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Abstract 

 It is known from Diebold and Kilian [1] and Niwitpong [2] that a preliminary 

Dickey-Fuller unit root test [3] is useful for a one-step-ahead forecast of the trend of an 

AR(1) process and an unknown mean Gaussian AR(1) process respectively. In this 

paper, the more powerful preliminary unit root tests, based on the weighted symmetric 

estimator described  by Fuller [4], Pantula et al. [6] and Shin and So [5], are compared 

with Dickey-Fuller unit root test. Monte Carlo simulation results are given to compare the 

relative efficiencies of predictors using the scaled prediction mean squares error for an 

unknown mean AR(1) process after preliminary unit root tests. 

 
Keywords:  AR(1), preliminary unit root test, scaled prediction mean square error. 
 
 
1. Introduction 

Applications in econometrics of an unknown mean Gaussian AR(1) process 

have been described by Hamilton [6]. In addition, Hamilton described the need to use the 

unit root test to find the correct model for the series of the nominal interest rate of the 

United States from 1947-1949 and the real GNP for the United States from 1947-1989, 

see Figures 17.2-17.3 of Hamilton ([6], pp. 503). Hamilton described that there is no 
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guarantee in economic theory suggesting that the nominal interest rate series should be 

a deterministic time trend model, although Figure 17.2 shows an upward trend over the 

sample data. The model for these data might be a random walk without trend or a 

stationary process model with a constant term. Therefore, the interesting question arises 

whether a one-step-ahead prediction of the true model of the nominal interest rate series 

should be computed from a random walk model or a stationary model. To answer this 

question, the unit root testing of Dickey and Fuller [3] will be used to choose between 

these models. We further construct a one-step-ahead prediction for an unknown mean 

Gaussian AR(1) process when ρ  is close to one from the result of unit root test.  

Diebold and Kilian [1] and Niwitpong [2] used a simple Dickey-Fuller unit root 

test as a preliminary test to improve the forecast from the trend of the Gaussian AR(1) 

process and an unknown mean Gaussian AR(1) process, when the autoregressive 

parameter is near one. These authors used prediction mean squares error (PMSE) and 

scaled PMSE respectively, as the criteria to assess a forecast from an AR(1) process. 

Diebold and Kilian also pointed out that the more powerful unit root tests might help to 

improve a forecast from a near non-stationary process. It is, therefore, of interest to use 

preliminary unit root tests that are more powerful than the Dickey-Fuller unit root test 

when computing a one-step-ahead forecast from an unknown mean AR(1) process. In 

this paper we consider the weighted symmetric unit root tests which are more powerful 

tests than Dickey-Fuller tests, see e.g. Pantula et al. [7] and Shin and So [5] for the 

preliminary unit root tests compared to Dickey-Fuller unit root tests. As in Niwitpong [2], 

we use the scaled PMSE as a criterion to assess a one-step-ahead forecast from an 

AR(1) process. This scaled PMSE was proved by Niwitpong [2] to be functionally 

independent of ( , ).µ σ This important result allows us to set ( , ) (0,1)µ σ = in 

Monte Carlo simulation and the results are valid for all values of 

parameters ( , ).µ σ This leads to a great reduction in computational effort. In this paper 

we also report the relative efficiencies of the scaled PMSE and scaled PMSE after 

preliminary unit root tests as in Niwitpong [2]. 

In section 2, preliminary unit root tests are reviewed. Section 3 describes the 

scaled PMSE after the preliminary unit root test. For the estimators of ˆ ˆ( , )ρ µ , we prove 

that the scaled PMSE after the preliminary unit root test is functionally independent of 

( , )µ σ . This important result implies that this scaled PMSE is a function of ρ . This 
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quantity is evaluated by Monte Carlo simulations that are reported in Section 4. The 

conclusion is presented in Section 5. 

 
2. Review of Unit Root Tests 

The unknown mean Gaussian AR(1) process tY  satisfies 

1( )t t tY Y eµ ρ µ−− = − +                                                (1) 

where ( 1,1)ρ ∈ −  and the , 2, 3, ...,te t T=  are independent and identically 

2(0, )σΝ  distributed. 

Niwitpong [2] considered the hypothesis testing case 2 of Hamilton ([6], pp. 490 

- 495). The null hypothesis 0H  and the alternative hypothesis aH  are as follows, 

0 : 1H ρ =  and : 1.aH ρ <  Dickey and  Fuller [3] proposed two unit root tests based 

on the ordinary least squares (OLS) estimator for the null hypothesis 0H . The unit root 

tests based on the OLS estimator, denoted by 0ρ̂ , are 

( )0 0ˆ ˆ      T 1κ ρ= −  and ( )( ) ( ) ( ) ( )
1/ 2T 21 1

0 0 0 0 t-1 0
t 2

ˆ ˆ ˆˆ     se 1     1 Y Yτ ρ ρ ρ σ
− −

=
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∑  
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and

( )( )2T2 -1
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= − − −∑  

The weighted symmetric unit root tests described by Pantula et al. [7] and Shin and So [5] 

are 

( )ˆ ˆ      T 1W Wκ ρ= −  and 

( )( ) ( ) ( ) ( ) ( )
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( )( ) ( )( )
12 22 -1

t 1 1 t 1
2 1

ˆ ˆ  (T-2) (1 )
T T

W t W t t W t
t t

W Y Y Y Y W Y Y Y Yσ ρ ρ
−

− + +
= =

 = − − − + − − − −  
∑ ∑  

and   =  ( 1) /tW t T− . 

The quantiles of these statistics; 0 0ˆ ˆˆ, , Wκ τ κ and Ŵτ  estimated by simulation, 

for 0 : 1H ρ =  are provided in Fuller [4]. The hypothesis 0 : 1H ρ =  is rejected if these 

test statistics are less than the corresponding critical values in Fuller [4]. Shin and So [5] 

and Pantula et al. [7] pointed out that the statistic Ŵτ is shown to be the most powerful 

unit root tests. We will therefore use these statistics; 0 0ˆ ˆˆ, , Wκ τ κ  and Ŵτ  for prior 

analyzing the data, then we construct the prediction mean square error suited to these 

data based on the results of unit root tests. 

 

3. The scaled prediction mean square error after a preliminary unit root test 

In this section, we review the scaled PMSE and the scaled PMSE after 

preliminary unit root tests as noted by Niwitpong [2]. 

Suppose tY  is an unknown mean AR(1) process specified by (1). Our aim for model (1), 

whether the hypothesis aH  is satisfied or not, is to predict 1TY + , based on data 

1 2, ,..., TY Y Y . If 0H  is satisfied then 1t t tY Y e−= + and the predictor of 1TY + , based on 

data 1 2, ,..., TY Y Y  is TY . If  aH  is satisfied then 1( )t t tY Y eµ ρ µ−− = − +  and the 

predictor of 1TY + , based on data 1 2, ,..., TY Y Y  is  ˆˆ ˆ( ).TYµ ρ µ+ −  For the predictor 

TY of 1TY + , the error is 

0 1 2 1 1( , ,..., , ) ( ) ( ).T T T T TY Y Y Y e Y Yβ µ ρ µ+ += − − + −  

Also, for the predictor   ˆˆ ˆ( )TYµ ρ µ+ −  of  1+TY  , the error is 

1 1 2 1 1 ˆ( , ,..., , ) ( )T T TY Y Y Y eβ µ µ+ += + − − ˆ ˆ( ) ( ).T TY Yρ µ ρ µ− + −  

Now consider a preliminary unit root test based on the statistic  0κ̂ . 

We may write the sample space =Ω  21 AA   where 1A   and 2A  are the events 

that the hypothesis 0H is accepted and rejected respectively. 
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Let 

1 2 1 0 1 2 1 1

1 2 1 1 1 2 1 2

( , ,..., , ) ( , ,..., , ) :

( , ,..., , ) ( , ,..., , ) : .

T T T T

T T T T
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+ +

+ +

= ∈

= ∈
 

Let   PPMSE  denote the PMSE after a preliminary unit root test. In other words, 

2
1 2 1( ( , ,... , ) )P T TPMSE E Y Y Y Yφ +=  

The scaled PPMSE  is defined to be 2/σPPMSE .In other words,  the scaled 

PPMSE  is 

2
1 2 12

1( ( , ,..., , ) ).T TE Y Y Y Yφ
σ +  

The following argument shows that this quantity does not depend on ).,( 2σµ  

2
1 2 12 2
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2 2
0 1 2 1 1 1 1 2 1 22 2
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T T
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E Y Y Y Y I A I A

E Y Y Y Y I A E Y Y Y Y I A
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β ω β ω
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+

+ +

 = + 
 
   = +   
   

where  

  1( , ) 1:I A ω = if i icΛ < and 0 oherwise 

and 

  2( , ) 1:I A ω = if i icΛ < and 0 oherwise 

where    , 1, 2,3, 4i iΛ =   are, respectively, the statistics   0 0ˆˆ ˆ, , Wτ κ τ and  ˆWκ  and 

, 1, 2,3, 4ic i =  is a corresponding critical values in Fuller [4].  Niwitpong [2] proved 

that, 0ρ̂  is a function of ),...,,( 21 TXXX  when we define 

ˆ( ) / , ( ) /T TX Y µ σ υ µ µ σ= − = −   and   ./ση TT e=  For the estimator 

ˆ ˆ ,Wρ ρ= the weighted symmetric estimator of ρ , and the estimator 0ˆˆ µµ =  ,the 



76                                                                           Thailand Statistician, 2009; 7(1):71-79 

sample mean of 1 2 3( , , ,..., )TY Y Y Y , we may show that ˆWρ  is a function of 

),...,( 21 TXXX  and 

( )
2

22 1
0 1 2 1 12

( 1)( )1 ( , ,..., , ) ( 1)T T
T T T T

e YY Y Y Y Xρ µβ η ρ
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+ +

− − = + = + − 
 

 

and 

( )

2
2 1

1 1 2 12

2
21

1

ˆˆ ˆ( ) ( ) ( )1 ( , ,..., , )

ˆ ˆˆ(1 )( ) ( )( ) ˆ ˆ(1 ) ( )

T T T
T T

T T
T T

e Y YY Y Y Y

e Y v X

µ µ ρ µ ρ µβ
σ σ σ

ρ µ µ ρ ρ µ η ρ ρ ρ
σ σ

+
+

+
+

− − − + − = + 
 
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which are functions of 1 2 1( , ,..., , )T TX X X η +  and ρ . Thus, 

2 2
0 1 2 1 1 1 1 2 1 22 2

1 1( , ,... ) ( , ) ( , ,... ) ( , )T T T TY Y Y Y I A and Y Y Y Y I Aβ ω β ω
σ σ+ +  

are functions of 1 2 1( , ,..., , )T TX X X η +  and ρ . As pointed out in Niwitpong [2], the 

distribution of 1 2 1( , ,..., , )T TX X X η +  does not depend on 2( , )µ σ . Hence 

2 2
0 1 2 1 1 1 1 2 1 22 2

1 1( , ,... ) ( , ) ( , ,... ) ( , )T T T TE Y Y Y Y I A and E Y Y Y Y I Aβ ω β ω
σ σ+ +
   
   
   

do not depend on 2( , )µ σ i.e. they are functions of .ρ  

It is also straightforward to show that the statistics 0 0ˆˆ ˆ, , Wτ κ τ and  ˆWκ  have 

probability distributions which do not depend on 2( , )µ σ . 

 

4. Monte Carlo simulation estimation of scaled PMSE 

The scaled PMSE and the scaled pPMSE  are estimated using Monte Carlo 

simulation. As shown in the previous section, these quantities do not depend on 
2( , )µ σ , we therefore set 2( , ) (0,1)µ σ =  in these simulations. Suppose that each 

Monte Carlo simulation consists of M  independent runs. Let the observed values of 

ˆ,tX v and ρ  be denoted by ( ) ( ),k k
tx v and ( )ˆ kρ  respectively for the k th run.  We 

estimate the scaled PMSE by (see,  Niwitpong [2])  
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( )2( ) ( ) ( ) ( )
1

ˆ ˆ(1 ) ( )
1 .

M k k k k
Tk

v x
M

ρ ρ ρ
=

− + −
+
∑

 

From the previous section, the scaled pPMSE  is equal to 

( )( ) ( )( )2 2
1 1 1 2ˆ ˆ( 1) ( , ) (1 ) ( ) ( , ) .T T T TE X I A E v X I Aη ρ ω η ρ ρ ρ ω+ ++ − + + − + −

 

Niwitpong [5] has shown that this scaled pPMSE  is estimated by 

( ) ( )
0

2 2( ) ( ) ( ) ( ) ( )1 1ˆ ˆ1 ( 1) (1 ) ( )
a

k k k k k
T T

k M k M
x v x

M M
ρ ρ ρ ρ

∈ ∈

   + − + − + −   
   

∑ ∑  

where 0M  is the set of simulation runs for which 0H  fails to reject and aM  is the set 

of simulation runs for which  aH fails to rejects accepted. In a similar way to the Monte 

Carlo simulation estimator used in Niwitpong [2],  this Monte Carlo simulation estimator 

includes some variance reduction. 

The relative efficiency of the predictor based on the estimators 0 ˆˆ( , )Wµ ρ  using 

the scaled pPMSE  compared to the predictor based on the estimators 0 ˆˆ( , )Wµ ρ  

using the scaled PMSE is defined to be 

pscaled PMSE
scaled PMSE

. 

We chose 0.1,..., 0.9, 0.95, 0.97, 0.99ρ =  and T= 25, 50, 100 and 250. All 

simulations were performed using programs written in S-PLUS, with M = 1000  at level 

significance 0.05.α =  The relative efficiencies of the estimators 0 ˆˆ( , )Wµ ρ  using the 

scaled pPMSE  compared to the estimators 0 ˆˆ( , )Wµ ρ  using the scaled PMSE are 

reported in Table 1. As can be seen from this table, we have gained the efficiency of the 

estimators 0 ˆˆ( , )Wµ ρ using the scaled pPMSE  when ρ  approaches 1 and 

T= 25, 50 and 100 for all preliminary unit root tests considered here. Table 1 also 

shows that all preliminary unit root tests considered here perform similarly to improve the 

forecast from an AR(1) process when ρ   approaches one. However, the preliminary t-
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type unit roots tests of Dickey-Fuller and the weighted symmetric estimator are slightly 

superior to other unit root tests.  

 

Table 1:  The relative efficiency of the estimators 0 ˆˆ( , )Wµ ρ  using the scaled 

pPMSE  compared to the estimators 0 ˆˆ( , )Wµ ρ  using the scaled PMSE in an AR(1) 

process, for 0.1,..., 0.9, 0.95, 0.97, 0.99ρ = , T= 25, 50, 100 and 250, M = 1000  

and 0.05.α =  

 

ρ  25T =  50T =  

0̂τ  0κ̂  Ŵτ  ˆWκ  0̂τ  0κ̂  Ŵτ  ˆWκ  

0.99 0.8936 0.9247 0.9142 0.9917 0.9523 0.9573 0.9545 0.9618 

0.97 0.9232 0.9294 0.9271 0.9270 0.9641 0.9670 0.9636 0.9704 

0.95 0.9329 0.9422 0.9334 0.9517 0.9681 0.9780 0.9762 0.9837 

0.90 0.9496 0.9656 0.9646 0.9654 1.0036 1.0032 1.0194 1.0142 

0.80 1.0295 1.0385 1.0330 1.0426 1.0682 1.0508 1.0511 1.0523 

0.70 1.0937 1.0873 1.0878 1.0948 1.0694 1.0392 1.0386 1.0397 

0.60 0.1310 1.0985 1.0967 1.1157 1.0317 1.0141 1.0131 1.0089 

0.50 1.1517 1.1141 1.0933 1.0912 1.0045 1.0000 1.0050 1.0000 

0.40 1.1457 1.0770 1.0711 1.0501 1.0000 1.0000 1.0000 1.0000 

0.30 1.0797 1.0307 1.0284 1.0247 1.0000 1.0000 1.0000 1.0000 

0.20 1.0491 1.0231 1.0375 1.0153 1.0000 1.0000 1.0000 1.0000 

0.10 1.0447 1.0060 1.0167 1.0095 1.0000 1.0000 1.0000 1.0000 

 

ρ  100T =  250T =  

0̂τ  0κ̂  Ŵτ  ˆWκ  0̂τ  0κ̂  Ŵτ  ˆWκ  

0.99 0.9747 0.9794 0.9796 0.9917 0.9523 0.9573 0.9545 0.9618 

0.97 0.9869 0.9945 0.9931 0.9933 1.0077 1.0067 1.0000 1.0077 

0.95 1.0057 1.0055 1.0060 1.0091 1.0149 1.0119 1.0000 1.0103 

0.90 1.0313 1.0240 1.0257 1.0244 1.0045 1.0002 1.0000 1.0000 

0.80 1.0206 1.0059 1.0085 1.0051 1.0000 1.0000 1.0000 1.0000 

0.70 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.60 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.40 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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5. Discussion and Conclusion 

The referee comments that all statistics and scaled PMSE considered in this 

paper are all function of ),...,,( 21 TXXX , which is independent of the parameters, is 

sufficient for the results of Section 3. Therefore the simulation results of Section 4 are 

valid when 2( , ) (0,1)µ σ = .  We have shown that preliminary unit root tests improve 

the forecast from an AR(1) process when ρ  approaches one. However, the preliminary 

t-type unit roots tests of Dickey-Fuller and the weighted symmetric estimator are slightly 

superior to other unit root tests. The numerical results, for small sample sizes, have 

shown that the scaled pPMSE should be chosen when there is strong prior information 

that ρ  approaches one. 
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