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Abstract

This paper studies the effects of the informative cross-section dependence on
the dynamic panel regression estimation for Asia currencies in August, 2004 to August,
2007 and then compares forecasting performance for both daily and weekly returns.
Traditional parametric approaches are Ordinary Least Squares (OLS), Seemingly
Unrelated Regressions (SUR), Fixed Effects (FE) and Random Effects (RE) models.
Nonparametric Random Effects panel data models are the Local Polynomial Least
Squares (LPLS) and Local Polynomial Weighted Least Squares (LPWLS) estimators
with cross-validation bandwidth.

The results show that the nonparametric LPLS could outperform the other
models to forecast the daily returns. But there is inconclusive evidence to justify which
model is the best to forecast the weekly returns. However, in general, the SUR could
yields better results than the other models for weekly returns forecasting. This is
according to the higher correlations among the estimated disturbances gathered from
their individual AR(1) estimation. The results from the dynamic panel processes

simulation are consistent with the returns forecasting outcomes.

Keywords: dynamic panel data model, fixed effects, nonparametric local estimator
random effects.
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1. Introduction

Economists have weak ability to explain the exchange rate movements as
revealed by extensive studies focused on the major industrial countries. The popular
structural models could not outperform a naive random-walk model over horizons of
twelve month or less, even in predicting the realized values of the exogenous
explanatory variables. See Meese and Rogoff [25].

However, exchange rates were found by Ito et al. [19] to have impacts on trade
and investment for almost countries in Asia region except the fast growing economies.
Mckenzie [24] studied the effects of exchange rate volatility on trade and could identify
the reasoning to form currency union in the East Asian region. And also, in economic
linkage perspective, Han and Hoontrakul [12] measured the stock market co-movements
by testing the cointegration analysis and could found the contagion effect in South East
Asia both prior and after the crisis in 1997. Accordingly, Chaisrithong [6] examined Thai
exchange rate between 1997 and 2002 by using Vector Autoregressive (VAR) and
revealed that contagion effect have more contribution in explaining the Thai nominal
exchange rate fluctuation than fundamental effects.

Thus, the inter-correlation among the exchange rates in Asia region may exhibit
more ability to explain fluctuation of exchange rates. So this study will consider the time-
series econometric models on the forecasting performance of exchange rates in Asia
region. The dynamic panel data models will forecast exchange rate returns with
considered whether the information of cross relation among returns could increase the

ability to explaining the co-movement of exchange rates.

2. Theoretical Framework and Methodology

The pooling of observations on a cross-section of the interesting units is
determined to explain changes and effects on the empirical phenomena. The main
literature in this area usually assumes a specific parametric linear form. In contrast to this
approach, this study applies an unspecified nonparametric relationship over time for a
group of individual and compares the prediction performance comparison among the
alternative panel data models.

An important question arises for the panel data on this issue is the poolability of
data. See Baltagi et al. [4] for discussion on this issue. In Hoogstrate et al. [18], the
empirical results for 18 Organization for Economics Corporation and Development
(OECD) countries parametrically analyzed effects from pooling in dynamic panel data

forecasts and found that Generalized Least Squares (GLS) pooled forecasts
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outperformed Ordinary Least Squares (OLS) pooled, GLS individuals and OLS
individuals. Jithitikulchai [22] extended the forecasting comparison by proposed the
nonparametric approach. He found that, generally, the results of forecasting performance
comparison show that pooled data is better than not pooled and can find grounds for
choosing nonparametric models by the comparison with parametric models.

In this study, we also apply the models with pool and not pool data for both the

parametric and nonparametric approaches.

I. The Parametric Models

1.1) Individual Ordinary Least Squares (OLS)

We first consider the basic model, Y, :0{+ﬁXi +U; ;i=1..,N where
u ~ N(O,o-f_). Suppose that all the classical assumptions of Gauss-Markov theorem

are satisfied for all i =1,..., N and thus the OLS estimators of & and 3 obtain the

Best Linear Unbiased Estimator (BLUE) properties.
However, there are possibilities that the correlated disturbances in separated
OLS equations can provide useful information for more accuracy in pooled estimation.
This system of equations is called Seemingly Unrelated Regressions in which the
datasets are not pooled (SUR — Not Pooled),
Yi X 0 B &
: . Sola

D |l=o+ . : :
Yn O Xy ﬁN &y

And the variance-covariance matrix is in the form of X & |T where Zz[aij:l ,

o; =U,'u; /(T -2);i=1..,N,j=1..N, ® denotes the Kronecker product and

T denotes the periods of this balanced panel.
For i=1,...,N ; the estimators of U; from the individual OLS regression

estimation are therefore computed for the SUR variance-covariance matrix. Baltagi [2]
has the compact presentation of both intuitive and theoretical view on SUR. See full
details in Greene [9] and Wooldridge [34].

The SUR models in this study will have two functional forms which have with

and without interception. The estimation technique is Feasible Generalized Least
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Squares (FGLS). Therefore we have three models. One is the individual OLS model and
two are SUR.

1.2) Pooled Ordinary Least Squares (OLS)
In this case, the individual units are combined to be one sample,

Y1 X U
Col=a+] B
yN XN L'IN
with U~ N(0,0%) where U =[u, -+ U]

Given the classical assumptions of regression, we also have the Pooled
Seemingly Unrelated Regressions models (SUR — Pooled) with and without interception

as same as the above Individual OLS model. But the difference is that the disturbances

for compute the variance-covariance matrix Z@IT comes from the Pooled OLS
estimation of all concatenated series where z= [O‘ij] ,

oy =U"u; (T =2);i=1..,N,j=1..N

1.3) Panel Data Models

Economists apply application of panel data models to study the cross-sectional
units observed over time. Modern empirical research that can be fitted to cover more
data configurations including space and time dimensions of panel data model, i.e. on
estimation and forecasting applications, are increasing by demands for understand and
interpret the real phenomena. The examples of dynamic panel on empirical application
can be found in Garcia [7] on elaticities of energy demand and Garin [8] on inbound
international tourism. Baltagi [3] provided the coverage of panel data estimation and
testing techniques for various topics in econometrics including dynamic panel data
models and nonstationary panel. Hansen [13] considered a robust covariance matrix
estimator which is a generalization of the traditional heteroskedasticity consistent
estimator for panel data model. His estimator allows arbitrary correlation within each
individual. He gave the analytical results of estimator and its tests for many cases of
asymptotically convergence of N and T.

However, theoretically for estimation purpose, the traditional parametric

estimators of dynamic panel data model have limitation on unbiasedness especially
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when the parameters are heterogeneous across countries and the regressors are serially

correlated. But consistency could gained from T —> 00, see Baltagi [3]. Hansen [14]
considered fixed effects panel with autocorrelation and offered the bias-correction
implementation for the parameters of the autoregressive process. The usefulness of his
FGLS and the derived bias-correction was illustrated by removes a substantial portion of

the bias from the AR parameter estimates.

1.3.1 Fixed Effects (FE) Estimator

The basic panel regression model considered here has the form,

Vo =+ X +u+v, ;i=1..,N t=1..T . The g , indiidual effect or
unobserved heterogeneity, are assumed to be fixed parameters in this case to be

estimated. And the remainder idiosyncratic disturbances Vv; are stochastic with
v, ~1id(0,07), the independent and identical distributed disturbances. The X, are

assumed independent of the v;, for all land t. Technically, the estimation technique

will use Least Square Dummy Variables (LSDV) to obtain the estimators. See details in
Baltagi [3].

For dynamic panel data model with fixed effects, Hahn and Kuersteiner [11]
developed an estimator, robust to stationarity, be removed asymptotic bias due to the
well-known incidental parameter problem; the inconsistency of the MLE of the localizing-
to-unity parameter in the heterogeneous trend of dynamic panel regression model. See
the asymptotic properties of the Gaussian maximum likelihood estimators of both the
homogeneous and heterogeneous deterministic trends in Moon and Phillips [26].

And an interesting matter of course was derived by Phillips and Sul [31] which
they extended from the efforts on bias reduction and cross-section dependency
removing in Phillips and Sul [30]. Phillips and Sul [31] proved that although the cross

section sample size N — oo, when there is cross-section error dependence, the

probability limit of the dynamic panel regression estimator is a random variable rather

than a constant even when N is large.
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1.3.2 Random Effects (RE) Estimator

Since there are too many parameters in the fixed effects model and the loss of

degrees of freedom occurred, thus we can avoid these by assume that £ are random.
Then the model is

Yo =+ BX + i +vii=1.,Nt=1.,T, where g ~iid(0,0%),
v, ~iid(0,07) , and the g are independent of v, . In addition, the X, are

independent of the £ and v, , forall iand t.
Then, for estimation and inference objective, one can find the variance-

covariance matrix, Q2= E(uu’) ZO'f,(lN ®J)+0 (1, ®1;), where J; is a

matrix of ones of dimension TXT . In fact, COV(U;, U ) = O'f, +o0” fori=j, t=s,

and CoOV(Uy,Uj) 20'5 for i=], t#S, and zero otherwise. This implies a

it?
homoskedastic variance var(uit) :O-%Zl +O'V2 for all i and t, and an equicorrelated
block-diagonal covariance matrix which exhibits serial correlation over time only between
the disturbances of the same individual. See discussion on the estimation of consistent
estimators of the variance component with spectral decomposition in Baltagi [3]. See

also semiparametric efficient estimation of AR(1) of random effects panel data models in
Park, Sickles, and Simar [28], [29].

Il. The Nonparametric Models

Parametric method is statistically simple and if the assumptions of a parametric
model are justified, the regression function can be estimated more efficiently than it can
be done by a nonparametric method. Jithitikulchai [21]'s comparative forecasting results
for univariate data generating processes showed that the classical OLS perform the best
among other forecasts for the simulated simple linear model with standard normal
disturbances, but the nonparametric model could gain forecasting advantage, especially
in high fluctuated processes with violation of OLS classical assumptions. Moreover,
many assumptions are made in coming up with the questions about the functional
relations and the distributional features of variables, especially in the empirical
researches.

On the other way, the nonparametric approach is preferred because the

minimum of structure imposed on the regression function. It is only necessary that the
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regression function satisfies some degree of smoothness. Typically, continuity of function
is enough to ensure the convergence of estimator as the size of data increases.
Additional existence of derivatives, degree of smoothness, allows more efficient
asymptotically. See Jithitikulchai [20] for the introductory nonparametric econometrics on
the cross-validation bandwidth and local linear estimator. The intuitive concept of
nonparametric econometrics and the simulated illustration of different bandwidths and
some kinds of local estimators were provided.

2.1) Nonparametric Local Polynomial Least Squares Estimator

The basic framework is the following model duplicated from Henderson and
Ullah [17]: Y, =m(X,)+¢&, for i=1...,N and t=1,..T , where m(.) is an
unknown smoothing function of the conditional mean.

Furthermore, &t follows the random effects specification Ep = M TV where
U~ iid(0,0‘i) , v, ~iid(0,07) and the 4 are independent of v, . And the

covariance matrix for the full NT x1 disturbance vector & is defined as in the above
parametric random effect model. Please note that this study use Gaussian kernel
function, optimal cross-validation bandwidth, and local polynomial degree two estimators.

2.2) Nonparametric Local Polynomial Weighted Least Squares Estimator

Nonparametric kernel estimation in this study can be obtained from local
polynomial estimator with the second polynomial degree which is greater than first
polynomial degree of local linear least squares (LLLS) estimator in Henderson and Ullah

[17]. By minimizing the local least squares of errors,

>3 (Y~ XSO K (%, —x/h) = (Y = XS()) K(X)(Y ~XS(x))  with

i
respect to 5(X), where X, is (L, (X, —X), (X, —X)*/2), K(x) is an NT xNT
diagonal matrix of kernel functions K (X, —X/h) and h is the optimal cross-validation
bandwidth (smoothing) parameter. But the LLLS estimator in Henderson and Ullah [17]
use X, =(L (X, —X)) . Our obtained estimator is in the form of GLS as: éA'(X)
= (X'K(X)X) "X 'K(X)y.
And the numerical process to find the optimal “leave-one-unit-out” smoothing

bandwidth will delete all the T observations in time dimension of the ith unit as in

Henderson and Simar [16]. See also in Hahn and Kuersteiner [11] on studying the
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bandwidth selection for spectral density estimators based on dynamic nonlinear panel
data models.

Nevertheless, Henderson and Ullah [17] pointed out that LLLS estimator
ignores the information contained in the disturbance vector covariance matrix ). So

they introduced the feasible three alternative estimators, which have the generalized

form of kernel weighted: d, (X) = (X "W, (X)X)™* X 'W_(X)y; forr =1,2,3, where

W, (x) = K ()Q K (X) W, (x) = QK (X) , and W, (x) = QK (x)Q "2,
so called Local Linear Weighted Least Squares (LLWLS) estimators. Depends upon the
unknown parameters 0;21 and GVZ , the spectral decomposition of {2 leads to consistent

estimators of variance components. See Baltagi [3] for analysis on this spectral
decomposition. Furthermore, the consistency properties of these estimators were

discussed in Henderson and Ullah [17].

Methodology on Forecasting Performance

The forecasting performance measure for dynamic regression models is the

rolling mean absolute prediction error . The rolling algorithm uses the updating

observations to forecast the next realization, i.e. use the first T observations to forecast

the 9T+1' and updating by one observation to use the second T observations started by

the 2" observation until the (T +1)" to forecast the V;,, . and so on, for each

additional round of iteration until the last round of forecasting. Then we can have the

[ J for each rolling observation

J
mean absolute prediction error which is Z|yt+,- ~ Yiij
j=1

set.

3. Simulation Results

This section will study the forecasting comparison among the proposed models
for the simulated data generating processes. Some examples of linear trends are studied
with their main differences on various characteristics of disturbances for each trend

processes. Almost all of the generated time trends have the similar mean equations.

! This criterion is similar to the Mean Squared Prediction Error (MSPE) concept.
However, this is not the same as the Mean Absolute Percentage Error (MAPE).
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However, although the compartment model, as in Budsaba [5], has the idiosyncratic
mean equations; but they have the same standard normal disturbances. And in this
section we will use the average of rolling mean absolute prediction error to compare the
forecasting performance among the proposed econometric models. Different
combinations of N units and T times could gain in the increasing in accuracy of the

forecasting comparison results.

Table 1. Average Rolling Mean Absolute Prediction Error of Linear Trend with Normal

Disturbances

Vi =15+.01t+u, U, ~N(0,.25)

Individual Pool Panel Model Nonparametric Model
OLS SUR1 SUR2  Pool OLS SUR1 SUR2 FE RE LPLS LPWLS
5 12 0.2897 09604 1.2784 0.2960 0.4916  0.6785 0.3432  0.3012 0.3800  0.4600
10 12 0.3258 1.4411  7.2938 0.3427 272.7884 0.5231 0.3924  0.3455 0.3872  0.3916
20 12 0.4030 3.9660  3.0903 0.3860 1.9274  0.5003 0.4331  0.3851 0.4611  1.1873
5 20 0.2872 0.4018 0.8849 0.2713  0.3887  0.7963 0.2917  0.2727 0.2719  0.3280
10 20 0.3749 0.6180  0.7280 0.3361  0.4352  0.5384 0.3633  0.3347 0.3200  0.3699
20 20 0.4255 38.9324 5.8956 0.3943  1.2647  0.5034 0.4276  0.3956 0.4125  0.4829
5 30 0.3748 0.4813 0.8716 0.3419 0.4796  0.8795 0.3370  0.3399 0.4254  0.4006
10 30 0.4197 0.5468  0.5987 0.3818 0.5453  0.5944 0.3730  0.3837 0.4124  1.2652
20 30 0.4364  6.6799  1.4906 0.3918  0.5492  0.4981 0.3974  0.3924 0.3959  0.4390

The results of prediction performance comparison for linear trend process with

T N

normal disturbance are illustrated in Table 1 above. We can see that the pool OLS model
is the best result from the most occurrence of minimal average of rolling mean absolute
prediction error for all units in each of the cases on studying. This result could be
anticipated by the homogeneous linear trend with small variation in normal disturbances.

So the pooled data could gain the accuracy by increase in the observation sizes.

Table 2. Average Rolling Mean Absolute Prediction Error of ARCH
Y =-1+.01t+u,,

_ . i . 2 2y _ 2
where U, =SV, Vv, ~1id(0,1) with 87, = E(u,) =.05+.5u; ,
TN Individual Pool Panel Model Nonparametric Model
OLS SUR1 SUR2 Pool OLS SUR1 SUR2 FE RE LPLS LPWLS

5 12 0.2044 0.2415 0.2186 0.1314 0.2137 0.1561 0.1680  0.1253 0.1409  0.1799
10 12 0.2366  0.4431 1.7874 0.2033  0.4256  0.2030 0.2289  0.1993 0.2025  0.2083
20 12 0.3567 1.1154  0.9254 0.2805 0.4415 0.2815 0.3056  0.2789 1.0861  0.3562
5 20 0.1817 0.2499 0.1816 0.1671  0.2394 0.1694 0.1797 0.1669 0.1684  0.2056
10 20 0.2182 0.2748  0.2343 0.2170 0.2675 0.2191 0.2412 0.2168 0.2171  0.2135
20 20 0.2373 2.9979  21.7907 0.2447  0.5548  0.2417 0.2600  0.2432 0.2476  0.2510
5 30 0.2715 0.2894 0.2713 0.2610 0.2894  0.2725 0.2630  0.2607 2.6373  2.5950
10 30 0.3089 03769 0.2877 0.2688 0.3658  0.2792 0.2704  0.2695 0.9141  0.4819
20 30 0.2885 1.7385  0.3717 0.2640  0.3562  0.2684 0.2600  0.2641 0.2672  0.2989
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The simulated homogeneous linear trends with Autoregressive Conditional
Heteroskedasticity (ARCH) disturbances in Table 2 have the traditional parametric
random effect model to be the best model to forecast the simulated observations.

The results are quite clear on the distinguished performance of the random
effect model. Therefore, introduces the random effect estimators to the panel model
when there are ARCH effects in the individual series could yield in accuracy of
forecasting the realizations.

In Table 3, the simulated homogeneous linear trends with Generalized ARCH
(GARCH) disturbances in Table 3 have different numbers of N units and T times with

satisfied covariance stationary constraint.

Table 3. Average Rolling Mean Absolute Prediction Error of GARCH
Y;; =-05+.005t +u,

. i . 2 _ 2y 2 2
where U =S;V; (;V; ~1id(0,1) with 57, = E(u;,) =.1+.4u7 _, +.4s7 ,
TN Individual Pool Panel Model Nonparametric Model
OLS SUR1 SUR2 Pool OLS  SUR1 SUR2 FE RE LPLS LPWLS

12 0.7254 09791  1.4185 0.7167 0.9636  1.6046 0.8352  0.7249 0.7438  0.7635
10 12 0.9545 54206 12.7146 0.8037 4.5558  1.1598 0.8031  0.8037 0.7916  0.8228
20 12 0.8234 10.4134 2.2961 0.6662  3.1710 0.8107 0.7117  0.6626 0.6864  1.0345
5 20 0.3890 0.6166  1.0524 0.3952 0.5401 1.1018 0.4652  0.3943 0.3587  0.3621
10 20 0.5925 1.1887 1.3778 0.5257  0.8139  1.0045 0.5698  0.5239 0.5572  0.6755
20 20 0.5488 20.1120 5.2915 0.4935  6.5433  0.6947 0.5209  0.4912 0.4867  0.5924
5 30 0.6496 0.7593  1.3143 0.6320 0.7238  1.3797 0.6264  0.6229 0.6881  0.5943
10 30 0.6273 0.8136  1.0760 0.6419  0.7690  1.1987 0.6393  0.6364 0.6216  0.7165
20 30 0.6051 9.0114 1.3515 0.6094  1.1437  0.8627 0.6104  0.6006 0.5795  0.8225

However, the simulated processes have their roots of lag polynomials very
close to the circumference of unit circle. Therefore, unsurprisingly, we have the
nonparametric local polynomial least squared model to be the best model to forecast the

simulated process.
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Table 4. Average Rolling Mean Absolute Prediction Error of Autoregressive
Disturbances

Yy =-5+.01t+u;,

where U, = aU, , +V, ;8 ~iid(0,0.25) ,v;, ~iid(0,1)

Individual Pool Panel Model Nonparametric Model
OLS SUR1 SUR2  PoolOLS SUR1 SUR2 FE RE LPLS LPWLS
5 12 0.8415 0.5836  0.9953 0.5107 0.5809  0.7669 0.8343  0.4883  0.5644  1.1925
10 12 09536 14254 13680 0.6913 0.7226  0.7578 1.0212 0.6818  0.6857  0.7021
20 12 1.0194 25839  2.1143 0.8266  2.0851  0.8465 12325 0.8411  0.8411  0.8204
5 20 0.6023 0.6752  0.9406 0.5496 0.6683 0.8545  0.7130 0.5587  0.6424  0.6190
10 20 0.7946 0.8897 1.0914  0.7523 0.8232  0.9634 11389 0.8029  0.8044  0.7953
20 20 0.7810 8.0328 18.4161 0.7762 14741  0.8317 1.1367  0.8256 0.8315  0.8989
5 30 0.9809 0.8349 0.8450 0.8415 0.8266  0.8254 0.8363  0.8430 1.2229 1.5318
10 30 0.9737 0.8916  0.8560 0.8138 0.8811  0.8327 0.8301  0.8240 0.8477  0.8238
20 30 09452 2.3738  0.9512 0.8123  0.8185  0.7950  0.8377  0.8189  0.8200 _ 0.8190

The linear trend processes in Table 4, given that the disturbances with i.i.d.
autoregressive coefficients, show that the pool OLS is the best model to forecast the
simulated realizations. The simulation forecasting results show that the pool OLS model
has the distinction of having the maximum cases of minimal average of rolling mean

absolute prediction error.

Table 5. Average Rolling Mean Absolute Prediction Error of Heteroskedasticity

Disturbances

Yii =-25+.001t + g4 + U,
where £ ~ N(0,.0625)and u;, ~ N(0,1)

Individual Pool Panel Model Nonparametric Model
OLS SUR1 SUR2  Pool OLS SUR1 SUR2 FE RE LPLS  LPWLS
5 12 1.3451 1.2400 8.5883 0.8766  1.0249  9.3704 13119 0.9141 0.9626  0.9546
10 12 1.4429 15.0413 483991 1.0112 9.4893 2.7738 1.9566  1.1834 1.0541  1.0525
20 12 15792 286271 78.2465 1.1843 15.5639 2.1487 2.1871  1.3858 1.2186  1.1825
5 20 11230 0.9004 5.4741 0.9221 0.8971  5.1579 1.0148  0.8706 1.0338 1.1671
10 20 1.3264 1.2414 16774 1.1326  1.2456  2.4083 1.3988  1.1246 1.2011  1.2328
20 20 1.4234 457519 39.3200 1.2133  7.8352  2.1465 15154  1.2342 1.2339  1.2137
5 30 1.0498 1.0670 3.8146 1.0175 1.0665 3.7988 1.0233  1.0127 1.0755  1.5205
10 30 1.2377 1.2220 2.1871 1.1491 1.2230 1.7954 11895  1.1399 1.3007  1.3508
20 30 1.2876 32.3410 5.1325 1.1553  1.2063  1.5773 1.2185  1.1488 1.2298  1.2770

As was analyzed in Baltagi [3], the disturbance series have heteroskedasticity
property. And this peculiar series was included in linear trend data generating process.
The random effect model is the best model measured by the maximum numbers of

minimal average rolling mean absolute prediction error as illustrated in Table 5.
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Table 6. Average Rolling Mean Absolute Prediction Error of Compartment Model

Yi = &;(exp(-bit) +exp(-cit)) +u;,
where @, ~ N(0,.0025), b. ~ N(0,0.0625), c, ~ N(0,0.0625)
and U, ~ N(0,1)

Individual Pool Panel Model Nonparametric Model
OLS SUR1 SUR2  Pool OLS SUR1 SUR2 FE RE LPLS LPWLS
5 12 12883 12516 2.1041  1.1865 13420 12185 1.2706 1.3365 3.1486  3.3898
10 12 1.7803 53711 43570 16748 23665 16755  1.7923 1.7976  1.6064 2.4676
20 12 19859 53006 36.4722 15396 15790 15265 1.7306 1.5649  1.6736 12.7488
5 20 16540 1.8375 1.7360 1.6027 1.8136  1.6449 1.7219  1.5904 1.5243  1.6558
10 20 1.7270 1.8231 1.6634  1.6092 17600 16078  1.6612 1.6249 15815 2.9246
20 20 19143 44205 4.5749 1.7194 23004 1.7221 17552  1.7149 1.7050 2.1018
5 30 22978 21424 22506 21721 21261 22322 21385 21640 23380 2.8200
10 30 2.0801 1.9770 1.9888  1.9992 19780 20076  1.9915 1.9949  2.0630 2.6075
20 30 21023 6.4699 85935  1.9917 1.9804 2.0092 19608 2.0001  2.2264  3.3498

T N

The data generating processes of the compartment time trends in Table 6 have
idiosyncratic mean equations with homogeneous standard normal disturbances. See
Compartment Models in Budsaba [5]. The ability of the nonparametric local polynomial

least squares model is higher than the others to forecast the realization.

4. Empirical Results
We study the forecasting performance among the models for exchange rates
against US dollar. Data are the returns of weekly and daily nominal exchange rates for
some selected countries in Asia region for 2004:8 to 2007:8. There are China yuan
(CNY), Indonesia rupiah (IDR), Japan yen (JPY), Korea won (JPY), Myanmar kyat
(MYR), Philippines peso (PHP), Singapore dollar (SGD), and Thai baht (THB).
Augmented Dickey-Fuller test with deploying of constant and linear trend as

exogenous variables does not detect unit root.

Table 7. Augmented Dickey-Fuller Unit Root Test on Daily Returns

one-sided  Test critical values:

p-values 1% level 5% level

CNY -33.9456 0.0000 -3.4361  -2.8640
IDR -23.5641 0.0000 -3.4361  -2.8640

JPY -30.2423 0.0000 -3.4361  -2.8640
KRW -20.1244 0.0000 -3.4361  -2.8640
MYR -23.6652 0.0000 -3.4361  -2.8640
PHP -31.1088 0.0000 -3.4361  -2.8640
SGD -25.5991 0.0000 -3.4361  -2.8640
THB -28.8120 0.0000 -3.4361  -2.8640

t-Statistic
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Table 8. Augmented Dickey-Fuller Unit Root Test on Weekly Returns

CNY
IDR
JPY
KRW
MYR
PHP
SGD
THB

t-Statistic one-sided  Test critical values:

p-values 1% level 5% level
-19.1190 0.0000 -3.4517  -2.8708
-17.7296 0.0000 -3.4517  -2.8708
-16.0603 0.0000 -3.4517  -2.8708
-22.5437 0.0000 -3.4517  -2.8708
-19.2698 0.0000 -3.4517  -2.8708
-17.4202 0.0000 -3.4517  -2.8708
-15.1907 0.0000 -3.4517  -2.8708
-15.6798 0.0000 -3.4517  -2.8708

1. Daily Returns
The forecasting performance comparison for daily returns of currencies will test

155

four cases for different sizes of initial observations before rolling forecast to obtain the

rolling mean absolute prediction error where T = 432,

Most of the linear relationship level among the countries is quite low, except for

some cases such as the correlation between Singapore Dollar and Japan Yen or the

correlation between Korea Won and Malaysia Ringgit.

Please note that Thailand Baht is comparatively high correlated with Singapore

Dollar and Japan Yen. And the disturbances from their individual AR(1) without constant

have the similar structure of correlation as their daily returns.

Table 9. Correlation Matrix of Daily Returns

CNY

0.0247
0.0370
0.0928
0.0248
-0.0018
0.0233
0.0366

IDR
0.0247
1.0000
0.0972
0.0497
0.0586
0.1764
0.2386
0.0138

JPY
0.0370
0.0972
1.0000
0.1460
0.1277
0.0697
0.5840
0.2099

KRW
0.0928
0.0497
0.1460
1.0000
0.5932
0.2569
0.2123
0.0293

MYR
0.0248
0.0586
0.1277
0.5932
1.0000
0.1855
0.1175
-0.0282

PHP

-0.0018

0.1764
0.0697
0.2569
0.1855
1.0000
0.2972
0.1000

SGD
0.0233
0.2386
0.5840
0.2123
0.1175
0.2972
1.0000
0.2967

THB
0.0366
0.0138
0.2099
0.0293
-0.0282
0.1000
0.2967
1.0000

Correlation Matrix of Disturbances from Individual AR(1)

CNY
1.0000
0.0236
0.0270
0.1037
0.0291
0.0087
0.0146
0.0435

IDR
0.0236
1.0000
0.0949
0.0713
0.0619
0.2184
0.2285
0.0065

JPY

0.0949
1.0000
0.1600
0.1493
0.0871
0.5819
0.2025

KRW

0.0713
0.1600
1.0000
0.5655
0.2483
0.2107
0.0338

MYR

0.0619
0.1493
0.5655
1.0000
0.1902
0.1183
-0.0143

PHP

0.2184
0.0871
0.2483
0.1902
1.0000
0.3111
0.0899

SGD
0.0146
0.2285
0.5819
0.2107
0.1183
0.3111
1.0000
0.2924

THB

0.0065
0.2025
0.0338
-0.0143
0.0899
0.2924
1.0000
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The nonparametric local polynomial least squares (LPLS) outperform the other
models on forecast the daily returns. The underlined and italic rolling mean absolute
prediction error is the minimum amount of error measurement among all models for each
country. It is clear that if LPLS is the best for any country, then its rolling mean absolute
prediction error is very small compared to the others. However, if it is not true that LPLS
has minimum rolling mean absolute prediction error, then the rolling mean absolute
prediction error of the best one will not much differ from the others.

Please also note that the local weighted least squares estimator (LWLS) will not
be represented for all three alternative estimators as in Henderson and Ullah [17], since

all of their forecasts, and thus the rolling mean absolute prediction error, are almost

exactly the same. And the number of iterations for rolling forecasting equatesto T —T 0.

Table 11. Rolling Mean Absolute Prediction Error of Daily Returns

Initial T Individual Pool Panel Model Nonparametric Model

Sample oLS SUR1 SUR2 Pool OLS SUR1 SUR2 FE RE LPLS LPWLS
TO=trunc(T*.4)
CNY 0.0689 0.0676 0.0680 0.0707 0.0675 0.0677 0.0726 0.0706 0.1020 0.5259
IDR 0.3713 0.3530 0.3314 0.3741 0.3463 0.3392 0.3751 0.3732 0.3923 3.2903
JPY 0.2255 0.2185 0.2230 0.2470 0.2171 0.2238 0.2494  0.2468 0.2114 0.8329
KRW 0.9100 0.8759 0.9799 0.8748 0.8734 0.9180 0.8716 0.8737 0.6987 1.1538
MYR 0.9728 0.8983 0.8994 0.8952 0.8968 0.8960  0.9280 0.8939 0.7230 1.0859
PHP 0.2825 0.2972 0.2840 0.2824 0.2931 0.2833  0.3022 0.2815 0.3204 0.7281
SGD 0.1152 0.1166 0.1272  0.1482 0.1190 0.1290 0.1687 0.1480 0.1063 0.6634
THB 0.3800 0.3736 0.3513 0.3762 0.3692 0.3514 0.3933 0.3758 0.3653 0.7853
TO=trunc(T*.5)
CNY 0.0675 0.0662 0.0664 0.0672 0.0661  0.066 0.0683 0.0672 0.0986 0.4556
IDR 0.3752 0.3568 0.3393 0.3753 0.3500 0.3463 0.3719 0.3741 0.4040 2.7706
JPY 0.2297 0.2188 0.2217 0.2462 0.2167 0.2232  0.2463 0.2462 0.2131 0.6267
KRW 0.8759 0.8492 0.9374 0.8411 0.8468 0.8765  0.8454 0.8400 0.6817 1.2007
MYR 0.9333 0.8652 0.8678 0.8603 0.8645 0.8643 0.8817 0.8594 0.7046 1.5026
PHP 0.2837 0.3005 0.2923 0.2845 0.2967 0.2908  0.3035 0.2834 0.3136 0.6607
SGD 0.1155 0.1186 0.1300 0.1487 0.1224 0.1313 0.1661 0.1485 0.1173 0.5934
THB 0.4096 0.4118 0.4053 0.4342 0.4088 0.4081  0.4797 0.4337 0.4245 0.7189
TO=trunc(T*.6)
CNY 0.0625 0.0616 0.0606 0.0658 0.0619 0.0600 0.0764  0.0657 0.0906 0.1065
IDR 0.3656 0.3422 0.3362 0.3664 0.3372 0.3334 0.3630 0.3652 0.3867 0.3816
JPY 0.3366 0.3302 0.3315 0.3547 0.3221 0.3329 0.3634 0.3541 0.3125 0.4091
KRW 0.9610 0.9187 0.9458 0.9079 0.9132 0.8965 0.8989 0.9072 0.7386 1.1474
MYR 0.9327 0.8657 0.8682 0.8609 0.8623 0.8607 0.8825 0.8600 0.7099 1.4382
PHP 0.2948 0.3029 0.2965 0.2968 0.2967 0.2948 0.3144 0.2961 0.3207 0.3496
SGD 0.1192 0.1207 0.1287 0.1425 0.1227 0.1298 0.1563 0.1421 0.1257 0.1898
THB 0.4205 0.4157 0.4190 0.4568 0.4091 0.4210 0.4929 0.4554 0.4273 0.5127
TO=trunc(T*.7)
CNY 0.0639 0.0616 0.0600 0.0730 0.0623 0.0603  0.0944 0.0728 0.0997 0.1513
IDR 0.3626  0.3416 0.3059 0.3469 0.3284 0.3080 0.3548 0.3460 0.3802 0.3860
JPY 0.3504 0.3404 0.3495 0.3645 0.3326 0.3476  0.3832 0.3631 0.3295 0.3716
KRW 0.9102 0.8859 0.9032 0.8691 0.8783 0.8453 0.8638 0.8655 0.6991 0.8793
MYR 0.9862 0.9032 0.9045 0.8919 0.9003 0.8976  0.8947 0.8891 0.7250 1.5993
PHP 0.3009 0.3062 0.2988 0.3083 0.2992 0.3016 0.3353 0.3071 0.3154 0.3888
SGD 0.1204 0.1200 0.1281  0.1353 0.1236 0.1278  0.1539 0.1347 0.1254 0.2005

THB 0.4892 0.4660 0.4598  0.4892 0.4555 0.4495 0.5364  0.4882 0.4612 0.5099
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The rolling mean absolute prediction error of daily returns of Thailand Baht is
minimum when forecast with SUR. And almost countries can define the best model that

can outperform in forecasting their daily returns.

2. Weekly Returns

There are four cases for different sizes of initial observations to measure
forecasting performance as daily returns forecasting. The independence among
countries increases for weekly period, there are more correlations among the weekly
returns and the disturbances obtained from individual AR(1) than daily period considered
earlier. And, also, the correlation matrices of weekly returns and disturbances obtained

by individual AR(1) estimation are similar in their structure.

Table 12. Correlation Matrix of Weekly Returns

CNY IDR JPY KRW MYR PHP  SGD THB
@\\4" 1.0000 0.0423 0.0782 0.2709 0.2292 0.0844 0.2735 0.0834
|pJ8 0.0423 1.0000 0.0207 0.3470 0.3804 0.4400 0.4586 0.1016
SEAE S 0.0782 0.0207 1.0000 0.3310 0.1866 0.0116 0.5848 0.3303
WG 0.2709 0.3470 0.3310 1.0000 0.4832 0.2763 0.5952 0.3074
\Adzed 0.2292 0.3804 0.1866 0.4832 1.0000 0.4156 0.4717 0.2487
=gl 0.0844 0.4400 0.0116 0.2763 0.4156 1.0000 0.2798 0.1547
S{elpls 0.2735 0.4586 0.5848 0.5952 0.4717 0.2798 1.0000 0.3861
1z/=0 0.0834 0.1016 0.3303 0.3074 0.2487 0.1547 0.3861 1.0000

Table 13. Correlation Matrix of Disturbances from Individual AR(1)

CNY IDR JPY KRW MYR PHP  SGD THB
o\l@" 1.0000 0.0374 0.0843 0.2682 0.2147 0.0855 0.2841 0.0673
|pJz8 = 0.0374 1.0000 0.0278 0.3552 0.3894 0.4436 0.4381 0.0828
NEAE Y 0.0843 0.0278 1.0000 0.3574 0.2433 0.0403 0.5756 0.3344
WG 0.2682  0.3552 0.3574 1.0000 0.4803 0.2835 0.6064 0.3098
\hdzeH 0.2147 0.3894 0.2433 0.4803 1.0000 0.3865 0.4891 0.2254
=gl 0.0855 0.4436 0.0403 0.2835 0.3865 1.0000 0.3161 0.1478
S{elpl 0.2841 0.4381 0.5756 0.6064 0.4891 0.3161 1.0000 0.3513
120 0.0673 0.0828 0.3344 0.3098 0.2254 0.1478 0.3513 1.0000

The results on comparative forecasting models for weekly returns of 8 Asian
countries show that there is no conclusive evidence to justify which model is the best
among all of the competitive models. However, the SUR models could roughly yield less
rolling mean absolute prediction error than the other models. This is according to the
higher correlations among the disturbances from their individual AR(1) estimation.

One interesting point is that SUR is the best model to forecast Thailand Baht

returns both daily and weekly period. And the minimum rolling mean absolute prediction
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error of Thailand Baht is small compare to rolling mean absolute prediction error of the

other models.

Table 14. Rolling Mean Absolute Prediction Error of Weekly Returns

Initial T Individual Pool Panel Model Nonparametric Model

Sample oLSs SUR1 SUR2  Pool OLS SUR1 SUR2 FE RE LPLS LPWLS
TO=trunc(T*.4)
CNY 0.0934 0.1009 0.0935 0.0993 0.1005 0.0924 0.1145  0.0994 0.0982 0.1130
IDR 0.5097 0.4936 0.4989  0.4895 0.4897  0.4939 0.4962  0.4896 0.5337 1.7330
JPY 0.6850 0.6865 0.6519 0.6735 0.6839  0.6524 0.7137  0.6762 0.6914  0.7115
KRW 0.5831 0.5717 0.6128 0.5918 0.5723 0.6121 0.5950  0.5947 0.5899 0.7309
MYR 0.5592 0.5594  0.5562 0.5767 0.5592  0.5559 0.5732  0.5778 0.5733 2.2500
PHP 0.5046 0.5602  0.5340 05041 0.5592 0.5284 0.5185 0.5023 0.5040 0.5368
SGD 0.3128 0.3172 0.3103 0.3075 0.3169 0.3095 0.3088  0.3082 0.3098 0.3117
THB 0.7829  0.8167 0.7879 0.7908 0.8192 0.7894 0.8436  0.7956 0.8047 0.8825
TO=trunc(T*.5)
CNY 0.0930 0.1006  0.0916 0.0987 0.1010  0.0909 0.1152  0.0987 0.0994  0.1694
IDR 0.5887 0.5589 0.5616 0.5606 0.5553  0.5622 0.5666  0.5623 0.6865 1.4224
JPY 0.6939  0.7008 0.6981 0.7040 0.6981  0.7003 0.7616  0.7055 0.7101 0.8269
KRW 0.6099 0.5841  0.6367 0.6099 0.5849  0.6339 0.6087  0.6132 0.6117 0.7918
MYR 0.6062 0.5965 0.6011 0.6323 0.5970  0.6023 0.6327  0.6327 0.6354  0.8154
PHP 0.4758  0.5416 0.5397 0.5002  0.5409 0.5337 0.5232  0.4978 0.4894  0.5991
SGD 0.3288 0.3246  0.3301 0.3241 0.3240 0.3287 0.3278  0.3249 0.3264  0.3674
THB 0.7370  0.7630 0.7298 0.7341 0.7649  0.7330 0.7832  0.7373 0.8064 1.0048
TO=trunc(T*.6)
CNY 0.0927 0.0960 0.0927 0.0981 0.0950 0.0914 0.1229  0.0980 0.0966 0.1017
IDR 0.6134 0.6013 0.5986 0.5952 0.5973  0.5952 0.6073  0.5954 0.5892 1.1322
JPY 0.7395 0.7347  0.7359 0.7396 0.7305  0.7402 0.7878  0.7392 0.7647 0.8913
KRW 0.5985 0.5893  0.6233 0.5991 0.5895 0.6202 0.6024  0.6028 0.6036 0.6639
MYR 0.6241 0.6122  0.6198 0.6488 0.6125 0.6209 0.6479  0.6494 0.6586 0.7193
PHP 0.4906  0.5477 0.5372 0.5071 0.5460 0.5316 0.5308  0.5047 0.5036 0.5384
SGD 0.3418 0.3442 0.3398 0.3417 0.3448 0.3396 0.3460  0.3419 0.3426 0.3506
THB 0.7344  0.7393 0.7081 0.7157 0.7450 0.7113 0.7628 0.7182 0.7659 0.8420
TO=trunc(T*.7)
CNY 0.0901 0.0938 0.0901 0.0984 0.0924 0.0896 0.1317  0.0985 0.0999 0.0928
IDR 0.6001 05946 0.6070 0.5760 0.5951 0.6011 05924 0.5771 0.5610 1.4581
JPY 0.7378 0.7372  0.7302 0.7449 0.7290  0.7334 0.7937  0.7457 0.7749 2.0899
KRW 0.5918 05892 0.6249 0.5992 0.5890 0.6198 0.5986  0.6046 0.5946 0.6540
MYR 0.6062 0.5993 0.5953 0.6181 0.5996  0.5962 0.6158  0.6198 0.6213 2.2040
PHP 0.4931 0.5408 0.5208 0.4925 0.5398 0.5165 0.5028  0.4904 0.4864 0.4949
SGD 0.3408 0.3477 0.3435 0.3346 0.3466 0.3422 0.3386  0.3351 0.3378 0.3537
THB 0.7334  0.7326__ 0.7021 0.7110  0.7336 _ 0.7035 0.7569 _ 0.7120 0.7795 1.9328

5. Conclusion

This paper explores the effects of using the cross-section dependence
information to evaluate the forecasting performance of the dynamic panel regression for
Asia currencies on both daily and weekly returns. Additional forecasting for different
simulated data generating processes is discussed.

The results of forecasting performance comparison show that:
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1. Dynamic Panel Regression of Simulation Results

The study of six data generating processes, where each process has several

combinations of N and T , are simulated to analyze the accuracy of forecasting
performance on different incidental linear trends. The results show that the most simple
homogeneous linear time trend with small variant normal disturbances should use pool
OLS estimation to gain the forecasting performance. However, the similar smoothed
structure of processes with heteroskedastic disturbances should be forecasted with the
traditional Random Effects model. But the high volatile and idiosyncratic panel data
should be forecasted by the nonparametric Local Polynomial Least Squares estimators.

2. Dynamic Panel Regression of Empirical Results

2.1) Daily Returns: The nonparametric local polynomial least squares (LPLS)
could outperform the other models to forecast the daily returns as be measured by
minimum rolling mean absolute prediction error. And if which country does not have
LPLS as the best model, then the rolling mean absolute prediction error of that best
model does not much different from the rolling mean absolute prediction error of the
other models for that country.

2.2) Weekly Returns: There is no conclusive evidence to justify which model is
the best among all of the competitive models. But, in general, the SUR models could
yield minimum rolling mean absolute prediction error compared with the other models.
This is according to the higher correlations among the disturbances, estimated from their
individual AR(1) estimation, than the shorter period on daily returns.

In conclusion, the proposed nonparametric estimators could yield the improving
performance on forecasting both in simulation and empirical applications. For simulation
results, the nonparametric approach is effective when the simulated processes are
idiosyncratic or highly volatile. For application results, we can see the similar outcome
from the daily returns forecasting.

Furthermore, the study on the heterogeneous deterministic time trends with
cross-section dependence could gain more understanding on cross-section dependent
Asia currencies. Another previously cited bias-reduction or cross-section removing

estimators are the prospective empirical research issues in the future.
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