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Abstract 

The purposes of this research were to present economic model and to 

compare the efficiency of X  Control Chart using Shewhart Method for Skewed 

Distributions. The experiment data sets were Weibull Distribution, Lognormal 

Distribution, and Burr’s Distribution using the expected value of all expenses per one 

single unit of time as standard.  The coefficients of skewness α3( )were 0.1, 0.5, 1.0, 

2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, and 9.0.  The variations of production level were 0.5σ, 

1.0σ, 1.5σ, 2.0σ, 2.5σ, and 3.0σ, obtained by Monte Carlo Simulation Technique. Using 

an application program with PHP, a total number of 10,000 samples were repeatedly 

looped. The results indicated that the production level begin to vary from 3.0σ of 

Lognormal Distribution. The lowest expense was observed at the coefficient of 

skewness at α3( )6.     
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1. Introduction 

Statistical quality control chart is a population tool which widely uses to control 

manufacturing process in order to reduce any variation that may occur. Several 

advantages of this tool have be noted. For example, it is able to separate type of 

variation in process, and to analyze and indicate root cause of variation in process. Alert 

to control process person for stopping process for analysis defect of process and 

process improvement. The average controls chart by the shewhart control chart is likely 

to be used extensively, but it is convenient for only the data that has the normal 

distribution. Generally, even in a good process, sometimes it still has indication of root 

cause of variation or skewnees.  

The design of shewhart controls chart requires the determination of three 

parameters: the sample size(n), the sampling interval(h), and the width of control limit(k) 

( σ± 3 XX when = 3k ). Usually, in the practice of the shewhart controls chart designing, 

the important matter needed to concern is to have the least variation of the products, and 

to have the long of ARL, in order to get least economized expenses for inspection. For 

this reason, all expenses in the process will directly participate in the design of control of 

chart, especially selection of parameters; n, h, and k. The X Control Chart is the chart 

for controlling average value or controlling quality level of mean value.  It is also a tool for 

controlling variance in production process.  The effective quality control chart must be 

able to isolate production process variances in term of sources of nonconformity for 

further inspection and temporary production halting for maintenance.  This is a 

preventive action in order to lower production cost and loss, and further inspection cost.  

Therefore, utilizing production control charts are to lower inspection cost and are the 

reason to study the economic model of quality control charts along with product quality 

control.  Presently, several researchers have studied on the economic model of mean 

value control chart. Alexander [1] had studied the economic model of Taguchi Loss 

Function Control Charts under parameter definition.  By that time, the outcome of the 

studies was still not suitable for product mean value control chart.  Bai and Choi [2] had 

improved economic model of product X Control Chart using time period to random for 

variance. Later, Magalh a es and Epprecht [3] had studied the economic model of  

variable parameter mean value control chart by examining normally distributed data and 

using Shewhart’s mean value control chart comparing with defined parameter mean 

value control chart.  The entire expenses were utilized as comparison bottom line.  The 

results showed that at the production process variances of 0.5σ , 0.75σ  , 1.0σ , 1.25σ , 
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1.5σ , 1.75σ , and 2.0σ , the variable parameter mean value control chart yields better 

effectiveness.  However, this study is base on normally distributed data, which is contrast 

to the actual production situation. Chou et al. [4] introduced economic model of mean 

value control chart with Weibull distribution production data using warning cause as one 

of  criteria.   One year later, Al-Orainia, Rahim [5] studied the economic model of mean 

value control chart with Gamma control time period at parameter ( λ ,2). Pongpullponsak 

[6] compared mean value and range control charts with weighed variance (using Nelson 

and Shewhart methods) under skewed data.  The results indicated that the scale 

weighed variance (SWV) yielded the highest effectiveness when the data was Weibull’s 

distribution (at the skewness of 0.1 to 3) and Nelson range control chart yielded the 

highest effectiveness at the coefficient of skewness at 0.1 to 9. Lin and Chou [7] 

introduced non-normal distribution and variable parameter mean value control chart 

(using t and Gamma distributions) to compare the varying defined production process 

from 0 to 3 in the form of ARL. Magalh a es and Epprecht [3] had studied the economic 

model of variable parameter control chart with Shewhart’s X Control Chart, which is 

suitable only for normal distributed data. But in real situation the data in production 

process are not in constantly normal distribution. In addition, the appropriate data for the 

average controls chart that uses in the qualilty control should have skewness. In case of 

non-normal distribution, Pongpullponsak [6] introduced X  Chart using weighed variance 

method in which the efficiency is even higher than that of Shewhart.   

The objective of this research is to introduce the economic model of Shewhart 

X Control Chart for the data that are transformed to be normally distributed.  The data 

utilized in this study is formerly in Weibull, Lognormal, and Burr’s distribution. 

Consequently, the expected value of expense per time unit is compared to Magalh a es 

and Epprecht’s [3] introductory.  

 

2. Data distribution 
2.1 Weibull Distribution 

Cumulative distribution function :              βθ
= −

( / )
1( ) 1

y
F y

e
             (1)                  

Population mean  :  θµ
β β

 
= = Γ 

 

1( )E Y                         (2) 
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Population variance  : θσ
β β β β

     = = Γ − Γ    
     

22
2 2 1 1( ) 2V Y                                   (3) 

where  θ   is Scale Parameter, β   is Shape Parameter 

In this research, the defined values are as the following: 

θ   =  0.1,0.5,1,2,3,4,5,6,7,8 and 9 

β  =  3.2219,2.211,1.563,1.0,0.7686, ,0.6478, 0.5737, 0.5237,0.4873,0.4596, and 

0.4376 (compatible with coefficient of skewness ( 3α )=0.1,0.5,1,2,3,4,5,6,7,8,9)    

   
 2.2 Lognormal distribution 

Cumulative distribution function : ln( )( ) yF y φ
σ

 =  ′ 
                                                      (4) 

Population Mean : 
2

2( )E Y e
σµ

µ
+

= =                                                                             (5) 

Population Variance :  ( )2 22 2( ) 1V Y e eµ σ σσ += = −       (6) 

given       : ( )2expω σ=    ; Coefficient of Skewness( 3α )  ( ) ( )1/ 2
3 2 1α ω ω= + −          (7) 

when         ( )exp µ     is Scale Parameter 

                   σ            is Shape Parameter 

 

2.3    Burr’s distribution 

Cumulative distribution function :    1( ) 1
(1 )c hF y

y
= −

+
         (8) 

When  c    is  dispersion parameter and h  is  family parameter.               

                                                           

1 1

( )
ψ

+ +   Γ Γ −   
   =

Γj

j jh
c c

c h
               (9) 

Population mean :  1( )E Yµ ψ= =  

Population Variance : 2
2( )V Yσ ψ= =  

 

3.  Economic Model of Production Process Model  

            Magalh a es and Epprecht [3] introduce expenditure function is existing in every 

single production hour. It bases on selection of optimum economic model value for 

 (10) 
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parameters 1n , 2n , 1h , 2h , 1w , 2w , 1k , 2k    when developing expenditure function.  

The production process assumptions, utilized in expenditure function development, are 

as following: 

3.1 Process Model 

 The following assumptions are the in-process product characteristic 

assumptions to be analyzed.  The samples are assumed to be independent from each 

other and the initial production process will be under statistical control in which the 

X control chart equals to X  and standard deviation equals to xσ ′  .  Once a warning 

cause or nonconformity is existed, the mean value will shift from 0µ  to 0µ + xδσ ′ or 0µ - 

xδσ ′ .  While the process is still under control, the population is exponentially distributed 

with the mean value of  1
λ

 and not self reversible if any process change is existed. 

During process investigation, the probability of process continuation ability is an index 

variable 1δ  ( 1 1δ =  if process is able to continue; 1 0δ =  if otherwise).The probability of 

process continuation ability during process repair or improvement is an index variable 

2δ ( 2δ = 1  if process is able to continue; 1 0δ =   if otherwise).  The µ , σ ′ and σ are 

assumed to be known in order to define parameters 1n , 2n , 1h , 2h , 1w , 2w , 1k , and 

2k of control chart.           

 The five production process expenditures caused by implementing economic 

model are as the following:      

1.  Expenditure caused by population control and sampling ( samC ) 

               2. Expenditure caused by inspecting failure warning signal ( faC ) 

          3.  Expenditure caused by investigating for identifiable cause of nonconformity 

( rC ) 

4. Expenditure caused by producing goods that is not conform to specifications 

while process is under control ( inC ) 

5.  Expenditure caused by producing goods that is not conform to specifications 

while process is not under control ( outC )        

3.2 Production Cycle  

 The production cycle is defined as production duration. Controlling of the 

production process is assumed to be constant at the beginning. Production cycle 
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composes of two time periods which are under control period and not under control 

period as the details are described bellowing:   

1.  Time period where production process is still under control ( inT ) :  The time 

duration started from the beginning to the point where the warning cause is obviously 

identifiable   

         2.  Time period where production process is not under control ( outT ) : The time 

duration started from when the process starts changing until the failure warning is 

developed 

3. Analyzing period ( aT )  : Time period contributed to sample analysis and 

control chart result analysis          

4. Inspecting period ( assT )  : Time period contributed to investigation of 

identifiable cause, once the production process is not under control 

5.  Repairing period ( rT )  : Time period contributed to process repairing. 

3.3 The burdened expenditure per one production cycle 

 The expenditure function is economically considered as per time unit 

expenditure function. ( )E T  is expected value of  production period duration and  

( )E C is expected value of  total expenses burdened in one production cycle.  Hence, the 

expected value of total expenses per one time unit is   

             ECTU   = ( )
( )

E C
E T

           (11) 

 The expected value of total expenses per one production cycle composes of the 

summation of all existed expenses while production process is both under and out of 

control.   Hence, ( )E C  composes of  

1. The expected value of expenditure per one production cycle due to the 

production of goods that is not conform to specification while the production process is 

under control ( ( )inE C ) and out of control ( ( )outE C ).  Hence,   

( ( )inE C )  +  ( ( )outE C ) =  [ ]0 1 1 * 2 **
1 ( )aC C AATS E T T Tδ δ
λ

+ + + +   (12) 

    Given 0C  and 1C  are hourly expenditure due to the production of goods that 

is not conform to specification while the production process is under control and out of 

control respectively. The mean value of time period while production process is under 

control is 1
λ

.  The Adjusted Average Time to Signal (AATS) is the expected value of 
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time period since the production process starts changing until the failure warning signal 

( )aE T  equals to n G′ , where G  is sampling time interval specified by control chart, 

n ′ is sample size while process is out of control, *T is average time interval where the 

warning cause is detected and **T is average time for process repairing. 

2. The expected value of failure warning signal detection ( ( )faE C )      

( )faE C      =    Y ( )E F                                                                      (13) 

where  Y      is expense caused by failure warning signal detection. 

      ( )E F     is average number of  independent failure warning signal. 

3. The expected value of expenses contributed to investing and repairing the 

cause of warning signal ( )( )rE C  

                 ( )rE C    =   w                                                    (14)          

4. The expected value of expenses contributed to sampling and controlling  

( )( )samE C          

( )samE C    =   ( ) ( )a bn s a bn s′ ′+ + +                        (15) 

      where   a   is  the fixed expense (direct) per one sample, 

                  b   is the variable expense (indirect) per one sample, 

                    n   is the average sample size while process is in control, 

                n ′  is the average sample size while process is out    of control, and 

               s   is the average number of sample specified by the control chart while 

process is in control.     

              s ′  is the average number of sample specified by the control chart while 

process is out of control. Hence, the expected value of total expenditure per one 

production cycle is obtained by integrating all equations from (12) to (15) which is :   

( )E C = ( )0 1 1 * 2 **
1

aC C AATS E T T T + + + δ + δ λ
+Y ( )E F +w+ ( ) ( )a bn s a bn s′ ′+ + + (16) 

The Expected Cycle Time is the summation of average time periods of each sub cycle 

time, which is ( ) ( ) ( ) ( ) ( ) ( )in out a ass rE T E T E T E T E T E T= + + + +     

                             1 * **
1 ( 1 ) ( )faE T AATS n G T T′= + − δ + + + +
λ

    (17) 

where  1( 1 ) ( )faE T− δ    is part of  ( )inE T       
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                   *T and **T  are independent to each other or independent to process status 

(halting or continuing).  Hence, from equation (11), we obtain:                            

0 1 1 *

1 * **

1 ( ) ( ) ( ) ( )

1 ( 1 ) ( )

a

fa

C C AATS E T T TE F w a bn s a bn s
ETCU

E T AATS n G T T

δ
λ

δ
λ

′ ′+ + + + + + + + +  
=

′+ − + + + +
    (18) 

 

4. ECTU calculation (in case of skewed population) 

 Shewhart control chart is suitable only for normally distributed population.  

Therefore, in case of skewed population, the normal distribution conversion is required. 

Lin and Chou [7] converted population using the Central Tendency Limit Theorem which 

stated that if randomized sample, with size n , from any type of distribution with limited 

mean and standard deviation, the statistical value, obtained from mean value minus 

population mean and consequently divide by sample mean standard deviation, would 

yield tend-to-standard normal distribution [N (0,1)]. From the Central Tendency Limit 

Theorem, we obtain   

Given  iY  is   random variable of skewed population                

          iM     is   population mean 

          iS     is   standard deviation of  iY   when   i = 1 , 2 

 Then   ( 0,1)di i

i

Y M N
S
−

→  or  0i i i
ii

X Y M
Sn

µ
σ

− −
=      (19) 

From equation   (19)   we obtain   0
i i

i
ii

Y MX nS
σµ −

= +                      (20) 

When production process starts to change, process mean value will shift from 0µ  

to 0µ δσ ′+ , thus from equation (19), it would yield 

                0( ) i i
i

i
i

Y MX
S

n

µ δσ
σ
+ −

− =                                   (21) 

From equation (21) we obtain    0 ( ) i
i i i

i

nX Y M
S

σ

µ δσ= + + −                              (22) 

         In case of normal distributed population, Magalh a es and Epprecht [3] introduced 

the calculation of expected variables using Shewhart control chart. For skewed 

population, variables could be calculated as the following:      
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4.1. Expected failure warning ( )E F  

 Let F as the number of failure warning existed in a production cycle.  F  is a 

random variable depending on sample size ( N ) before process change.   

Hence, expected number of failure warning ( ( ) )E F  is            

1 0 2 0( ) ( ( 1 ) )E F p p Qα α= + −    when    ( ) ( )i i i i iP X LCL P X UCLα = < + >       (23) 

Substituting equation (1), (4) and (8) in (23) would yield 

1 ( ) ( )i i i i i i iF M k S F M k Sα = − + + −  

 If Y~Weibull Distribution        1 ( ) ( )i i i i i i iF M k S F M k Sα = − + + −   

         
( ) ( )( )/ ( )/

1 11
i i i i i iM k S M k Se e

β βθ θ+ −
= + +                              

 If Y~Lognormal Distribution  1 ( ) ( )i i i i i i iF M k S F M k Sα = − + + −  

        2 2 2 22 2
ln( ) ln( )1

( 1) ( 1)
i i i i i iM k S M k S

e e e eµ σ σ µ σ σ
φ φ

+ +

   + −   = − −
   − −   

                                 

If  Y~Burr’s Distribution      1 ( ) ( )i i i i i i iF M k S F M k Sα = − + + −   

            1 11
( 1 ( ) ) ( 1 ( ) )c k c k

i i i i i iM k S M k S
= + +

+ + + −
                    

When                  iα       is Type 1 failure probability 

     ( )F x  is cumulative distribution function of normal distribution 

      0p     is small sample size probability while process is under control                                        

       01 p−    is large sample size probability  while process is out of control                                            

Hence, the probability determination of 0p , which is a conditional probability could be as 

the following :    0 ( / )i i i i i ip P LWL X UWL LCL X UCL= < < < <               (24)                                               

Substitute equation (1), (4) and (8) in (24) we obtain                    

0
( ) ( )
( ) ( )

i i i i i i
i i i i i i

F M w S F M w Sp
F M k S F M k S

+ − −
=

+ − −
 

If Y~Weibull Distribution   
( ( )/ ) ( ( )/ )

0

( ( )/ ) ( ( )/ )

1 1

1 1
i i i i i i

i i i i i i

M w S M w S

M k S M w S

e ep

e e

β β

β β

+ θ − θ

+ θ + θ

− +
=
− +
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If Y~Lognormal Distribution               
2 2 2 2

2 2 2 2

2 2
0

2 2

ln( ) ln( )
( 1) ( 1)

ln( ) ln( )
( 1) ( 1)

i i i i i i

i i i i i i

M w S M w S
e e e ep

M k S M k S
e e e e

µ+σ σ µ+σ σ

µ+σ σ µ+σ σ

   + +   φ − φ
   − −   =
   + −   φ − φ
   − −   

          

If  Y~Burr’s Distribution           0

1 1
( 1 ( ) ) ( 1 ( ) )

1 1
( 1 ( ) ) ( 1 ( ) )

c k c k
i i i i i i

c k c k
i i i i i i

M w S M w Sp

M k S M k S

− +
+ + + −

=
+

+ + + −

                                                

4.2. Average sampling size while process is under control (Q ).    

     Given ( )Q E N=  as average sampling point while process is under control. 

                                   N  as  number of sample before process starts to change. 

       Hence, warning cause existed between sample j   and j +1  means the  

process average shifting from 0µ  to δσ ′ . When  j  is utilized prior to process change, 

which means N j= , similar to the existence of warning cause which is identifiable 

during the sampling interval jT  and 1jT + .   

Hence   

1 2( 1 )0 0( )
1 21 ( 1 )0 0

h he p e p
E N Q h he p e p

λ λ

λ λ

− −
+ −

= = − −
− − −

            (25) 

 

4.3.   Adjusted Average Time to Signal ( AATS ) calculation 

        Given AATS  as average time interval from the existence of warning 

cause to the existence of actual warning if 

        outT  is time interval from the existence of warning cause to the existence 

of actual warning,   

        A      is random variable during the time of change,   

        R    is post change time interval that from the last until the first post 

change samples,   

        Q   is time interval from the first post change until the existence of 

warning signal, and   

        T ′    is time interval from the last sample prior to the change until the 

existence of change. 
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4.3. 1   E ( R ) calculation 

                   Reynolds[8] assumed ( )iP A h=  to be proportional to the time 

interval change A . So the probability of this interval length is: 

0 1
1

0 1 0 2
( )

( 1 )
p hP A h

p h p h
= =

+ −
                      (26) 

0 2
2

0 1 0 2

( 1 )( )
( 1 )

p hP A h
p h p h

−
= =

+ −
                                    (27) 

E ( R ) is reformulated as ( ) ( ( / ) )E R E E R A=  and ( ( / ) ) ( ( ( )/ ) )iE E R A E E h T A′= −   

         When  T ′ is expected time interval of warning cause in the process which exists 

during the sample j  and 1j + .  Therefore: 

1 2

1 2

1 2
1 1 2 2

1 ( 1 ) 1 ( 1 )( ) ( ) ( )
( 1 ) ( 1 )

h h

h h
e h e hE R h P A h h P A h

e e

λ λ

λ λ
λ λ

λ λ

− −

− −

   − + − +   = − = + − =   
− −      

 (28) 

4.3.2 Decision about ( )E Q  

                      ( )E Q  depends on the position of the first sample point ( 1)j +  after the 

change ( )B .  The probability that the point will be at the center 1( )B B=  of the warning 

zone 2( )B B= or the actuation zone 3( )B B=   will depend on the length of time interval 

during the change which   is: 

1 11 1 22 2( ) ( ) ( )P B B p P A h p P A h= = = + =               (29)                     

2( )P B B= 12 1 22 2( ) ( )p P A h p P A h= = + =                          (30)      

3 1 2( ) 1 ( ) ( )P B B P B B P B B= = − = − =  where   1ip    =  ( )ii iP LWL X UWL< <   (31) 

substitute equation  (22)  in (31)  then we obtain  

1 ( ) ( )i i i i i i i i i i ip M w S S n M w S S nφ δ φ δ= + − − − −                                      (32) 

and        2 ( ) ( )i i i i i i ip P LCL X LWL P UWL X UCL= < < + < <                    (33) 

substitute equation  (22)  in (33)  then we obtain:     

2 ( ) ( )i i i i i i i i i i ip M k S S n M w S S nφ δ φ δ= + − − + − +

( ) ( )i i i i i i i i i iM w S S n M k S S nφ δ φ δ− − − + −                     (34)          

Given 1 1( / )Q B B T= = when the first post-change sample point is in the middle and 

2 2( / )Q B B T= =  when the first post-change sample point is in the warning zone. 

Hence      

 1 1 2 2( ) ( ) ( ) ( ) ( )E Q E T P B B E T P B B= = + =                                     (35)  



 92                                                                          Thailand Statistician, 2009; 7(1):81-99 

 When  1T   is time interval last from the first post change sample (the first post 

process change sample is in the middle: warning zone) until the existence of warning 

zone. If the first post process change is at the middle, time interval from the first post 

process change sample to the existence of warning signal, will be defined as  

            
1

1
1

M
i

i
T Y

=
= ∑  

The expected  1T  is  1( )E T =  
1

1

M
i

i
E Y

=

 
  
 
∑  =  

1

1
1

M

i
i

E E Y D
=

  
     

∑  =   1( ) ( )E D E V           (36)       

When 1D is random variable of sample point projected at the middle until the existence of 

warning signal and 1D  is geometrically distributed random variable with parameter 

1( 1 )p− , when 1p   is the probability that the sample point will project at the middle.  

Therefore:           1
1 11 12 22 21

1

i

i
p p p p p

∞
−

=

= + ∑                      (37) 

when substitute ijp ′   in pair       

                                   1
1

1( )
1

E D
p

=
−

          (38) 

The random variables  iY S′  are independent to each other and have unique distribution 

V ; the time interval, while sample points are projecting outside the warning zone since 

the last sample point projected at the middle.  The probability function V  is defined as:      

        1 11 13 12( ) 1P V h p p p= = + = −   

     1 1
1 2 12 22 21 12 22 23( ) i iP V h ih p p p p p p− −= + = + 1

12 22 22( 1 )ip p p−= −  when  i   = 1 , 2 , . . .    (39) 

The calculation of expected value  V  : 

                                    12
1 2

22

( )
1

pE V h h
p

= +
−

                                     (40) 

substitute equation E ( 1D ) and ( )E V  in  E ( 1T )  we obtain 

                    [ ]1 22 22 12
1

11 22 11 22 12 21

( 1 ) ( )
( )

1
h p h p

E T
p p p p p p

− +
=

− − + −
                                  (41) 

In the same token, if the first post process change sample projects in the warning zone, 

we obtain:  

                    [ ]2 11 1 21
2

11 22 11 22 12 21

( 1 ) ( )
( )

1
h p h p

E T
p p p p p p

− +
=

− − + −
                                   (42)                                        

The determination of  , ,n n h′ ′ and  S ′ are as the following: 
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4. 4 Determination of  n   

              1 0 2 0( 1 )n n p n p= + −                                              (43)  

4.5 Determination of  n ′  

1 0 2 0( ) ( 1 ( ) )n n p n pδ δ′ = + −                                (44)                                                   

4. 6 Determination of  h ′  

               1 0 2 0( ) ( 1 ( ) )h h p h pδ δ′ = + −    (45)               

4.7 Determination of  

0( ) ( )i i i i i i i ip d P w d n Z w d n k d n Z k d n= − − < < − − − < < −  when 1,2i =   (46) 

substitute equation (22)  in equation (46)  we obtain         

              0
( ) ( )

( )
( ) ( )

i i i i i i i i i i
i

i i i i i i i i i i

M w S S n M w S S np
M k S S n M k S S n

φ δ φ δ
δ

φ δ φ δ
+ − − + −

′ =
+ − − + −

  (47) 

 4. 8  Determination of Q ′  

expected cycle length while the process is off target
average time between samples while the process is off target

Q ′ =  

1 * **AATS n G T TQ
h

δ′+ + +′ =
′

                      (48) 

4.9  Determination of 

        ECTU   = ( )
( )

E C
E T

                         (49)                           

5. Numerical examples 

  The objective of this research is to introduce the economic model of Shewhart 

Control Chart when the data is transformed to be normally distributed. The data utilized 

in this research is formerly Weibull, Lognormal, and Burr’s distributed. Consequently, the 

expected value of expense per time unit obtained from the model will be compared with 

Magalh a es and Epprecht’s [3] introductory.  

      To achieve the objective mentioned above, the research plans are as followed: 

1.  Simulating population data by Monte Carlo simulation technique. In this case, 

data  simulation will be on the Weibull distribution, Lognormal distribution, and Burr's 

distribution, in order to use for transforming data to normal distribution.  The number of 

sample for the simulated data will be used at 10,000 samples which is 100 times 

repeatedly looped using an application program with PHP. 

2. Determining mean and variance of the Weibull distribution, lognormal 

distribution, and Burr's distribution. 
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3. Creating X control chart from the simulating population data .  

4. Computing ja from the the Weibull distribution, Lognormal distribution, and 

Burr's distribution. 

5. Computing 

( ) ( ) ( ) ( ) 2322211312,110021210 ,,,,,,,,,,, ppppppdpdphAPhAPppp iii ′==    

from the Weibull distribution, Lognormal distribution, and Burr's distribution. 

6. Computing ECTU from the coefficients of skewness under the Weibull 

distribution, Lognormal distribution, and Burr's distribution simulating, and then 

transforming into the normal distribution. 

7. Supposing variable data that use to calculate the value ECTU  are  

* 0 **
5 45 1hours,  hours,  50
60 60

G T T T
i

= = = = = , ,      

0 1114.24 / hours,   949.20 / hoursC Cb b= =  

                2977.40; 0, 4.22; 0Y W a b db b= = = = =  

8. In order to accomplish the optimization of the unit cost function, the following  

constrains were  considered 

1;;1.0;1;1.0;1; 2112212112121 ≥≤≥≤≥≤≤≥≤ kandkkkwandwwhhhnnn  

With an application program with PHP.   

   9. The results of calculation are as the following. 

            9.1 From Table 1, Table 2 and  Figure 1 , it was observed that the  ECTU  of 

the average variables parameter controls chart ( )PV should not shift  to be valuable a 

little more average variables fixes parameter  controls chart( )FV . In other words, if 

process shifts from 0.5-3.0 the ECTU by PV and FV  have decreasing cost when the 

process increasing shifts. When compared to economics PV controls chart with 

economics FV  controls chart, we found that the ECTU of PV controls chart have a little 

more FV  controls chart. 

   
Table 1. Performance of Shewhart control chart for PV  

∆  
SH  for  PV  

ECTU 
1n  2n  1h  2h  1w  2w  1k  2k  

0 12 17 2.21 0.1 1.19 1.11 2.71 1.9 243.75 

0.5 11 15 2.15 0.1 1.15 1.08 2.62 2 236.55 
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Table 1. (continute) 

∆  
SH  for  PV  

ECTU 
1n  2n  1h  2h  1w  2w  1k  2k  

1 5 6 1.43 0.1 1.3 1.26 3.26 2.4 186.25 
1.5 3 5 1.11 0.1 1.71 1.6 3.62 2.4 169.75 

2 2 5 1 0.1 2.06 1.9 3.56 2.4 163.21 

2.5 2 5 1 0.1 1.13 1.94 3.43 2.5 162.45 
3 2 5 1 0.1 1.12 1.93 3.4 2.4 160.75 

 
 
 

Table 2. Performance of Shewhart control chart for FV   
 

D  
SH  for FV  

ECTU 

 

0n  0h  0k  

0 19 2.84 1.83 253.2 

0.5 17 2.77 1.87 248.8 

1 9 1.98 2.48 197.7 

1.5 5 1.45 2.73 176.9 

2 5 1.59 3.06 168.7 

2.5 5 1.48 3.15 164.3 

3 3 1.32 3.36 162.9 

 
 
Figure 1. The comparative economic PV  control chart with economic  control chart 
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9.2 From Table 3 and Figure 2, the ECTU values calculated from various 

distributions when the process control did not change are shown. In case of the Weibull 

distribution at the coefficient of skewness 0.1 – 9.0, the values of ECTU were 

continuingly decrease. At the coefficient of skewness 9.0, the value of ECTU was 

minimum. For the Lognormal distribution at the coefficient of skewness  0.1 - 2.0, the 

values of ECTU were continuingly decrease, and at the coefficient of skewness 3.0 - 9.0 

the ECTU values were similar. The minimum of ECTU value was observed at the 

coefficient of skewness 2 and 3. For the Burr's distribution, at the coefficient of skewness 

0.1 - 5.0 the ECTU values were continuingly decrease, where the ECTU value was 

minimum at the coefficient of skewness 5.0. When compared the value  ECTU  of 3 

distributions, it was found that the minimum ECTU value was observed in the Weibull 

distribution at the coefficient of skewness 9.0.  

Table 3. Comparison between distribution of  ECTU 
 

∆ =0 ∆ =0.5 ∆ =1 
 Weibull lognormal burr Weibull lognormal burr Weibull lognormal burr 
☆ ECTU ECTU ECTU ECTU ECTU ECTU ECTU ECTU ECTU 
0.1 1203.43 1821.28 1471.05 0.1 1203.43 1119.2 1101.43 1214.2 1103.9 
0.5 945.67 1124.77 981.32 0.5 1045.67 1088.7 908.76 986.16 986.16 
1 909.89 1076.88 639.75 1 1003.42 1125.22 908.76 957.33 757.33 
2 858.06 735.11 564.75 2 856.76 1056.64 825.30 925.30 735.30 
3 860.8 783.98 313.53 3 830.75 932.82 822.97 922.97 722.97 
4 860.8 768.22 267.37 4 832.59 808.67 634.51 934.51 713.51 
5 559.4 773.1 372.67 5 688.67 833.29 1082.45 882.45 682.45 
6 509.7 1303.03 - 6 733.29 802.62 832.70 832.70 - 
7 486.57 788.63 - 7 772.62 753.16 810.89 821.89 - 
8 496.26 295.68 - 8 753.16 753.08 805.58 812.58 - 
9 480.32 280.48 - 9 653.08 753.69 879.25 797.25 - 

∆ =1.5 ∆ =2 ∆ =2.5 
 Weibull lognormal burr Weibull lognormal burr Weibull lognormal burr 
☆ ECTU ECTU ECTU ECTU ECTU ECTU ECTU ECTU ECTU 
0.1 1211.76 1203.2 1207.1 1212.3 1246.3 1186.5 1113.56 1086.3 1186.3 
0.5 918.76 988.17 988.17 1011.4 990.21 990.21 1002.12 992.30 992.30 
1 918.76 977.24 967.24 998.07 906.55 906.55 987.7 997.29 992.29 
2 1025.30 959.51 959.51 952.85 852.85 952.85 952.87 973.13 973.13 
3 889.51 886.43 986.43 913.22 813.22 913.22 973.13 996.67 896.67 
4 886.43 894.96 994.96 864.80 864.80 864.80 896.67 941.05 841.05 
5 885.96 1123.11 923.11 807.32 811.32 757.32 841.05 786.48 786.48 
6 885.11 815.22 - 791.51 831.51 - 886.48 872.63 - 
7 905.22 822.1 - 769.75 809.75 - 772.63 852.39 - 
8 905.11 823.80 - 676.23 739.23 - 772.39 839.31 - 
9 853.80 823.51 - 694.81 764.81 - 739.31 703.44 - 

 ∆ =3 
     

  

 

 Weibull lognormal burr 
☆ ECTU ECTU ECTU 
0.1 1211.3 1126.3 1091.3 
0.5 998.45 994.43 994.43 
1 998.44 902.14 902.14 
2 986.55 786.55 986.55 
3 921.45 755.47 855.45 
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Figure 2. The Comparative ETCU under various shifts and coefficients of Skewness from 

the Weibull distribution, the Lognormal distribution, and the Burr's distribution 

 
      When the process control changed, the Weibull distribution at the coefficient of 

skewness 0.1- 1.0 had the ECTU values continuingly decreased, while at the coefficient 

of skewness 2.0 - 9.0 the ECTU values fluctuated. At the coefficient of skewness 4.0 

where the level of process control shifts was 1.0, the ECTU value was minimum. Similar 

to the Weibull distribution, the ECTU values for the Lognormal  distribution fluctuated at 

the coefficient of skewness 0.1 - 5.0, whereas at the coefficient of skewness 6.0 - 9.0 the 

ECTU values were similar. The minimum ECTU value was observed at the coefficient of 

skewness 6.0 where the level of process control shifts was 1.5. In case of the Burr's 

distribution at the coefficient of skewness 5.0, the ECTU value was stable, while in every 

coefficient of skewness  1.0 - 5.0 when the level of process control shifts and the level  

procedure coefficient produces changed, the ECTU value was increase. When 

compared the ECTU values of 3  distributions it was found that the Lognormal 

distribution at the coefficient of skewness 6.0 where the procedure level shifts was 3.0, 

the ECTU value was minimum.  

 

5.  Conclusion and  Discussion 
5.1 Conclusion  

1.  Using the economic model of Shewhart control chart, the lowest per-unit 

expense was observed in the lognormal distribution at stable process with the coefficient 

of skewness at 2.  
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     2. Once the process began to change, the ECTU value in the Weibull 

distribution at the coefficient of skewness of 2.0, 3.0, and 4.0 started to decrease. On the 

other hand, the ECTU value began to increase at the coefficient of skewness from 4.0.-

9.0, except at the level where the process is was changed at 5.0.and 3.0. At the 

coefficient of skewness of 8.0 and at the level where the process was changed at 5.0, 

the ECTU value was the lowest.  For the Lognormal distribution at the coefficient of 

skewness of 0.1 - 4.0, the ECTU value fluctuated and the ECTU began to increase at the 

coefficient of skewness of 5.0 - 6.0. At the coefficient of skewness of 2.0, when every 

level of process was changed, it gave the lowest ECTU value except at the level of the 

process change of  0.5 and 3.0. In case of the Burr’s distribution at the coefficient of 

skewness from 0.1 to 5.0, almost ECTU values were similar. Conclusively, from three 

types of distribution, the lognormal distribution at the coefficient of skewness of 6.0 with 

the level of the process change at 3 had the lowest ECTU value.  

 
5.2 Discussion 

The aim of this research was to introduce the economic model of control chart 

using weighted variance method. Based on expected value of gross per-unit expense, 

the variance, estimated by proportional value, and weighing, from skewed distribution, 

was compared to the variance weighed by using Shewhart’s control chart, from normal 

distribution. From the comparison, the lowest expense per time unit will be considered as 

the highest effectiveness. The results obtained from this research, indicated that in case 

of the normally distributed data, the variable parameter control chart yielded lower 

expenses than that of fixed parameter.  For the skewed data, data analysis was 

classified into two cases.  First, in case of Shewhart’s control chart which is suitable for 

normally distributed data, the skewed data was converted into normal distribution. At 

stable process, Weibull’s distribution, with coefficient of skewness at 9.0, yielded the 

maximum effectiveness, which is in an agreement with Pongpullponsak [6]. At the 

process variation from 0.5s  to 3.0s , which yielded the higher right skewness, the sign 

of uncontrollable process existence in control chart was higher and faster. For 

Shewhart’s control chart with the Weibull’s distribution, at the coefficient of skewness 4.0 

and process variation at 1.0, yielded the lowest per-time unit expense ($634.51 / unit).    

 

6.  Suggestion  

 The results from this study showed that at normally distributed population, the 

Shewhart variable parameter control chart yielded the lowest expense. In Weibull’s 
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distribution population with the level of process change of 5 and coefficient of skewness 

of 8.0, the expense was the lowest. In case of lognormal distribution population, the 

expense was the lowest at the level of process change of 3 and coefficient of skewness 

of 6.0. Finally, the lowest expense observed in Burr’s distribution population was at the 

level of process change of 2.5 and coefficient of skewness of 1.0.  
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