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Abstract 

 Christman and Lan [1] considered adaptive cluster sampling based on inverse 

sampling that use two stopping rule. We use the estimator in adaptive cluster sampling 

based on the estimator of Dryver and Thompson [3] for improving the estimator in 

inverse adaptive cluster sampling that use three stopping rule. Estimators are compared 

in the small simulation. The results indicate that the improved estimator in inverse 

adaptive cluster sampling have the smallest variance. 

 

Keyword: adaptive cluster sampling, inverse sampling, stopping rule. 

 

1. Introduction 

Inverse sampling is the method of sampling which the sample of units is 

selected at random. This method is continued until certain pre-specified conditions have 

been fulfilled. Christman and Lan [1] applied inverse sampling design to the rare 

population. They considered inverse sampling design that stopping rules based on the 

number of rare units: that is, the initial sample of units size 0n  is selected by simple 

random sampling. If the number of units whose value of the variable of interest satisfies 

a pre-specified condition grater than or equal to a predetermined numbers, say  k , we 

stop sampling; otherwise we keep sampling unit until  k  rare units are observed.  They 
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also incorporated adaptive cluster sampling [7,8], which is an efficient method for 

sampling rare and hidden clustered populations, with the inverse sampling. In this paper, 

we will study the improved unbiased estimator [2,3] in inverse adaptive cluster sampling. 

Some comparisons are made using a simulation. 

  

2. Background of Inverse Sampling Designs  

 

As in the finite population sampling situation, the population consists of  N  units  

{ }1 2 Nu ,u , ,u=P index by their labels { }1,2, , N= S . With unit i is associated a 

variable of interest iy . The population is divided into 2 subgroups according to whether 

the y-values satisfies a pre-specifies condition C, for example { }ii, y C≥ . The 2 

subgroups are denoted as { }M iu : y C, i 1,2, , N= ∈ =P  and 

{ }N-M iu : y C, i 1,2, , N= ∉ =P  where M is the unknown number of units. The 

subgroups to which a unit belongs are not known until the unit is sampled. A unit is 

selected at random from the population and the sampling is sequential, and then the y-

value is obtained. Sampling is continued until a predetermined number of  k  unit 

( )1 k M< ≤  from MP  are sampled. 

The estimator of the population total 
N

y i
i 1

y
=

τ =∑ can be written as [1] 

   ( )y M N Mˆ My N M y −τ = + −   ,             (1) 

where   
M

M i
i

1y y
k ∈

= ∑
S

 ; MS  is the index label that are member of MP , 

N M

N M i
i1

1y y
n k

−

−
∈

=
− ∑

S

; N M−S  is the index label that are member of N-MP , 1n  is the 

total sequential sample size. 

In applications M will be not known. The unbiased estimator of M [1] is 

( )
( )1

N k 1
M̂

n 1
−

=
−

 ; k 1> . So an unbiased estimator of yτ  is  

( )I M N M
ˆ ˆˆ My N M y −τ = + − .                                            (2) 
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Its variance is given by  

 
( ) ( ) ( ) ( )

( )( )
1

1

22
I n M 1 N M 1

n M N M

ˆ ˆˆVar E M Var y n N M Var y n

ˆ ˆVar M N M ,

−

−

 τ = + −  

+ µ + − µ
 

  

( ) ( )

( ) ( )

1 1

1

2
2

12 2M
n N M n

1

2
M N n

ˆN M n kkˆE M 1 E 1
k M n k N M

ˆM Var M ,

−

 −  − σ     = − + σ −     − −      

+ µ −µ −

             (3) 

 

where     
M

1
M ii

M y−
∈

µ = ∑ U
 ,  ( )

M

22 1
M i Mi

M y−
∈

σ = −µ∑ U
, 

               ( )
N M

1
N M ii

N M y
−

−
− ∈

µ = − ∑ U
  and  

( ) ( )
N M

212
N M i N Mi

N M y
−

−
− −∈

σ = − −µ∑ U
.  ( )M N M−U U  is the index set for the 

subpopulation ( )M N-MP P . The variance of  M̂  is difficult to determine but has been 

shown to be bounded [4]: 

 

   
( ) ( ) ( )

1

2 2

n
M 1 M N M 1 M NˆVar M

k k M N 2
− −

≤ ≤
+ −

. 

  Christman and Lan [1], suppose a sample size 0n  is selected by simple 

random sampling. The stopping rule is to stop after the sample of size 0n  selections if 

any members of MP  are observed in the sample. Otherwise sampling until continues 

until  k  units from MP  are sampled. In this stopping rule the unbiased estimator is 

  

( )

0n

i 1 0
i 10mix

M N M 1 0

N y , if n n
nˆ
ˆ ˆMy N M y , if n n

=

−


=τ = 

 + − >

∑
                        (4) 

 The variance of  mixτ̂  is given by 
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 ( )
( )

2
2 0 0

1 0
0mix

I 1 0

n SN 1 , if n n
N nˆVar

ˆVar , if n n

  − =  τ =  
 τ >

                           (5) 

where  ( ) ( )N2 22
0 ii 1S N 1 y

=
= − −µ∑   and  

N
ii 1y N

=
µ =∑  

 

 Salehi and Seber [5] introduced the general inverse sampling design which is 

more practical sampling design. Beginning a sample size 0n  is selected by simple 

random sampling, we stop further sampling if at least  k  units from MP  are selected. 

Otherwise sampling until continues until  k  units from MP  are sampled but a limit is put 

on final sample size, that is 2n N= . 

 This estimator is  

( )

0

2

n

i 0
i 10

gI M N M 1

n

i 2
i 12

N y if [Q ],
n
ˆ ˆˆ My N M y if [Q ],

N y if [Q ],
n

=

−

=




τ = + −




∑

∑

                             (6) 

 

where      { }0 1 0[Q ] n n= =  

   { }1 0 1 2 1 2 M[Q ] n n n or n n & k= < < = =S  

   { }2 1 2 M[Q ] n n & k= = <S . 

 

 An unbiased variance estimator is given by 

( ) ( )

2
2 0 0

0
0

gI I 1

2
2 2 2

2
2

n SN 1 , if [Q ],
N n

ˆ ˆVar Var , if [Q ],

n SN 1 , if [Q ],
N n

  −  
 τ = τ


  −   

                                        (7) 
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3.  Inverse Adaptive Cluster Sampling Designs  
 

Adaptive cluster sampling, proposed by Thompson [7], is an efficient method for 

sampling rare and hidden clustered populations. In adaptive cluster sampling, an initial 

sample of units is selected by simple random sampling. If the value of the variable of 

interest from a sampled unit satisfies a pre-specified condition C, that is i{i, y c}≥ , 

then the unit’s neighborhood will also be added to the sample. If any other units that 

were “adaptively” added also satisfy the condition C, i.e. My∈P  , then their 

neighborhoods are also added to the sample. This process is continued until no more 

units that satisfy the condition are found. The set of all units selected and all neighboring 

units that satisfy the condition is called a network. The adaptive sample units did not 

satisfy the condition called edge units. If the initial unit does not satisfy the condition C, 

i.e. N-My∈P , no further units added, and the network consists of just the initial unit. 

Let iA  is the index set of all units in the network to which the ith unit belongs.  Let im  

be the number of units in iA . Let ν  denote the final sample size. The variable of 

interest associated with iA  is 
i

*
i jj A

y y
∈

=∑  and * *
i i iy y m=  is the mean of the y-

values in iA . The combination of inverse sampling and adaptive cluster sampling is 

called inverse adaptive cluster sampling. Upon replacing each iy  with *
iy , an unbiased 

estimator of the population total is  

 

( )

0

2

n
*
i 0

i 10

*
gI,A M N M 1

n
*
i 2

i 12

N y if [Q ],
n
ˆ ˆˆ My N M y if [Q ],

N y if [Q ],
n

=

−

=




τ = + −




∑

∑

                                 (8) 

 where   
M

* *
M i

i

1y y
k ∈

= ∑
S

.  
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An unbiased variance of the estimator is given by 

 

( ) ( )
1

*2
2 0 0

0
0

gI,A gI,A 1Q

*2
2 2 2

2
2

n SN 1 if [Q ],
N n

ˆ ˆVar Var if [Q ],

n SN 1 if [Q ],
N n

  −  
 

τ = τ

  −   

                                (9) 

where     

       
( ) ( ) ( )

( ) ( )

1 11

1

2
*2

12 *2M
gI,A n N M nQ

1

2
M N n

ˆN M n kkˆˆVar E M 1 E 1
k M n k N M

ˆM Var M

−

 −  − σ     τ = − + σ −     − −      

+ µ −µ −

 

 

      ( ) ( )2N2*2 *
j ii 1S N 1 y , j 0,1

=
= − −µ =∑    ,   ( )

M

2*2 1 *
M i Mi

M y−
∈

σ = −µ∑ U
 and  

            ( ) ( )
N M

21*2 *
N M i N Mi

N M y
−

−
− −∈

σ = − −µ∑ U
. 

 

The usual inverse adaptive cluster sampling can be improved by incorporating 

more of the information obtained in the final sample. In particular, the values of edge 

units are utilized in the estimator only for edge units that were picked in the initial sample 

[3]. 

 The units selected in the initial sample are denoted by 0S  and the units in the 

final sample denoted by S  can be partitioned into two parts: MS  is the set of all the 

distinct units in the sample for which satisfy the condition C and the remaining part 

N M−S  consists of  all the distinct units in the sample for which does not satisfy the 

condition C. For unit  i, let  if  be the number of times the network to which unit  i belongs 

is intersected by the initial sample; that is if   is the number of units in the initial sample 

that are in the network to which unit  i  belongs. 
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 Let the statistic d+  be defined as 

( ) ( ){ }i i M j N Md i, y ,f : i , j, y : j+
−= ∈ ∈S S  

Let D+  denote a random variable that takes on the possible value of d+ . Also 

let +D  denote the sample space for d+ . 

For i∈S  define the indicator ie  as 

 i M
i

1 ;if y c and i is in the neighborhood of some j
e

0 ;otherwise
< ∈

= 


S
 

Thus ie 1=  if unit  i  is an edge unit and the network that makes it an edge unit is 

selected in the initial sample. 

 

The number of sample edge units is 

    s i
i

e e
∈

=∑
S

. 

The number of sample edge units picked in the initial sample 0s  is 

    
0

0
0

n

s i i
i 1 i

e e e
= ∈

= =∑ ∑
S

. 

The average y-value for the sample edge units in the final sample is 

    
i i

i s
e

s

e y
y

e
∈=
∑

. 

For the thi  unit in the sample, define a new variable of interest *'
iy  by 

( )*' *
i i i e iy y 1 e y e= − + . 

An unbiased estimator of the population total is  

 

   HHˆ ˆE D d+ + + τ = τ =   

       ( )
n

1 *'
i

i 1
N n y−

=

= ∑ . 
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The variance of the ˆ+τ  is   

  ( ) ( ) ( )2

HH HHˆ ˆ ˆ ˆV V E+ + τ = τ − τ − τ  
. 

By the Rao-Blackwell Theorem; ˆ+τ  is an unbiased estimator of population total, 

since HHτ̂  is an unbiased estimator, and d+  is the sufficient statistic then the variance 

of the ˆ+τ  no more than the variance of the HHτ̂ . 

The improved estimator of the population total is  

 

( )
( )

0

N M

2

n
*'
i 0

i 10

*
gI,IA M i i e i 1

i1

n
*'
i 2

i 12

N y if [Q ],
n

ˆN M
ˆˆ My y 1 e y e if [Q ],

n k

N y if [Q ],
n

−

=

∈

=




 −τ = +  − +   −




∑

∑

∑

S
              (10) 

where      { }0 1 0[Q ] n n= =  

   { }1 0 1 2 1 2 M[Q ] n n n or n n & k= < < = =S  

   { }2 1 2 M[Q ] n n & k= = <S . 

 

The variance of the estimator is given by  

 

( ) ( )
1

*2
2 20 0

0 0
0

2
gI,IA gI,A 1 1Q

*2
2 22 2

2 2
2

n SN 1 N B if [Q ],
N n

ˆ ˆVar Var N B if [Q ],

n SN 1 N B if [Q ].
N n

  − −  
 


τ = τ −


   − −   

                                          (11) 

Where 
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0 0

0

2n n
* *'

0 n i i
i 1 i 10 0

1 1B E y y
n n= =

 
= − 

 
∑ ∑    ,  

1 1

1

2n n
* *'

1 n i i
i 1 i 11 1

1 1B E y y
n n= =

 
= − 

 
∑ ∑   and  

2 2

2

2n n
* *'

2 n i i
i 1 i 12 2

1 1B E y y
n n= =

 
= − 

 
∑ ∑ . 

 

4. Simulation Study 

In this section, the properties of the inverse sampling design is investigated in 

relation to k and 0n and compare it with the inverse adaptive sampling design, the blue-

winged teal data [6] were studied. The population region in an area of central Florida was 

partitioned into 200 quadrants and the numbers of blue-winged teal in each quadrant 

were records.  

 

Table 1. The numbers of blue-winged teal into 200 quadrants. 

0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 20 4 2 12 0 0 0 0 0 10 103 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 150 7144 1 0 

0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 6 6339 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 122 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 114 60 

0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 3 0 

  

For each estimator 20,000 iterations were performed to obtain a precise 

estimate. The condition for added units in the sample is defined by { }C y : y 5= ≥ . A 

varying of k = 2, 3, 4, 5, 6 and 0n = 10, 20, 30, 40, 50 was used. The formula used to 

estimate the variance of the estimate total is 

( ) ( )
20,000

2
i

i 1

1ˆ ˆVar
20,000 =

τ = τ − τ∑ , 

where iτ̂  is the value for the relevant estimator for sample i and τ  is the average of the 

iτ̂ . Let ν denote the final sample size. 
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 The results of the inverse sampling, inverse adaptive cluster sampling and 

improved estimator of inverse adaptive cluster sampling are as follows: 

 

 

Table 2. The variance of the estimators for the population total of the variable of interest.  

0n  k 
Inverse sampling Inverse adaptive cluster sampling 

( )E ν  ( )gIˆVar τ  ( )E ν  ( )gI,AˆVar τ  ( )gI,IAˆVar τ  

10 2 

3 

4 

5 

6 

30.99 

44.41 

60.44 

74.41 

89.82 

1,191,492,215 

506,975,610 

246,984,300 

170,593,762 

128,364,937 

46.84 

62.65 

79.56 

92.71 

106.95 

360,479,900 

215,799,053 

76,846,315 

46,125,905 

27,400,405 

360,476,467 

215,785,886 

76,841,232 

46,117,090 

27,390,151 

20 2 

3 

4 

5 

6 

31.76 

45.65 

61.31 

74.23 

90.81 

700,351,826 

399,684,128 

237,335,725 

181,104,339 

126,864,743 

47.89 

64.19 

80.17 

92.58 

107.79 

227,406,510 

143,950,190 

72,600,951 

53,375,238 

28,213,054 

227,406,330 

143,939,415 

72,598,098 

53,369,182 

28,203,824 

30 2 

3 

4 

5 

6 

35.49 

47.26 

61.49 

75.57 

91.19 

454,838,883 

316,653,324 

211,008,154 

169,243,161 

129,515,334 

52.01 

65.89 

80.54 

93.93 

108.06 

133,121,423 

95,215,515 

60,008,594 

45,270,897 

28,142,319 

133,111,066 

95,203,577 

59,997,906 

45,260,074 

28,135,297 

40 2 

3 

4 

5 

6 

42.42 

49.93 

61.73 

74.59 

89.47 

353,321,433 

312,763,634 

261,194,501 

177,403,084 

131,611,061 

59.35 

68.29 

80.70 

92.94 

106.58 

105,848,009 

89,925,155 

75,688,965 

47,137,138 

29,067,150 

105,843,604 

89,918,008 

75,686,533 

47,127,496 

29,058,319 

50 2 

3 

4 

5 

6 

52.03 

56.10 

63.08 

75.52 

90.67 

293,080,839 

258,011,038 

197,500,412 

168,874,018 

128,253,828 

68.89 

74.58 

81.93 

93.91 

107.61 

79,330,104 

74,385,698 

51,628,978 

40,240,311 

27,787,297 

79,326,944 

74,379,356 

51,623,033 

40,232,428 

27,778,577 
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Table 2 lists the expected final sample sizes and variances for the inverse 

sampling and inverse adaptive cluster sampling for a selection of initial sample size. The 

variance of the gI,IAτ̂  is less than the variance of the  gI,Aτ̂  not more than 0.04% but it is 

less than the variance of the gIτ̂  more than 50%.  

 
5. Conclusions 

 Adaptive cluster sampling is an efficient method for sampling rare and hidden 

clustered populations. Inverse sampling design is applied in adaptive cluster sampling 

that use stopping rules based on the number of rare units observed. An estimator of a 

population total by inverse adaptive cluster sampling is improved for reducing the 

variance of the estimator. The numerical study shows that for the fixed initial sample 

size ( )0n  the variance of the improved estimator decrease when a predetermined 

numbers ( )k  increase and for the fixed k the variance of the improved estimator 

decrease when 0n  increase. The variance of gI,IAτ̂ is less than the variance of gI,Aτ̂  

but The variance of gI,IAτ̂ is much less than the variance of  gIτ̂ . 
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