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Abstract 

Experimentation for achieving a robust process often involves signal variables 

which are controllable and internal to the process and noise variables which are 

generally external and routinely uncontrollable. To achieve a robust process, designs 

based on a combined array have been suggested by many authors. Many of these 

designs allow parameter estimation for the linear-quadratic (LQ) response surface model 

when the experimental design region is the hypercube. The LQ model contains the full 

quadratic model terms in the Q signal variables, the linear model terms in the L noise 

variables, and the signal by noise variable interaction terms. Because the quadratic 

regression model is just a special case of the LQ model when there are L = 0 noise 

variables, this article extends the optimal design theory regarding regression on the 

hypercube. 

An approach similar to that of Farrell, Kiefer, and Walbran [13] will be taken in 

this article. A support of D- and G-optimal designs for the LQ model on the hypercube 

will be defined. Closed-form expressions for the generalized (D) and prediction (G) 

variance are derived. Using these closed-forms, D-optimal design weights are 

determined for barycentric subsets of points in the support. These weights and the 

corresponding optimal D-criterion values are tabled for 4 ≤ K ≤ 17 design variables.  

______________________________ 
 
Keyword: combined array, crossed array, design efficiency, design optimality, 

generalized variance, prediction variance, robust design. 
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1. Introduction 

Experimentation for achieving a robust process often considers two sets of 
process variables. "Signal" variables are internal to the manufacturing process with 

levels that can be controlled during routine operation of the process. "Noise" variables 

are, in general, external to the process and cannot be, or are difficult to, routinely control 

during the operation of the process. Despite the randomness of noise variables outside 

of the experimental situation, these variables can be controlled for experimental 
purposes. 

The use of product or "crossed" orthogonal arrays (Taguchi [29], Myers and 
Montgomery [25]) is one experimental design approach for achieving a robust process. 

Alternatively, designs based on a single "combined" array have been discussed by many 

authors including Borkowski [2], Borkowski and Lucas [6], Lucas [21,22], Box and Jones 

[10], Myers et al. [24], Welch et al. [30,31], Shoemaker et al. [28], and Lorenzen and 

Villalobos [20]. In this paper, I consider the class of designs which allow estimation of the 

parameters in the following model when a design region is restricted to a K = Q + L 

dimensional hypercube:       
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This model will be called the linear-by-quadratic model or LQ model for signal 

variables x1,…,xQ and noise variables z1,…,zL. The model is so named because it 

contains the 

• Linear expression kk
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variables.  

• Product expression kiik
ki

zxδ
LQ

11 ==
∑∑  in the Q signal and L noise variables.  

Any design that can fit the LQ model will be referred to as an LQ model design. Like 

many response surface designs for fitting a full second order model, many LQ model 

designs are based on a combined array of factors. However, estimation of the squared 
2
iz terms and the interaction ji zz terms among noise factors is not considered. Because 

LQ model designs require fewer design points than designs fitting the full second-order 

model, they are a compromise between the design size and being able to fit the 
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additional 2
iz and ji zz terms of the full quadratic model. One benefit of combined array 

LQ model designs is that they always allow estimation of the potentially important signal-

by-signal interaction terms while product orthogonal arrays do not always allow 

estimation of these interaction terms.  

 

2. Design Optimality and Efficiency  

Prior to the major contributions to the theory of optimal designs be Kiefer 

[16,17] and Kiefer and Wolfowitz [18,19], it was routinely assumed that each point in an 

experimental design was assigned an equal weight. However, Kiefer and his colleagues 

generalized this established concept to allow for alternate weighting schemes for the set 

of design points. Their research, often referred to as "approximate" design theory, 

developed concepts which treated a design as a probability measure ξ on the design 

space X. 

A design ξ is a probability measure on a compact design space X  if it satisfies  

(i) 0 ≤ ξ(A) ≤ 1 for all X⊂∀A ,  (ii) 1)(ξ =∫ dx
X

, and  (iii)  if X∈∞
= 1i iA  for a disjoint 

sequence A1,A2,… of sets in X,  then )()( 1 iii AA ∑
∞

=

∞
= =

1i
ξξ  .  An approximate design ξ 

on X  is a probability measure that assigns weights w1, …, wN  (0 < wi ≤ 1) to the set of N 

experimental trials x1, …, xN  and zero weight elsewhere. An exact design having N 

points is an approximate design for which the measure assigns weight ri /N to each 

design point such that ri is an integer (i =1, …, N ) and ∑ = .Nri  

Let f  be a known 1×p  vector of continuous functions f1,f2, …, fp on the space 

X, and let θ represent a 1×p  vector of unknown real-valued parameters. For the LQ 

model:  

]',,,,,,,,,,,,,,1[ 2121121
22

2
2
121 LQLQQQQ zxxxzzzxxxxxxxxxx  −=f  

For design ξ, the moment matrix M(ξ) = [mij(ξ)] where mij(ξ) is the (i,j)th entry of M(ξ) 

such that )( )( )()( dxxxiij ∫= X
ξξ jffm .  (Note: For an exact N-point design with model 

matrix X, the moment matrix   M(X) = (X’X)/N . For nonsingular M(ξ), the  normalized 

prediction variance function V(x,ξ) is defined as  

                                              V(x,ξ) = f(x)’ M-1(ξ) f(x).                                                      (2) 



50                                                                           Thailand Statistician, 2008; 6(1):47-64 

Let λ1(ξ),…,λk(ξ) be the eigenvalues of the moment matrix M(ξ). For nonsingular M(ξ), 

the optimality functionals are defined as 
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),(),( 10 ξξ ΦΦ and )(ξ∞Φ correspond to the normalized D-, A- and E-optimality criteria 

(Pukelsheim [27]). A design ξ(t) is a )(ξtΦ - optimal design  if it minimizes )(ξtΦ . That 

is,    

ξ(t)  is )(ξtΦ -optimal if )()(min )(t
tt ξξ

ξ
Φ=Φ     for 0 ≤ t ≤ ∞ 

To evaluate the performance of design ξ with respect to some )(ξtΦ -optimality 

criterion, the )(ξtΦ - efficiency et is defined as 

)(/)()( )(t
ttt ξξξ ΦΦ=e     for 0 ≤ t ≤ ∞. 

e0(ξ), e1(ξ), and e∞(ξ) are, respectively, referred to as the D, A, and E-efficiencies of a 

design ξ. Hence, any design ξ is considered acceptable for practical application if et(ξ) is 

close to 1 for all values of t considered by the experimenter. 

Additionally, there are the IV-optimality and G-optimality criteria )(ξV and 

)(ξGV , which are, respectively, the average and maximum of V(x,ξ) in X. That is, for a 

design ξ, we define  

),(average)( ξξ xVV x X∈=     and     ),(max)( ξξ xVV xG X∈=  

A design ξ* is IV-optimal or G-optimal if  

),(averagemin*)( ξξ ξ xVV x X∈=      and      p== ∈ ),(maxmin*)( ξξ ξ xVV xG X  

The G-efficiency eG of a design ξ is defined as  eG(ξ) = )(/ ξGVp  where p is the number 

of model parameters. The fact that p=)(ξGV  for a G-optimal design ξ* is a result of 

the Equivalence Theorem of Kiefer and Wolfowitz [19]:  
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Theorem 1 (Kiefer-Wolfowitz Equivalence Theorem):  Conditions (I), (II), and (III) are 

equivalent.  

I. ξ* is D-optimal if and only if  M-1(ξ) exists and *)()(max ξξξ MM = . 

II. ξ* is G-optimal if and only if *).,(max),(maxmin ξξξ xVxV xx XX ∈∈ =  

III. A sufficient condition for ξ* to satisfy (II) is for p.=∈ *),(max ξxVx X  

Dette and O'Brien [12] introduced the IL-optimality criterion which is analogous to the 

)(ξtΦ -criterion, but it is based on the prediction variance instead of eigenvalues.  

IL-optimality is particularly useful for nonlinear regression models. 

In practice, exact designs are implemented.  Therefore, it is desirable that the D 

criterion ( ) pN /1
0 /)( XX'X =Φ  and the G criterion )()()'()( 1

max xfxfNV −= XX'X  that 

are evaluated for an exact design X to be close to the optimal D and G criteria values, 

i.e., we want an efficiency close to 1. Although a more appropriate comparison would be 

to compare the D and G values to the optimal exact N-trial design criteria values, it is 

unfortunate that optimal exact N-trial designs are not known for many response surface 

models, in particular, for quadratic and LQ models. An exception can be found in 

Borkowski [5] for which exact D, G, A, and IV-optimal exact designs for 1, 2, and 3 

factors are given for the quadratic model assuming a hypercube design space. 

Efficiencies based on the approximate theory are, therefore, lower bounds for 

efficiencies based on the class of exact N-trial designs. The optimal D-criterion values 

will be presented in section 4. See Atkinson et al. [1] and Pukelsheim [27] for details on 

design optimality criteria, efficiencies, and the Kiefer-Wolfowitz Equivalence Theorem.  

 

3. The Support of Optimal LQ Model Designs on the Hypercube  

A support of a design measure ξ is defined to be any subset S in design space 

X for which ξ(S) = 1. When considering a design as a probability measure, the 

complexities that usually occur with discrete set problems are reduced to those 

encountered with a continuous set problem. To aid in the discussion of the support of 

optimal designs, let  

{ }ixxxxH iqq ∀≤= ,1:),,( 21   

be the q-dimensional cube. A barycenter of depth k for 0 ≤ k ≤ q  is a point with k 

coordinates equal to 0 and q-k coordinates equal to ±1. Thus, there are ( )k
q kq−2  unique 
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barycenters of depth k. The set of barycenters of depth k is denoted as J(k) and the 

union of the sets of barycenters )(0 kJJq
q
k ==  .  Jq is therefore the 3q factorial array of 

q-tuples with coordinates 0 or ±1 or the complete barycentric set with q coordinates. 

For 1 ≤ a ≤ q and for 1 ≤ b ≤ r,  a  barycenter set of depth (a,b)  is defined to be 

a point with q + r coordinates such that  

I. For the first q coordinates, a coordinates = 0 and q-a coordinates = ±1. 

II. For the last r coordinates, b coordinates = 0 and r-b coordinates = ±1. 

Thus, there are ( )a
q ( )b

r barq −−+2  unique barycenters of depth (a,b). The set of 

barycenters of depth (a,b) will be denoted as J(a,b).  The barycentric points are crucial in 

the subsequent development of D-optimal LQ model designs. 

For the LQ model, it will be shown that a D-optimal design can be supported by 

a subset of JQ × JL , specifically, by the set of points in J(Q,0)J(1,0)J(0,0)J* ∪∪= . 

The following two steps will be used to find D-optimal LQ designs:  

1. Find closed-form expressions for V(x,ξ) and |M(ξ)|.  

2. Find non-negative weights to assign to J(1,0),J(0,0), and J(Q,0)  that 

maximize |M(ξ)|. 

Let ξ′ be the design associated with the optimal weights. It will be shown that 

p.=∈ )',(max ξxVx X  Thus, having satisfied Condition (III) of Theorem 1, the design ξ′ 

is G-optimal and therefore D-optimal.  

 

3.1 Closed-form Expressions for V((x:z),ξ) and |M(ξ)| 

Recall that J(a,b) is the set of barycenters of depth (a,b) for 1≤ a ≤ q and 1≤ b ≤ 

r.  We apply these sets in the LQ framework where q = Q and r = L, and for brevity, let 

J=JQ+L be the complete barycentric set with Q+L coordinates. It will be shown that 

J(Q,0)J(1,0)J(0,0)J* ∪∪=  will support an optimal LQ model design with K=Q+L 

design variables. Let α1, α2, and α3 correspond to the sets J(0,0), J(1,0), and J(Q,0) so 

that  

• a weight of 
K2
1α  is assigned to each of the 2K points in J(0,0), 

• a weight of 
1

2
2 −KQ

α is assigned to each of the Q2K-1 points in J(1,0),  

• a weight of 
L2
3α  is assigned to each of the 2L points in J(Q,0). 
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Any  {α1, α2, α3}  satisfying  α1+α2+α3= 1 with αi ≥ 0 for i =1,2,3 defines a discrete 

probability measure ξ on the design space X. For notational simplicity, let  y = (x1,…,xQ , 

z1,…,zL).  Because of the discrete design structure associated with ξ, the moments are 

defined to be:  

                            21
2242 1)( )( )( ααξξξ

Q
Qu −

+==== ∫∫∫ dyzxdyxdyx kiii  

                            21
22 2)( ααξ

Q
Qv −

+== ∫ dyxx ji  

and                            1)( 321
2 =++=∫ αααξ dyzk  

for all 1 ≤ i < j ≤ Q and 1 ≤ k ≤ L. To see how u and v were calculated, 

consider )( 2 dyxi∫ ξ . By definition of the measure ξ, this integral equals ijj wx2
ij

M
1=∑ where 

M = 2K + Q2K-1 + 2L  = the number of points in J*, and 

            Kijw
2

1α=       for   j = 1,…,2K                                           (i.e., the points in J(0,0) ),  

            Kijw
2
2

Q

α
=    for   j = 2K+1,…, 2K + Q2K-1                        (i.e., the points in J(1,0) ),  

            Lijw
2

3α=       for   j = 2K + Q2K-1+1,…,2K + Q2K-1 + 2L     (i.e., the points in J(Q,0) ). 

Note that in J(0,0), 2
ijx  = 1 for all 2K values of j ; in J(1,0), 2

ijx  = 1 for (Q-1)2K-1 values of j 

and is 0 for the remaining 2K-1 values of j ; and in J(Q,0), 2
ijx ≡ 0 for all 2L values of j. 

Thus,  

.1
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The other integrals associated with u and v are derived in similar fashion. In terms of u 

and v, the structure of the moment matrix M(ξ) and its inverse M-1(ξ) are presented in 

Figures 1 and 2. 
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Figure 1:  The Moment Matrix M(ξ) 

Terms 1 2
ix  ji xx  ki zx  ix  kz  

1 1 uJ′Q 0 0 0 0 
2
ix  uJQ G 0 0 0 0 

ji xx  0 0 1)/2-Q(QvI  0 0 0 

ki zx  0 0 0 LQu ⋅I  0 0 

ix  0 0 0 0 QuI  0 

kz  0 0 0 0 0 LI  

where 'JJI QQQv)-(uG v+=  

 

Figure 2: The Inverse Moment Matrix M-1(ξ) 

Terms 1 2
ix  ji xx  ki zx  ix  kz  

1 A BJ′Q 0 0 0 0 
2
ix  BJQ G* 0 0 0 0 

ji xx  0 0 1)/2-Q(Q1/v)( I  0 0 0 

ki zx  0 0 0 LQ(1/u) ⋅I  0 0 

ix  0 0 0 0 Q(1/u)I  0 

kz  0 0 0 0 0 LI  
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Let (x:z) be the combined vector of control and noise variables. Using M(ξ) and M-1(ξ), 

closed-forms for the generalized variance |M(ξ)| and prediction variance V((x:z),ξ) can be 

derived as follows. Pre- and post-multiplying M-1(ξ) by  f ′(x:z) and f(x:z) in (2) yields the 

closed-form:  
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Because u > 0 and v > 0, substitution of 2
kz ≡ 1 (or L=∑ 2

kz ) in (3) yields the upper 

bound  

   L AD-CL2BDVmax
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Next, consider the further restriction of evaluating V((x:z),ξ) at only those points in JQL = 

JQ × JL(0).  Then 2
kz ≡1 and 2

ix = 0 or ±1. Thus, 2
ix ≡ 4

ix . Substituting into (4) yields  
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for all QLJ∈):( zx . The number of parameters in the LQ model is p = 1+2Q+ ( )2
Q +L+ QL. 

The goal is to show optimal weights {α1,α2,α3} defining ξ* on J* exist such that ξ satisfies  
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Once proven, Condition (III) of  the Kiefer-Wolfowitz Equivalence Theorem will be 

satisfied stating that ξ* will be both a D- and G-optimal design. 

When searching for a D-optimal design, the goal is to maximize |M(ξ)|. By 

exploiting the block structure of M(ξ) in Figure 1, we have the closed-form for |M(ξ)| :   

                       [ ]212/)1()1( )1()()( uvuvuvu QQQQQLQ −−+⋅−⋅⋅= −−+ξM  .           (6) 

In Section 3.2, u, v  and, hence, {α1, α2, α3}  values maximizing |M(ξ)| are determined.  

 

3.2 Optimal Design Weights  

The optimal weights {α1, α2, α3}  will be determined by studying the generalized 

variance |M(ξ)|. The weights {α1, α2, α3}  are determined by maximizing |M(ξ)| with 

respect to u and v, or equivalently by maximizing L(u,v) = log |M(ξ)|  with respect to u 

and v. From (6), we have  

    L(u,v) = Q(L+1) log(u) + ( )2
Q log(v) + (Q-1) log(u-v) + log[u + (Q-1)v - Qu2 ] .         (7) 

Taking partial derivatives of L(u,v) with respect to u and v yields  
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Equating the derivatives to b 0 yields   
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Applying MATLAB computational software [23], numerical solutions for the system of 

nonlinear equations defined by (8) and (9) were found. The resulting solutions {α1, α2, 

α3} are presented in Table 1 for 4 ≤ K ≤ 17 variables. 

 

Next, it will be shown that each set of weights yields a D-optimal design. The 

first step is to restrict evaluation and maximization of V((x:z),ξ) in (3) to (x:z) ∈ J. Note, 

however, that it is not necessary to evaluate V((x:z),ξ) at all (x:z) ∈ J due to sign and 

permutation invariance properties of V(x:z). That is, (i) changing the sign of any ix or kz  

yields the same V(x:z) and (ii) any permutation of the labels i =1,2,…,Q  for the control 

variables or any permutation of the labels k = 1,2,…,L  for the noise variables yields the 

same V(x:z). If we let 

 (i)  x(i) be the Q-coordinate point such that the first i coordinates of x(i) are 0 and 

the last Q-i coordinates are 1,  

(ii)  x(0) be the L-coordinate point (1,1,…,1), and  

(iii) Jxz be the set of (Q +1) points formed by the product {x(0), x(1),… x(Q)} × z(0), 

then it is sufficient to evaluate V((x:z),ξ) for only the (Q+1) points in Jxz. For each (Q,L) 

pair in Table 1, V((x:z),ξ) was maximized over Jxz resulting in  
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where p = the number of model parameters.  

Therefore, for each (α1, α2, α3) in Table 1, Condition (III) of the Kiefer-Wolfowitz 

Equivalence Theorem has been satisfied. Since Condition (III) is satisfied, then by 

equivalence of the three conditions, Conditions (I) and (II) are also satisfied, i.e., the 

design measure ξ determined by each (α1, α2, α3) is D- and G-optimal. Thus, we know 

for K ≤ 17 design variables:  
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                           Table 1: Summary Table of D-Optimum Weights 
Number of Design Variables and               Optimal Weights                     Optimum              
        LQ Model Parameters               for  Barycentric  Subsets                D-criterion     
 
Total Signal Noise   J(0,0) J(1,0) J(Q,0)     

K Q L p α1 α2 α3  |M(x)|   
4 1 3 9 0.8333 0.1265 0.0402 0.6698 x 10-1 
4 2 2 12 0.7055 0.2524 0.0421 0.4531 x 10-2 
4 3 1 14 0.5779 0.3777 0.0444 0.3102 x 10-3 
4 4 0 15 0.4505 0.5021 0.0474 0.2157 x 10-4 
5 1 4 11 0.8571 0.1131 0.0297 0.5665 x 10-1 
5 2 3 15 0.7432 0.2260 0.0308 0.3232 x 10-2 
5 3 2 18 0.6293 0.3386 0.0321 0.1859 x 10-3 
5 4 1 20 0.5156 0.4507 0.0337 0.1080 x 10-4 
5 5 0 21 0.4021 0.5622 0.0358 0.6348 x 10-6 
6 1 5 13 0.8750 0.1021 0.0229 0.4909 x 10-1 
6 2 4 18 0.7723 0.2041 0.0236 0.2422 x 10-2 
6 3 3 22 0.6697 0.3060 0.0244 0.1202 x 10-3 
6 4 2 25 0.5671 0.4075 0.0253 0.6006 x 10-5 
6 5 1 27 0.4647 0.5088 0.0265 0.3026 x 10-6 
6 6 0 28 0.3624 0.6097 0.0279 0.1540 x 10-7 
7 1 6 15 0.8889 0.0930 0.0181 0.4330 x 10-1 
7 2 5 21 0.7955 0.1859 0.0186 0.1883 x 10-2 
7 3 4 26 0.7022 0.2787 0.0191 0.8221 x 10-4 
7 4 3 30 0.6089 0.3714 0.0198 0.3608 x 10-5 
7 5 2 33 0.5157 0.4639 0.0205 0.1593 x 10-6 
7 6 1 35 0.4225 0.5561 0.0213 0.7080 x 10-8 
7 7 0 36 0.3295 0.6481 0.0224 0.3173 x 10-9 
8 1 7 17 0.9000 0.0853 0.0147 0.3874 x 10-1 
8 2 6 24 0.8144 0.1705 0.0150 0.1506 x 10-2 
8 3 5 30 0.7289 0.2557 0.0154 0.5871 x 10-4 
8 4 4 35 0.6434 0.3408 0.0158 0.2298 x 10-5 
8 5 3 39 0.5579 0.4257 0.0163 0.9037 x 10-7 
8 6 2 42 0.4725 0.5106 0.0169 0.3572 x 10-8 
8 7 1 44 0.3871 0.5953 0.0176 0.1420 x 10-9 
8 8 0 45 0.3019 0.6798 0.0183 0.5684 x 10-11 
9 1 8 19 0.9091 0.0787 0.0122 0.3505 x 10-1 
9 2 7 27 0.8302 0.1574 0.0124 0.1232 x 10-2 
9 3 6 34 0.7512 0.2361 0.0127 0.4339 x 10-4 
9 4 5 40 0.6724 0.3146 0.0130 0.1534 x 10-5 
9 5 4 45 0.5935 0.3932 0.0133 0.5439 x 10-7 
9 6 3 49 0.5146 0.4716 0.0137 0.1936 x 10-8 
9 7 2 52 0.4358 0.5500 0.0142 0.6924 x 10-10 
9 8 1 54 0.3571 0.6282 0.0147 0.2489 x 10-11 
9 9 0 55 0.2784 0.7063 0.0153 0.8998 x 10-13 
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                                                     Table 1: (continued) 
Number of Design Variables and                  Optimal Weights                      Optimum 
         LQ Model Parameters                    for  Barycentric  Subsets              D-criterion   
   

Total Signal Noise   J(0,0) J(1,0) J(Q,0)     
K Q L p α1 α2 α3 |M(x)|   
10 1 9 21 0.9167 0.0731 0.0103 0.3200 x 10-1 
10 2 8 30 0.8434 0.1461 0.0104 0.1026 x 10-2 
10 3 7 38 0.7702 0.2192 0.0106 0.3298 x 10-4 
10 4 6 45 0.6970 0.2921 0.0109 0.1062 x 10-5 
10 5 5 51 0.6238 0.3651 0.0111 0.3433 x 10-7 
10 6 4 56 0.5506 0.4380 0.0114 0.1112 x 10-8 
10 7 3 60 0.4775 0.5108 0.0117 0.3617 x 10-10 
10 8 2 63 0.4044 0.5836 0.0121 0.1181 x 10-11 
10 9 1 65 0.3313 0.6563 0.0125 0.3872 x 10-13 
10 10 0 66 0.2582 0.7288 0.0129 0.1276 x 10-14 
11 1 10 23 0.9231 0.0682 0.0087 0.2944 x 10-1 
11 2 9 33 0.8548 0.1363 0.0089 0.8681 x 10-3 
11 3 8 42 0.7865 0.2045 0.0090 0.2565 x 10-4 
11 4 7 50 0.7182 0.2726 0.0092 0.7593 x 10-6 
11 5 6 57 0.6499 0.3406 0.0094 0.2253 x 10-7 
11 6 5 63 0.5817 0.4087 0.0096 0.6702 x 10-9 
11 7 4 68 0.5135 0.4767 0.0098 0.1999 x 10-10 
11 8 3 72 0.4452 0.5447 0.0101 0.5982 x 10-12 
11 9 2 75 0.3771 0.6126 0.0104 0.1796 x 10-13 
11 10 1 77 0.3089 0.6804 0.0107 0.5414 x 10-15 
11 11 0 78 0.2408 0.7482 0.0111 0.1639 x 10-16 
12 1 11 25 0.9286 0.0639 0.0076 0.2726 x 10-1 
12 2 10 36 0.8646 0.1277 0.0077 0.7440 x 10-3 
12 3 9 46 0.8006 0.1916 0.0078 0.2034 x 10-4 
12 4 8 55 0.7367 0.2554 0.0079 0.5571 x 10-6 
12 5 7 63 0.6727 0.3192 0.0081 0.1529 x 10-7 
12 6 6 70 0.6088 0.3830 0.0082 0.4203 x 10-9 
12 7 5 76 0.5448 0.4468 0.0084 0.1158 x 10-10 
12 8 4 81 0.4809 0.5105 0.0086 0.3200 x 10-12 
12 9 3 85 0.4170 0.5742 0.0088 0.8866 x 10-14 
12 10 2 88 0.3532 0.6378 0.0090 0.2464 x 10-15 
12 11 1 90 0.2893 0.7014 0.0093 0.6870 x 10-17 
12 12 0 91 0.2255 0.7649 0.0096 0.1923 x 10-18 
13 1 12 27 0.9333 0.0601 0.0066 0.2538 x 10-1 
13 2 11 39 0.8732 0.1202 0.0067 0.6448 x 10-3 
13 3 10 50 0.8130 0.1802 0.0068 0.1640 x 10-4 
13 4 9 60 0.7529 0.2403 0.0069 0.4180 x 10-6 
13 5 8 69 0.6927 0.3003 0.0070 0.1067 x 10-7 
13 6 7 77 0.6326 0.3603 0.0071 0.2727 x 10-9 
13 7 6 84 0.5725 0.4203 0.0072 0.6986 x 10-11 

           



John J. Borkowski                                                                                59 

Table 1: (continued) 
 Number of Design Variables and              Optimal Weights                          Optimum 
          LQ Model Parameters               for  Barycentric  Subsets                   D-criterion     
 

Total Signal Noise   J(0,0) J(1,0) J(Q,0)     
K Q L p α1 α2 α3 |M(x)|   
13 8 5 90 0.5123 0.4803 0.0074 0.1793 x 10-12 
13 9 4 95 0.4522 0.5402 0.0076 0.4613 x 10-14 
13 10 3 99 0.3921 0.6001 0.0077 0.1190 x 10-15 
13 11 2 102 0.3321 0.6600 0.0079 0.3076 x 10-17 
13 12 1 104 0.2720 0.7198 0.0082 0.7980 x 10-19 
13 13 0 105 0.2120 0.7796 0.0084 0.2077 x 10-20 
14 1 13 29 0.9375 0.0567 0.0058 0.2374 x 10-1 
14 2 12 42 0.8807 0.1134 0.0059 0.5641 x 10-3 
14 3 11 54 0.8240 0.1701 0.0059 0.1342 x 10-4 
14 4 10 65 0.7672 0.2268 0.0060 0.3198 x 10-6 
14 5 9 75 0.7104 0.2834 0.0061 0.7628 x 10-8 
14 6 8 84 0.6537 0.3401 0.0062 0.1822 x 10-9 
14 7 7 92 0.5969 0.3967 0.0063 0.4361 x 10-11 
14 8 6 99 0.5402 0.4534 0.0064 0.1045 x 10-12 
14 9 5 105 0.4835 0.5100 0.0066 0.2511 x 10-14 
14 10 4 110 0.4267 0.5666 0.0067 0.6042 x 10-16 
14 11 3 114 0.3700 0.6231 0.0069 0.1457 x 10-17 
14 12 2 117 0.3133 0.6796 0.0070 0.3524 x 10-19 
14 13 1 119 0.2566 0.7361 0.0072 0.8544 x 10-21 
14 14 0 120 0.2000 0.7926 0.0074 0.2078 x 10-22 
15 1 14 31 0.9412 0.0537 0.0051 0.2230 x 10-1 
15 2 13 45 0.8874 0.1074 0.0052 0.4977 x 10-3 
15 3 12 58 0.8337 0.1610 0.0053 0.1112 x 10-4 
15 4 11 70 0.7800 0.2147 0.0053 0.2488 x 10-6 
15 5 10 81 0.7262 0.2684 0.0054 0.5571 x 10-8 
15 6 9 91 0.6725 0.3220 0.0055 0.1249 x 10-9 
15 7 8 100 0.6188 0.3757 0.0056 0.2805 x 10-11 
15 8 7 108 0.5651 0.4293 0.0057 0.6309 x 10-13 
15 9 6 115 0.5113 0.4829 0.0058 0.1421 x 10-14 
15 10 5 121 0.4576 0.5365 0.0059 0.3206 x 10-16 
15 11 4 126 0.4039 0.5901 0.0060 0.7248 x 10-18 
15 12 3 130 0.3503 0.6436 0.0061 0.1642 x 10-19 
15 13 2 133 0.2966 0.6972 0.0063 0.3727 x 10-21 
15 14 1 135 0.2429 0.7507 0.0064 0.8484 x 10-23 
15 15 0 136 0.1893 0.8042 0.0066 0.1936 x 10-24 
16 1 15 33 0.9444 0.0510 0.0046 0.2102 x 10-1 
16 2 14 48 0.8934 0.1019 0.0046 0.4424 x 10-3 
16 3 13 62 0.8424 0.1529 0.0047 0.9318 x 10-5 
16 4 12 75 0.7914 0.2039 0.0047 0.1965 x 10-6 
16 5 11 87 0.7404 0.2548 0.0048 0.4146 x 10-8 
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                                                     Table 1: (continued) 
Number of Design Variables and             Optimal Weights                         Optimum 
       LQ Model Parameters                 for  Barycentric  Subsets                D-criterion     
 
Total Signal Noise   J(0,0) J(1,0) J(Q,0)     

K Q L p α1 α2 α3 |M(x)|   
16 6 10 98 0.6894 0.3057 0.0049 0.8760 x 10-10 
16 7 9 108 0.6384 0.3567 0.0049 0.1853 x 10-11 
16 8 8 117 0.5874 0.4076 0.0050 0.3924 x 10-13 
16 9 7 125 0.5364 0.4585 0.0051 0.8323 x 10-15 
16 10 6 132 0.4854 0.5094 0.0052 0.1768 x 10-16 
16 11 5 138 0.4344 0.5603 0.0053 0.3761 x 10-18 
16 12 4 143 0.3834 0.6112 0.0054 0.8015 x 10-20 
16 13 3 147 0.3325 0.6620 0.0055 0.1711 x 10-21 
16 14 2 150 0.2815 0.7129 0.0056 0.3662 x 10-23 
16 15 1 152 0.2306 0.7637 0.0057 0.7852 x 10-25 
16 16 0 153 0.1796 0.8145 0.0059 0.1688 x 10-26 
17 1 16 35 0.9474 0.0485 0.0041 0.1989 x 10-1 
17 2 15 51 0.8988 0.0970 0.0042 0.3958 x 10-3 
17 3 14 66 0.8503 0.1455 0.0042 0.7885 x 10-5 
17 4 13 80 0.8017 0.1940 0.0043 0.1572 x 10-6 
17 5 12 93 0.7532 0.2425 0.0043 0.3137 x 10-8 
17 6 11 105 0.7046 0.2910 0.0044 0.6266 x 10-10 
17 7 10 116 0.6561 0.3395 0.0044 0.1253 x 10-11 
17 8 9 126 0.6075 0.3880 0.0045 0.2508 x 10-13 
17 9 8 135 0.5590 0.4365 0.0045 0.5026 x 10-15 
17 10 7 143 0.5105 0.4849 0.0046 0.1009 x 10-16 
17 11 6 150 0.4619 0.5334 0.0047 0.2027 x 10-18 
17 12 5 156 0.4134 0.5818 0.0048 0.4078 x 10-20 
17 13 4 161 0.3649 0.6302 0.0049 0.8220 x 10-22 
17 14 3 165 0.3164 0.6786 0.0050 0.1660 x 10-23 
17 15 2 168 0.2679 0.7270 0.0051 0.3357 x 10-25 
17 16 1 170 0.2194 0.7754 0.0052 0.6806 x 10-27 
17 17 0 171 0.1709 0.8238 0.0053 0.1383 x 10-28 

 
 
 
Theorem 2: The set of barycenter points J(0,0) ∪ J(1,0) ∪ J(Q,0) supports D-optimal 

and G-optimal LQ model designs. 

 

Because a closed-form solution for u and v has not been derived, solutions 

were determined using numerical optimization algorithms. These algorithms can no 

doubt be used to extend the results of Theorem 2 to K > 17 factors. 
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4. Applications 

A weakness of many crossed-arrays (Kackar [14], Box [8], Nair [26] is the 

inability to estimate the full set of two-factor interactions among the controllable process 

variables. If any such interaction has a large effect on the response and is not estimable, 

adjustments cannot be made to account for it in the process variable settings. This is one 

motivation for considering LQ model designs. Consider a combined array of K = Q + L 

two-level factors. Suppose a 2K-P fractional factorial design allows estimation of the LQ 

model without the squared terms :  
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This design is called a 2K-P mixed resolution or MR design (Borkowski [2], Lucas [22], 

Borkowski and Lucas [6], Borror and Montgomery [7] because the design is (i) at least 

Resolution V among the Q signal factors, (ii) at least Resolution III among the L noise 

factors, and (iii) each of the two factor interactions between a signal and a noise factor is 

not confounded with any main effect or any two factor interaction of signal, noise, or 

signal and noise factors. 

Borkowski [2] and Borkowski and Lucas [6] developed a class of LQ model 

designs, called composite mixed resolution or CMR designs that are constructed 

analogously to the central composite designs (CCDs) of Box and Wilson [11]. These 

designs consist of   

(i) 2K-P points from a 2K-P MR design with Q signal and L noise factors.  

(ii) 2Q axial points with two axial points for each signal factor. An axial point sets a 

signal factor set at ±1 while all other factors are set at mid-level 0. 

(iii) N0 center points. 

For more information on CCDs, see Borkowski [3,4], Montgomery and Myers [25], Khuri 

and Cornell [15], and Box and Draper [9].   

As economical design size alternatives to Taguchi's crossed array designs, Box 

and Jones [10] also consider CMR designs when optimizing several loss functions, in 

particular, the integrated squared error loss function. Box and Jones use CMR designs of 

Resolution IV in the noise variables to protect against bias due to any ji zz terms. 

Analogously, if the LQ model is true, a CMR design of Resolution III in the noise factors 

will produce unbiased estimates of the coefficients of terms involving the signal factors. 

Through their work, Box and Jones show that CMR designs can substantially reduce the 

design size for designing products robust to uncontrollable factors while preserving the 

response surface design approach to analysis. 
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By allowing the noise factors to be of Resolution III amongst themselves, 

smaller CMR designs for fitting the LQ model exist. It is noted that the cost of achieving 

these smaller designs is protection against model bias. However, for the majority of 

smallest CMR designs, the noise factors will be of Resolution IV or greater amongst 

themselves anyway. By allowing Resolution III for noise factors, the CMR designs have 

the net effect of reducing the overall fractional factorial design size by 1/2 of the number 

of points required by a Resolution IV design. 

The results in this paper allow evaluation of D-efficiencies of CMR or any other 

designs based on the LQ model. Table 1 contains the D-criterion values necessary for 

calculating D-efficiencies for designs with  4 ≤ K = Q + L ≤ 17  design variables.  A 

catalog of CMR designs, a design size comparison to crossed arrays, and  D-efficiencies 

for CMR designs can be found in Borkowski and Lucas [6].  
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