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Abstract

Experimentation for achieving a robust process often involves signal variables
which are controllable and internal to the process and noise variables which are
generally external and routinely uncontrollable. To achieve a robust process, designs
based on a combined array have been suggested by many authors. Many of these
designs allow parameter estimation for the linear-quadratic (LQ) response surface model
when the experimental design region is the hypercube. The LQ model contains the full
quadratic model terms in the Q signal variables, the linear model terms in the L noise
variables, and the signal by noise variable interaction terms. Because the quadratic
regression model is just a special case of the LQ model when there are L = 0 noise
variables, this article extends the optimal design theory regarding regression on the
hypercube.

An approach similar to that of Farrell, Kiefer, and Walbran [13] will be taken in
this article. A support of D- and G-optimal designs for the LQ model on the hypercube
will be defined. Closed-form expressions for the generalized (D) and prediction (G)
variance are derived. Using these closed-forms, D-optimal design weights are
determined for barycentric subsets of points in the support. These weights and the

corresponding optimal D-criterion values are tabled for 4 < K < 17 design variables.

Keyword: combined array, crossed array, design efficiency, design optimality,

generalized variance, prediction variance, robust design.
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1. Introduction

Experimentation for achieving a robust process often considers two sets of
process variables. "Signal" variables are internal to the manufacturing process with
levels that can be controlled during routine operation of the process. "Noise" variables
are, in general, external to the process and cannot be, or are difficult to, routinely control
during the operation of the process. Despite the randomness of noise variables outside
of the experimental situation, these variables can be controlled for experimental
purposes.

The use of product or "crossed" orthogonal arrays (Taguchi [29], Myers and
Montgomery [25]) is one experimental design approach for achieving a robust process.
Alternatively, designs based on a single "combined" array have been discussed by many
authors including Borkowski [2], Borkowski and Lucas [6], Lucas [21,22], Box and Jones
[10], Myers et al. [24], Welch et al. [30,31], Shoemaker et al. [28], and Lorenzen and
Villalobos [20]. In this paper, | consider the class of designs which allow estimation of the
parameters in the following model when a design region is restricted to a K=Q + L
dimensional hypercube:

Q Q , Q1 Q L Q L
Y=L+ X BiXi+ 2 BiXi+ X X BiXiXj+ X 6+ X 2 Sy Xz € 1)
i=1 i=1 i=1 j=i+l k=1 i=1k=1
This model will be called the linear-by-quadratic model or LQ model for signal
variables xi,...,.Xg and noise variables z;,...,z.. The model is so named because it
contains the

L
e Linear expression . §,z, in the noise variables.
k=1

Q Q Q1 Q
e Quadratic expression Y BX +X BiXi+ X > BijXiXj in the signal
i=1 i=1 i=1

=1 j=i+1

variables.
Q L
e Product expression > 3 & X;Z, inthe Q signal and L noise variables.
i=1k=1

Any design that can fit the LQ model will be referred to as an LQ model design. Like
many response surface designs for fitting a full second order model, many LQ model

designs are based on a combined array of factors. However, estimation of the squared
zi2 terms and the interaction z;z; terms among noise factors is not considered. Because

LQ model designs require fewer design points than designs fitting the full second-order

model, they are a compromise between the design size and being able to fit the
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additional zi2 and Z;Zj terms of the full quadratic model. One benefit of combined array

LQ model designs is that they always allow estimation of the potentially important signal-
by-signal interaction terms while product orthogonal arrays do not always allow

estimation of these interaction terms.

2. Design Optimality and Efficiency

Prior to the major contributions to the theory of optimal designs be Kiefer
[16,17] and Kiefer and Wolfowitz [18,19], it was routinely assumed that each point in an
experimental design was assigned an equal weight. However, Kiefer and his colleagues
generalized this established concept to allow for alternate weighting schemes for the set
of design points. Their research, often referred to as "approximate" design theory,
developed concepts which treated a design as a probability measure & on the design
space X.

A design & is a probability measure on a compact design space x if it satisfies

(H0<EA)<1foral VAc X, (i) I E(dx) =1, and (i) if N;Z;A; € x for a disjoint
X

sequence Ap,Az,... of sets in x; then &(N7Z;A)) = > &(A)). An approximate design &

i=1
on X is a probability measure that assigns weights wy, ..., wy (0 < w; < 1) to the set of N
experimental trials xi, ..., Xy and zero weight elsewhere. An exact design having N

points is an approximate design for which the measure assigns weight r; /N to each
design point such that ri is an integer (i =1, ..., N) and Zri =N.

Let f be a known p x 1 vector of continuous functions f1,f, ..., fp on the space
X, and let 0 represent a px1 vector of unknown real-valued parameters. For the LQ
model:

f =L Xy, Xgreo XQu XE 0 X5 XG Xy Xa s Xg_1XQs Zay 2oy 2, Xy Xa o XQZL T
For design &, the moment matrix M(€) = [m;(&)] where mj(€) is the (i,j)th entry of M(€)

such that m;; ($) :j fi(x)f;(x) &(dx) . (Note: For an exact N-point design with model
X

matrix X, the moment matrix M(X) = (X’X)/N . For nonsingular M(§), the normalized

prediction variance function V(x,£) is defined as

V(X&) = f(x)' M) (x). )
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Let 11(€),...,Ak(E) be the eigenvalues of the moment matrix M(€). For nonsingular M(&),

the optimality functionals are defined as

1 1/t 1 K 1/t
(&) = {Ktrace (M_l(f))} = {IZ}“_I (5)1 for 0<t<w
i=1

—1i — -1
(&) = lima (&) =| M) |
P, (&) = lim®,(£) = max ()
D, (&), D,(E),and ®_ (&) correspond to the normalized D-, A- and E-optimality criteria
(Pukelsheim [27]). A design &% is a ®, (&) - optimal design if it minimizes @, (&) . That

is,

% is @, (&) -optimal if mgn D, (&) =D, (V) foro<t<ow

To evaluate the performance of design & with respect to some (Dt(f) -optimality
criterion, the @, (&) - efficiency e is defined as

e, (&) =D, (&) D (V) foro<t<w.

eo(€), e1(€), and e, (&) are, respectively, referred to as the D, A, and E-efficiencies of a
design &. Hence, any design & is considered acceptable for practical application if e;(€) is

close to 1 for all values of t considered by the experimenter.

Additionally, there are the IV-optimality and G-optimality criteria \7(5) and
Vg (&), which are, respectively, the average and maximum of V(x,£) in X. That is, for a
design &, we define

V (&) =average,_,V(x,&) and Vg (&) =max,_, V(X&)
A design &* is IV-optimal or G-optimal if
V(&%) = min. average,.,V(X,§) and Vg (&*)=min.max,_,V(x,§)=p

The G-efficiency ec of a design ¢ is defined as ec(&) = p/Vg (&) where p is the number
of model parameters. The fact that V(&) = p for a G-optimal design &* is a result of

the Equivalence Theorem of Kiefer and Wolfowitz [19]:
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Theorem 1 (Kiefer-Wolfowitz Equivalence Theorem): Conditions (1), (Il), and (lll) are

equivalent.

. &*is D-optimal if and only if M'(€) exists and max§| M(&) |:| M(E%) |
Il &*is G-optimal if and only if min. max,_, V (x,&) =max,., V(x,5*).

lll. A sufficient condition for &* to satisfy (II) is for max,_, V (x,&*) = p.

Dette and O'Brien [12] introduced the I -optimality criterion which is analogous to the
®, (&) -criterion, but it is based on the prediction variance instead of eigenvalues.

I_.-optimality is particularly useful for nonlinear regression models.

In practice, exact designs are implemented. Therefore, it is desirable that the D

criterion CI)O(X)=(IX'X/N|)Up and the G criterion V__ (X)=N f(X)'(X'X)"f(X) that

max

are evaluated for an exact design X to be close to the optimal D and G criteria values,
i.e., we want an efficiency close to 1. Although a more appropriate comparison would be
to compare the D and G values to the optimal exact N-trial design criteria values, it is
unfortunate that optimal exact N-trial designs are not known for many response surface
models, in particular, for quadratic and LQ models. An exception can be found in
Borkowski [5] for which exact D, G, A, and IV-optimal exact designs for 1, 2, and 3
factors are given for the quadratic model assuming a hypercube design space.
Efficiencies based on the approximate theory are, therefore, lower bounds for
efficiencies based on the class of exact N-trial designs. The optimal D-criterion values
will be presented in section 4. See Atkinson et al. [1] and Pukelsheim [27] for details on

design optimality criteria, efficiencies, and the Kiefer-Wolfowitz Equivalence Theorem.

3. The Support of Optimal LQ Model Designs on the Hypercube

A support of a design measure & is defined to be any subset S in design space
X for which &(S) = 1. When considering a design as a probability measure, the
complexities that usually occur with discrete set problems are reduced to those
encountered with a continuous set problem. To aid in the discussion of the support of

optimal designs, let
H, :{ (X1, Xg, ... Xg) : |xi|sl, Vi }
be the g-dimensional cube. A barycenter of depth k for 0 < k < g is a point with k

coordinates equal to 0 and g-k coordinates equal to 1. Thus, there are (ﬂ) PAR unique
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barycenters of depth k. The set of barycenters of depth k is denoted as J(k) and the
union of the sets of barycenters J, = U _oJd(K). Jqis therefore the 3% factorial array of

g-tuples with coordinates 0 or £1 or the complete barycentric set with g coordinates.
Forl<a<qgandfor1<b<r, a barycenter set of depth (a,b) is defined to be
a point with g + r coordinates such that
I.  For the first g coordinates, a coordinates = 0 and g-a coordinates = +1.

Il. For the last r coordinates, b coordinates = 0 and r-b coordinates = £1.
Thus, there are (g) ([)) 20+7=3"® ynique barycenters of depth (a,b). The set of

barycenters of depth (a,b) will be denoted as J(a,b). The barycentric points are crucial in
the subsequent development of D-optimal LQ model designs.
For the LQ model, it will be shown that a D-optimal design can be supported by
a subset of Jo x J., specifically, by the set of points in J* = J(0,0) U J(1,0) UJ(Q,0).
The following two steps will be used to find D-optimal LQ designs:
1. Find closed-form expressions for V(x,&) and |[M(E)|-
2. Find non-negative weights to assign to J(0,0),J(1,0), and J(Q,0) that
maximize |M(E)|-
Let & be the design associated with the optimal weights. It will be shown that

max, .V (x,&') = p. Thus, having satisfied Condition (lll) of Theorem 1, the design &

is G-optimal and therefore D-optimal.

3.1 Closed-form Expressions for V((x:z),&) and |M(&)|

Recall that J(a,b) is the set of barycenters of depth (a,b) for1<a<qand1<sb <
r. We apply these sets in the LQ framework where g = Q and r = L, and for brevity, let
J=Jo+ be the complete barycentric set with Q+L coordinates. It will be shown that
J* =J(0,0) U J(1,0) U J(Q,0) will support an optimal LQ model design with K=Q+L
design variables. Let a4, oz, and as correspond to the sets J(0,0), J(1,0), and J(Q,0) so

that

e aweight of a—li is assigned to each of the 2K points in J(0,0),
2

a2

=) is assigned to each of the QZK'1 points in J(1,0),
Q2™"

e aweight of

e aweight of a—f is assigned to each of the 2" points in J(Q,0).
2
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Any {ou, o, ag} satisfying outootasz= 1 with o > 0 for i =1,2,3 defines a discrete
probability measure & on the design space . For notational simplicity, let y = (X1,...,Xq,
71,...,2.). Because of the discrete design structure associated with &, the moments are

defined to be:

= [ sty =[x &t = [ el £t =+ St

V=[x cdy) = e + 2

ar

and [zt ey =ar+ay+az=1
for all 1 <i<j<Qand1<k <L To see how u and v were calculated,
considerJ-xi2 £(dy) . By definition of the measure &, this integral equals Z'}’Ll Xijzwij where

M = 2+ Q2! + 2" = the number of points in J*, and

w; = i& for j= 1,...2¢ (i.e., the points in J(0,0) ),
2

W = LZK for j=25+1,..., 2%+ Q2"* (i.e., the points in J(1,0) ),
Q2

W =23 for j= 2%+ QZK'1+1,...,2K + QZK'1 +2" (i.e., the points in J(Q,0) ).

Note that in J(0,0), xﬁ =1 for all 2 values of j; in J(1,0), Xi? =1 for (Q-1)2K'1 values of |

and is 0 for the remaining 2% values of j ; and in J(Q,0), XﬁE 0 for all 2" values of j-

Thus,

a Q -1
[ % e - ZMW—f1+@Jﬂ“ oot O ==
Q2 Q
The other integrals associated with u and v are derived in similar fashion. In terms of u
and v, the structure of the moment matrix M(€) and its inverse M'l(E_,) are presented in

Figures 1 and 2.
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Figure 1: The Moment Matrix M(&)

Terms 1 Xi2 XiXj X Zy X; Z,
1 1 uJo 0 0 0 0
Xi2 U‘JQ G 0 0 0 0
XiXj 0 0 vlggay O 0 0
XiZy 0 0 0 ulg, 0 0
X, 0 0 0 0 ulg 0
Z, 0 0 0 0 1,
where G = (u-v)lg +vdqdg
Figure 2: The Inverse Moment Matrix M'l(g)
Terms 1 Xi2 Xin XiZk Xi Zk
1 A BJg |0 0 0 0
2 Blo G 0 0 0 0
1
xXj |0 0 Wlogayz  © 0 0
X;Z 0 0 0 @uwly, O 0
X; 0 0 0 0 @l O
Z, 0 0 0 0 0 1,
where A:w B-_Y =d*+—L12—\/ zuz—_v
d* d=* (u-v)d=* (u—-v)d*

G*=(C-D)ly +DJoJy  d* =(Q-1v+u-Qu?

Let (x:z) be the combined vector of control and noise variables. Using M(&) and M'l(a),
closed-forms for the generalized variance |[M(&)| and prediction variance V((x:z),E) can be
derived as follows. Pre- and post-multiplying M'l(a) by f’(x:z) and f(x:z) in (2) yields the

closed-form:

2
V((x:2),&) =(D +i)(§x$j +(ZB +1j§xf +(C - D-%)%x;‘

2v \iz1 uJi=1
L Q L
+ZZ§+£(ZX?)(ZZEJ+A

k=1 u
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Because u > 0 and v > 0, substitution of zf =1 (orsz =L) in (3) yields the upper
bound
2
Q Q
maXXEXV((X:z),g“)s(D +iJ(zx5] (23 +ﬂ]zx +( D—ijzx;‘+A+|_ 4)
2V \ia u Ji=1 2V )iz

Next, consider the further restriction of evaluating V((x:z),&) at only those points in JoL =

Jo x Ji(0). Then zk =1 and x =0 or +1. Thus, xz‘ 4 . Substituting into (4) yields

V((x:2),&)= (D+—j{2xj [ZB+C—D ﬂ—z—j%x +A+L (5

u V Ji=1

forall (x:2z)e JQL . The number of parameters in the LQ model is p = 1+2Q+ ((2?)+L+ QL.

The goal is to show optimal weights {a.1,00, a3} defining & on J* exist such that & satisfies

p= max(x:z)eJQ,_V ((x:2),9)

2
=max(X:Z)EJ[(D+—j(Zx] +[ZB+C—D %——jgx +A+L]

2V1

Once proven, Condition (lll) of the Kiefer-Wolfowitz Equivalence Theorem will be
satisfied stating that &* will be both a D- and G-optimal design.
When searching for a D-optimal design, the goal is to maximize |[M(§)|. By

exploiting the block structure of M(€) in Figure 1, we have the closed-form for |M(€)| :
| M@ [~uet R oyt e @-Dv-Qut]. @

In Section 3.2, u, v and, hence, {a1, oz, as} values maximizing [IM(&)| are determined.

3.2 Optimal Design Weights

The optimal weights {au, oo, oz} will be determined by studying the generalized
variance |[M(E)|. The weights {oa, oo, o3} are determined by maximizing [M(E)| with
respect to u and v, or equivalently by maximizing L(u,v) = log [M(§)| with respect to u

and v. From (6), we have
L(u,Vv) = Q(L+1) log(u) + ((Z?)Iog(v) +(Q-1) log(u-v) + log[u + (Q-1)v - Qu*] . )
Taking partial derivatives of L(u,v) with respect to u and v yields

oL_QL+) Q-1,  1-2Qu
ou u U=V u+(Q-1v-Qu?
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oL _ @_ Q-1 + Q-1
v Vo U=V yi(Q-1v-Qu?
Equating the derivatives to b 0 yields

0-QL+) Q-1 1-2Qu
u U=V y+(@Q-1)v-Qu?

®)

_Q_ 1 1
0 == 9
2v U—VJru+(Q—1)v—Qu2 ©

Applying MATLAB computational software [23], numerical solutions for the system of

nonlinear equations defined by (8) and (9) were found. The resulting solutions {oa, oo,

oz} are presented in Table 1 for 4 < K< 17 variables.

Next, it will be shown that each set of weights yields a D-optimal design. The
first step is to restrict evaluation and maximization of V((x:z),€) in (3) to (x:z) € J. Note,

however, that it is not necessary to evaluate V((x:z),&) at all (x:z) € J due to sign and
permutation invariance properties of V(x:z). That is, (i) changing the sign of any x; or z,

yields the same V(x:z) and (ii) any permutation of the labels i =1,2,...,Q for the control
variables or any permutation of the labels k = 1,2,...,L for the noise variables yields the
same V(x:z). If we let

@) x" be the Q-coordinate point such that the first i coordinates of x" are 0 and

the last Q-i coordinates are 1,

(i) x© pe the L-coordinate point (1,1,...,1), and

(iii) Jx; be the set of (Q +1) points formed by the product {x(o), XY x‘Q)} x 29,
then it is sufficient to evaluate V((x:z),€) for only the (Q+1) points in Jy,. For each (Q,L)

pair in Table 1, V((x:z),E) was maximized over Jx, resulting in

2
1 Q 2 L+1 11)\Q 2
max,. D+— x| +|2B+C-D+———-— D x"+A+L|=
(x:2)edy, l:( ZVJ(E’l |] ( u ZVJEZL i ] p

where p = the number of model parameters.

Therefore, for each (a1, oz, as) in Table 1, Condition (lll) of the Kiefer-Wolfowitz
Equivalence Theorem has been satisfied. Since Condition (lll) is satisfied, then by
equivalence of the three conditions, Conditions (l) and (ll) are also satisfied, i.e., the
design measure & determined by each (o4, o2, ag) is D- and G-optimal. Thus, we know

for K < 17 design variables:
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Table 1: Summary Table of D-Optimum Weights
Number of Design Variables and Optimal Weights Optimum
LQ Model Parameters for Barycentric Subsets D-criterion

Total Signal Noise J(0,0) J(1,0) J(Q,0)
K Q L p a o s IM(X)|
4 1 3 9 0.8333 0.1265 0.0402 0.6698 x 10-1
4 2 2 12 0.7055 0.2524 0.0421 0.4531 x10-2
4 3 1 14 0.5779 0.3777 0.0444 0.3102 x10-3
4 4 0 15 0.4505 0.5021 0.0474 0.2157 x10-4
5 1 4 11 0.8571 0.1131 0.0297 0.5665 x 10-1
5 2 3 15 0.7432 0.2260 0.0308 0.3232 x10-2
5 3 2 18 0.6293 0.3386 0.0321 0.1859 x10-3
5 4 1 20 0.5156 0.4507 0.0337 0.1080 x10-4
5 5 0 21 0.4021 0.5622 0.0358 0.6348 x 10-6
6 1 5 13 0.8750 0.1021 0.0229 0.4909 x10-1
6 2 4 18 0.7723 0.2041 0.0236 0.2422 x10-2
6 3 3 22 0.6697 0.3060 0.0244 0.1202 x10-3
6 4 2 25 0.5671 0.4075 0.0253 0.6006 x 10-5
6 5 1 27 0.4647 0.5088 0.0265 0.3026 x 10-6
6 6 0 28 0.3624 0.6097 0.0279 0.1540 x10-7
7 1 6 15 0.8889 0.0930 0.0181 0.4330 x10-1
7 2 5 21 0.7955 0.1859 0.0186 0.1883 x 10-2
7 3 4 26 0.7022 0.2787 0.0191 0.8221 x10-4
7 4 3 30 0.6089 0.3714 0.0198 0.3608 x 10-5
7 5 2 33 0.5157 0.4639 0.0205 0.1593 x 10-6
7 6 1 35 0.4225 0.5561 0.0213 0.7080 x 10-8
7 7 0 36 0.3295 0.6481 0.0224 0.3173 x10-9
8 1 7 17 0.9000 0.0853 0.0147 0.3874 x10-1
8 2 6 24 0.8144 0.1705 0.0150 0.1506 x 10-2
8 3 5 30 0.7289 0.2557 0.0154 0.5871 x10-4
8 4 4 35 0.6434 0.3408 0.0158 0.2298 x 10-5
8 5 3 39 0.5579 0.4257 0.0163 0.9037 x10-7
8 6 2 42 0.4725 0.5106 0.0169 0.3572 x10-8
8 7 1 44 0.3871 0.5953 0.0176 0.1420 x10-9
8 8 0 45 0.3019 0.6798 0.0183 0.5684 x 10-11
9 1 8 19 0.9091 0.0787 0.0122 0.3505 x10-1
9 2 7 27 0.8302 0.1574 0.0124 0.1232 x10-2
9 3 6 34 0.7512 0.2361 0.0127 0.4339 x10-4
9 4 5 40 0.6724 0.3146 0.0130 0.1534 x10-5
9 5 4 45 0.5935 0.3932 0.0133 0.5439 x10-7
9 6 3 49 0.5146 0.4716 0.0137 0.1936 x 10-8
9 7 2 52 0.4358 0.5500 0.0142 0.6924 x10-10
9 8 1 54 0.3571 0.6282 0.0147 0.2489 x10-11
9 9 0 55 0.2784 0.7063 0.0153 0.8998 x 10-13
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Table 1: (continued)

Number of Design Variables and Optimal Weights Optimum
LQ Model Parameters for Barycentric Subsets D-criterion
Total Signal Noise J(0,0) J(1,0) J(Q,0)

K Q L p a; a s IM(X)|

10 1 9 21 0.9167 0.0731 0.0103 0.3200 x10-1
10 2 8 30 0.8434 0.1461 0.0104 0.1026 x 10-2
10 3 7 38 0.7702 0.2192 0.0106 0.3298 x10-4
10 4 6 45 0.6970 0.2921 0.0109 0.1062 x10-5
10 5 5 51 0.6238 0.3651 0.0111 0.3433 x10-7
10 6 4 56 0.5506 0.4380 0.0114 0.1112 x10-8
10 7 3 60 0.4775 0.5108 0.0117 0.3617 x10-10
10 8 2 63 0.4044 0.5836 0.0121 0.1181 x10-11
10 9 1 65 0.3313 0.6563 0.0125 0.3872 x10-13
10 10 0 66 0.2582 0.7288 0.0129 0.1276 x10-14
11 1 10 23 0.9231 0.0682 0.0087 0.2944 x10-1
11 2 9 33 0.8548 0.1363 0.0089 0.8681 x10-3
11 3 8 42 0.7865 0.2045 0.0090 0.2565 x10-4
11 4 7 50 0.7182 0.2726 0.0092 0.7593 x10-6
11 5 6 57 0.6499 0.3406 0.0094 0.2253 x10-7
11 6 5 63 0.5817 0.4087 0.0096 0.6702 x10-9
11 7 4 68 0.5135 0.4767 0.0098 0.1999 x10-10
11 8 3 72 0.4452 0.5447 0.0101 0.5982 x10-12
11 9 2 75 0.3771 0.6126 0.0104 0.1796 x 10-13
11 10 1 7 0.3089 0.6804 0.0107 0.5414 x10-15
11 11 0 78 0.2408 0.7482 0.0111 0.1639 x10-16
12 1 11 25 0.9286 0.0639 0.0076 0.2726 x10-1
12 2 10 36 0.8646 0.1277 0.0077 0.7440 x10-3
12 3 9 46 0.8006 0.1916 0.0078 0.2034 x10-4
12 4 8 55 0.7367 0.2554 0.0079 0.5571 x10-6
12 5 7 63 0.6727 0.3192 0.0081 0.1529 x10-7
12 6 6 70 0.6088 0.3830 0.0082 0.4203 x10-9
12 7 5 76 0.5448 0.4468 0.0084 0.1158 x10-10
12 8 4 81 0.4809 0.5105 0.0086 0.3200 x10-12
12 9 3 85 0.4170 0.5742 0.0088 0.8866 x 10-14
12 10 2 88 0.3532 0.6378 0.0090 0.2464 x10-15
12 11 1 90 0.2893 0.7014 0.0093 0.6870 x10-17
12 12 0 91 0.2255 0.7649 0.0096 0.1923 x10-18
13 1 12 27 0.9333 0.0601 0.0066 0.2538 x10-1
13 2 11 39 0.8732 0.1202 0.0067 0.6448 x10-3
13 3 10 50 0.8130 0.1802 0.0068 0.1640 x10-4
13 4 9 60 0.7529 0.2403 0.0069 0.4180 x10-6
13 5 8 69 0.6927 0.3003 0.0070 0.1067 x10-7
13 6 7 7 0.6326 0.3603 0.0071 0.2727 x10-9
13 7 6 84 0.5725 0.4203 0.0072 0.6986 x 10-11
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Table 1: (continued)
Number of Design Variables and Optimal Weights Optimum
LQ Model Parameters for Barycentric Subsets D-criterion
Total Signal Noise J(0,0) J(1,0) J(Q,0)

K Q L p a; o o3 IM(X)|
13 8 5 90 0.5123 0.4803 0.0074 0.1793 x10-12
13 9 4 95 0.4522 0.5402 0.0076 0.4613 x10-14
13 10 3 99 0.3921 0.6001 0.0077 0.1190 x10-15
13 11 2 102 0.3321 0.6600 0.0079 0.3076 x10-17
13 12 1 104 0.2720 0.7198 0.0082 0.7980 x 10-19
13 13 0 105 0.2120 0.7796 0.0084 0.2077  x10-20
14 1 13 29 0.9375 0.0567 0.0058 0.2374 x10-1
14 2 12 42 0.8807 0.1134 0.0059 0.5641 x10-3
14 3 11 54 0.8240 0.1701 0.0059 0.1342 x10-4
14 4 10 65 0.7672 0.2268 0.0060 0.3198 x10-6
14 5 9 75 0.7104 0.2834 0.0061 0.7628 x10-8
14 6 8 84 0.6537 0.3401 0.0062 0.1822 x10-9
14 7 7 92 0.5969 0.3967 0.0063 0.4361 x10-11
14 8 6 99 0.5402 0.4534 0.0064 0.1045 x10-12
14 9 5 105 0.4835 0.5100 0.0066 0.2511 x10-14
14 10 4 110 0.4267 0.5666 0.0067 0.6042 x10-16
14 11 3 114 0.3700 0.6231 0.0069 0.1457 x10-17
14 12 2 117 0.3133 0.6796 0.0070 0.3524 x10-19
14 13 1 119 0.2566 0.7361 0.0072 0.8544 x10-21
14 14 0 120 0.2000 0.7926 0.0074 0.2078 x 10-22
15 1 14 31 0.9412 0.0537 0.0051 0.2230 x10-1
15 2 13 45 0.8874 0.1074 0.0052 0.4977 x10-3
15 3 12 58 0.8337 0.1610 0.0053 0.1112 x10-4
15 4 11 70 0.7800 0.2147 0.0053 0.2488 x10-6
15 5 10 81 0.7262 0.2684 0.0054 0.5571 x10-8
15 6 9 91 0.6725 0.3220 0.0055 0.1249 x10-9
15 7 8 100 0.6188 0.3757 0.0056 0.2805 x10-11
15 8 7 108 0.5651 0.4293 0.0057 0.6309 x10-13
15 9 6 115 0.5113 0.4829 0.0058 0.1421 x10-14
15 10 5 121 0.4576 0.5365 0.0059 0.3206 x 10-16
15 11 4 126 0.4039 0.5901 0.0060 0.7248 x10-18
15 12 3 130 0.3503 0.6436 0.0061 0.1642 x10-19
15 13 2 133 0.2966 0.6972 0.0063 0.3727 x10-21
15 14 1 135 0.2429 0.7507 0.0064 0.8484 x10-23
15 15 0 136 0.1893 0.8042 0.0066 0.1936 x 10-24
16 1 15 33 0.9444 0.0510 0.0046 0.2102 x10-1
16 2 14 48 0.8934 0.1019 0.0046 0.4424 x10-3
16 3 13 62 0.8424 0.1529 0.0047 0.9318 x10-5
16 4 12 75 0.7914 0.2039 0.0047 0.1965 x10-6
16 5 11 87 0.7404 0.2548 0.0048 0.4146 x10-8
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Table 1: (continued)

Number of Design Variables and Optimal Weights Optimum
LQ Model Parameters for Barycentric Subsets D-criterion
Total Signal Noise J(0,0) J(1,0) J(Q,0)

K Q L p a; o, o3 IM(X)|

16 6 10 98 0.6894 0.3057 0.0049 0.8760 x 10-10
16 7 9 108 0.6384 0.3567 0.0049 0.1853 x10-11
16 8 8 117 0.5874 0.4076 0.0050 0.3924 x10-13
16 9 7 125 0.5364 0.4585 0.0051 0.8323 x10-15
16 10 6 132 0.4854 0.5094 0.0052 0.1768 x 10-16
16 11 5 138 0.4344 0.5603 0.0053 0.3761 x 10-18
16 12 4 143 0.3834 0.6112 0.0054 0.8015 x10-20
16 13 3 147 0.3325 0.6620 0.0055 0.1711 x10-21
16 14 2 150 0.2815 0.7129 0.0056 0.3662 x 10-23
16 15 1 152 0.2306 0.7637 0.0057 0.7852 x10-25
16 16 0 153 0.1796 0.8145 0.0059 0.1688 x 10-26
17 1 16 35 0.9474 0.0485 0.0041 0.1989 x10-1
17 2 15 51 0.8988 0.0970 0.0042 0.3958 x10-3
17 3 14 66 0.8503 0.1455 0.0042 0.7885 x10-5
17 4 13 80 0.8017 0.1940 0.0043 0.1572 x 10-6
17 5 12 93 0.7532 0.2425 0.0043 0.3137 x10-8
17 6 11 105 0.7046 0.2910 0.0044 0.6266 x 10-10
17 7 10 116 0.6561 0.3395 0.0044 0.1253 x10-11
17 8 9 126 0.6075 0.3880 0.0045 0.2508 x 10-13
17 9 8 135 0.5590 0.4365 0.0045 0.5026 x10-15
17 10 7 143 0.5105 0.4849 0.0046 0.1009 x10-16
17 11 6 150 0.4619 0.5334 0.0047 0.2027 x10-18
17 12 5 156 0.4134 0.5818 0.0048 0.4078 x10-20
17 13 4 161 0.3649 0.6302 0.0049 0.8220 x10-22
17 14 3 165 0.3164 0.6786 0.0050 0.1660 x10-23
17 15 2 168 0.2679 0.7270 0.0051 0.3357 x10-25
17 16 1 170 0.2194 0.7754 0.0052 0.6806 x 10-27
17 17 0 171 0.1709 0.8238 0.0053 0.1383 x10-28

Theorem 2: The set of barycenter points J(0,0) v J(1,0) U J(Q,0) supports D-optimal

and G-optimal LQ model designs.

Because a closed-form solution for u and v has not been derived, solutions
were determined using numerical optimization algorithms. These algorithms can no
doubt be used to extend the results of Theorem 2 to K > 17 factors.
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4. Applications
A weakness of many crossed-arrays (Kackar [14], Box [8], Nair [26] is the
inability to estimate the full set of two-factor interactions among the controllable process
variables. If any such interaction has a large effect on the response and is not estimable,
adjustments cannot be made to account for it in the process variable settings. This is one
motivation for considering LQ model designs. Consider a combined array of K= Q + L
two-level factors. Suppose a 2% fractional factorial design allows estimation of the LQ
model without the squared terms :
0-
+

1 Q L Q L
> > BiXiXj + 2O+ 2 X Sz + €
i=1 j=i+l k=1 i=1k=1

y=/po+ i%ﬁi X
This design is called a 2P mixed resolution or MR design (Borkowski [2], Lucas [22],
Borkowski and Lucas [6], Borror and Montgomery [7] because the design is (i) at least
Resolution V among the Q signal factors, (ii) at least Resolution Il among the L noise
factors, and (jii) each of the two factor interactions between a signal and a noise factor is
not confounded with any main effect or any two factor interaction of signal, noise, or
signal and noise factors.

Borkowski [2] and Borkowski and Lucas [6] developed a class of LQ model
designs, called composite mixed resolution or CMR designs that are constructed
analogously to the central composite designs (CCDs) of Box and Wilson [11]. These
designs consist of

@) 2KFP points from a 2P MR design with Q signal and L noise factors.
(i) 2Q axial points with two axial points for each signal factor. An axial point sets a

signal factor set at +1 while all other factors are set at mid-level 0.

(i) No center points.
For more information on CCDs, see Borkowski [3,4], Montgomery and Myers [25], Khuri
and Cornell [15], and Box and Draper [9].

As economical design size alternatives to Taguchi's crossed array designs, Box
and Jones [10] also consider CMR designs when optimizing several loss functions, in
particular, the integrated squared error loss function. Box and Jones use CMR designs of

Resolution IV in the noise variables to protect against bias due to any Z;zj terms.

Analogously, if the LQ model is true, a CMR design of Resolution Ill in the noise factors
will produce unbiased estimates of the coefficients of terms involving the signal factors.
Through their work, Box and Jones show that CMR designs can substantially reduce the
design size for designing products robust to uncontrollable factors while preserving the

response surface design approach to analysis.
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By allowing the noise factors to be of Resolution Il amongst themselves,
smaller CMR designs for fitting the LQ model exist. It is noted that the cost of achieving
these smaller designs is protection against model bias. However, for the majority of
smallest CMR designs, the noise factors will be of Resolution IV or greater amongst
themselves anyway. By allowing Resolution Ill for noise factors, the CMR designs have
the net effect of reducing the overall fractional factorial design size by 1/2 of the number
of points required by a Resolution IV design.

The results in this paper allow evaluation of D-efficiencies of CMR or any other
designs based on the LQ model. Table 1 contains the D-criterion values necessary for
calculating D-efficiencies for designs with 4 < K = Q + L £ 17 design variables. A
catalog of CMR designs, a design size comparison to crossed arrays, and D-efficiencies

for CMR designs can be found in Borkowski and Lucas [6].
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