of the parameters, is

sufficient for the results of Section 3. Therefore the simulation results of Section 4 are

valid when (£, °) = (0,1) . We have shown that preliminary unit root tests improve
the forecast from an AR(1) process when o approaches one. However, the preliminary

t-type unit roots tests of Dickey-Fuller and the weighted symmetric estimator are slightly

superior to other unit root tests. The numerical results, for small sample sizes, have

shown that the scaled PMSEpshouId be chosen when there is strong prior information

that p approaches one.
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