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Abstract

In this article, we consider a new parametrization of the two-parameter
Birnbaum-Saunders lifetime distribution. Importantly, this re-parametrization fits the
physics of studying phenomena since the proposed parameters characterize or specify
the thickness of the sample and the nominal treatment loading on the sample,
respectively. The usual shape and scale parameters of the distribution do not offer this
physical interpretation. Instead of substitution method of the parameter estimators of the
original Birnbaum-Saunders model into the new model, the statistical properties of the
direct application of the standard methods of point estimation to the new parameters are
investigated. In an effort to appraise the performance of proposed estimators in a
practical setting, Monte-Carlo simulations are conducted for small, moderate and large
sample sizes. Two real life examples based on published data are used to illustrate the
suggested estimation methods. Some concluding remarks and areas for further research

are also presented.
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1. Introduction

The two-parameter Birnbaum-Saunders distribution was introduced by
Birnbaum and Saunders [2] as a failure time distribution for fatigue failure caused under
cyclic loading. This distribution is widely used as a lifetime distribution in the various
models of reliability theory in the case when a failure of the object under consideration
appears to be due to the development of fatigue cracks. Desmond [10,11] provided a
more general derivation based on a biological model and strengthened the physical
justification for the use of this distribution. This derivation follows from considerations of
renewal theory for the number of cycles needed to force a fatigue crack extension to
exceed a critical value. Birnbaum and Saunders [3] presented a comprehensive review,
both theoretical and practical, of the fitting of this family of distributions to the solution of
the problem of crack development. Desmond [11] considered estimation of the
parameters for censored data. Ahmad [1] considered the estimation of the scale
parameter (which overestimates the median life) by the jackknife method to eliminate
first-order bias. This estimate has the same limiting behavior as that of Birnbaum and
Saunders [3]. Rieck [18] derived asymptotically optimal linear estimator for symmetrically
type Il censored samples. We refer to the monograph by Bogdanoff and Kozin [4] for
motivating examples of probabilistic models of cumulative damage. A more recent view
on the problem of fatigue crack damages based on stochastic differential equations is
suggested by Singpurwalla [20]. Some recent work on Birnbaum-Saunders distribution
can be found in Chang and Tang [5,6], Dupis and Mills [12], Rieck [19], and a review of

these developments can be found in Johnson et al.[14].

A continuous random variable X has a Birnbaum-Saunders distribution if X

has the following cumulative distribution function

Fx(x;a,ﬂ)=1—®l\/z—\/z L x>0a>0,6>0, @
al\x \p

where @(-) is the cumulative distribution function of the standard normal

distribution. The parameters & and ﬂ are the shape and scale parameters,

respectively. The probability density function (pdf) is a mixture (with equal weights) of the
inverse Gaussian pdf and reciprocal inverse Gaussian pdf. It is well know that the pdf of
Birnbaum-Saunders is unimodal and although the hazard is not an increasing function of

X but the average hazard rate is nearly a non-decreasing function of X.
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The maximum likelihood estimators (MLE) were first discussed by Birnbaum
and Saunders [3] and suggested some iterative schemes to solve the required non-linear
equation. Engelehardt et al. [13] established the asymptotic distribution of the MLE.
Further, the conventional moment estimators also have a difficulty in that they may not
always exist and even if this the case, they may not be unique. Ng et al. [16] considered

the modified moment estimators for the parameters to overcome this problem. However,

Wu and Wong [21] reported that those expressions for the intervals of estimators for ,B

suggested by Ng et al.[16] are presented incorrectly. Furthermore, there is no guarantee
that the upper bounds of those intervals are always positive.

Our contribution in this article suggests a new parametrization of Birnbaum-
Saunders distribution and develops the estimation scheme for the new parameters which
are meaningful in a practical setting. Based on the reviewed literature, this kind of study

is not available for the model under consideration.

1.1. A New Parametrization

Birnbaum and Saunders [2] considered a probability model of a fatigue crack
development under cyclic loading in the framework of renewal theory. However, a more
general model of such phenomena can be described by recurrence equations that have
a similar form to ones that produce the lognormal distribution. We refer to Cramer [8],
Parzen [17] and Desmond [11] for a description of the recurrence equations methods in
connection with the lognormal distribution. Indeed, the later approach gives a richer
picture of the physical phenomena of fatigue cracks. Moreover, the distribution of the
size of a crack by a fixed moment of time can be arbitrary, while in the Birnbaum-
Saunders method it has to be normal. The use of recurrence relations is given in
Birnbaum and Saunders [2]. Interestingly, these recurrence relations lead to a new

parametrization of the model. For example, on a metallic sample, which has the form of a

rectangular plate of thickness h and is fixed on two sides, suppose there is a cyclic

loading, which results in the development of a crack. Let Xk be the size of the crack at

time k=1,2,K, thatis, after the K th loading cycle. The following recurrence equations
are derived [11]:

Xy =X, +Y,09(X,),k=01,K, Y,=X,=0,g(0)#0.

These equations connect the crack size in previous and next moments of time

by a positive continuous function g and a sequence of random variables Y1 ,Y2 K, that
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take care of variations in values of loading and some other physical factors that influence
the development of the crack. Assume that the random variables Yk are nonnegative,
independent and identically distributed. Further, we assume the existence of the second
moment of Y, . We are interested in the time U (=1,2,...), at which the crack achieves

the critical value h. By the recurrence equations we obtain

X

u-1 :U—l Xk+1_xk N U dX
-3 g

k=0 o 9(X,) g(x)’

Here we assume, of course, that the increments Xk+l - Xk are sufficiently

small.

For each sufficiently large value t of the variable U, the random variable on
the left hand side of the equality can be approximated by a normal distribution with mean
tm and variance to?, where m = E(Y,), o° =Var(Y,). Hence, for large t,

X

_(a(h)—mt
Nq)(—m/f ]

where
h - dx
a(h) = j -
° g(x)
is a strictly increasing function of the upper limit h(> 0), since g(x) > 0.

We obtain a natural re-parametrization by letting

A=ah)/o, u=mlo.
Importantly, this re-parameterization fits the physics of studying phenomena
since the proposed parameters A and M correspond to the thickness of the sample

and nominal treatment loading on the sample, respectively.
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Thus, in terms of MU and A the cumulative distribution function of U is given
by
_ A X
FM(X)—l—CD W_ﬂ X[, x>0,4>0,u>0. 2

Finally, we find the interrelations between the usual parameters «, ﬂ and new

parameters 4 and A are as follows:

= 1 - 1
Yalp T m
1 @)
ﬂ:ﬁ, ﬂ= —.
o H

One may attempt to estimate  and A by considering the above relations

with the use of existing estimators of & and ,B However, the relationship is highly
nonlinear which may complicate the inference process. For this reason we direct develop

estimation methods for the parameters of interest, that is, 4 and A .

1.2. Outline of the Paper

Our contribution in this article is to establish various estimation strategies for the
new well-defined and meaningful parameters 4 and A for Birnbaum-Saunders

distribution. The article is organized as follows. In Section 2 we derive maximum
likelihood estimators for the new parametrization. Further, expression for asymptotic
mean squared error (AMSE) of the proposed estimators are derived analytically and
some computational aspects are discussed. In Section 3, we propose the method of
moment estimation for the parameters of interest and derive the expression for the
AMSE of the estimators. The regression-quantile estimation is discussed in Section 4.
The strong consistency of the estimators are established. In Section 5, numerical values
of the biases and mean squared errors (MSE) of the estimators are calculated by
numerical methods and compared with each other. A detailed Bias and MSE analysis is
also provided. Concluding remarks are offered in Section 6, and areas for further

research are also discussed.
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2. Maximum Likelihood Estimation

The probability density function of the Birnbaum-Saunders distribution after the

re-parameterization is as follows:

)= 1l fjexp{ e ”ﬂ}

The observed likelihood function is

=>Inf(X,,1,4)
k=1

Sl e sl e

We obtain the system of maximum likelihood equations by evaluating

derivatives with respectto 4 and A.

) X, 3
ou k=1/1+ﬂxk k=1

oL(u, n A
(,U A) _ Z L
k1/1+ﬂx i\ Xy

~ (MLE)

+
—
|

S
pa
=

+

i(MLE)

Hence the MLE u and of 1 and A can be obtained by

OL(tA) _ g ooy OE6A) _

simultaneously solving —— =0 an —/1 =0, ie.

17 0

-1l 1
__ T =f a/li
B T )

X

Xe—=) ——— (= f,(u,4)). )
n; n;“ﬂxk( 2 (1.2)
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It seems to be natural to use certain iteration methods to obtain a solution of the
above system of equations. However, for a parametric space (/> 0 and A >0 there

are no initial points that can ensure the convergence of the iteration process.

A necessary (but not sufficient) condition for convergence of the iteration

process is the inequality A(z,4) <1, where the operator A(g,A4) = (f,,,). In the

L2 -metric the norm of operator A is equal to the largest eigenvalue of the Jacobian

matrix
o
ou oA
G=G(ul)= )
WA= ar, o,
ou OA

The equation for eigenvalues is

and its solutions are
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Note that & >a,. So AZa(u,A). It is safe to conclude that

a,(u,A)>1forall >0 and A > 0. Hence, most likely there do not exist the initial

values of parameters that will ensure the convergence of the iteration process.
An alternative method will be discussed in Section 5 to obtain a solution to the

maximum likelihood equations. In passing, we would like to remark here that the MLE of

original parameters & and ,B suffer similar problems. Birnbaum-Saunders [3] proposed

two iterative procedures to compute MLE of ﬁ However both procedures fail to work in

the entire range of sample space.

3. Moment Estimation

To obtain the point estimators canonical parameters x and A by the method
of moment, let

1 n

T==YX, T,==>—, T=TT, 5
' nkz_;‘ “ nkZ;‘Xk ©
Then, by using the results of Birnbaum and Saunders [3], we get
Ap+1/2 A +1/2
E=EM)=" 5 E=EM) ="
,u

A +5/4 Ap+5/4

Var(T,) = % Var(T,) = 70
2

1 n-1( Au+1/2
EU)=—+—(”—] : (6)

n n Au

Now, by equating these expectations with their sample values, we find the

moment method estimators (MME)

~(MME) _ VT 2(MME) _ |1
i = }—’ A = f—
" 2T1(\/T —1) ! 24T (\/T —1)

The expressions for the asymptotic MSE of MME are given in the following
theorem.
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THEOREM. As N —> o0, the MSE of ‘[zr(]MME) and ZﬁMME) are given by

MSE (™) = (A +518) (1? (A +1)° + 2pr*) 2245 (A +UB) (A +1)
n@2Au+1)? @A +1)?

+0(n?),(7a)

MSE (A0 = (A +518) (2 (Au+1)2 + 2 p?) 222 u(Ap +1U8) (A +1)
n(2Au +1)° n(2Au +1)°

+0(n7?)(7b)
PROOF. Following the method outlined in [8] (p.352-358), we introduce
functions M (T,,T,) = &, and L(T,,T,) = 4,. Rewriting the functions M and L in

the following canonical forms

M (X, y) = 2 A2 y -4 1/4( 12,102 1)1

L(X y) o112 y 14 —1/4( U2\ 12 )1

Since the statistics Tl and T2 will have all moments, the following asymptotic

representation can be written

Var (™)
~Var(T, )(6M(E1, E, )j +2cov(|'l,T2)aM(E1’ E,) oM (E,, E,)
0 OX oy

+Var(T, )(aM (E.E, )J +0(n?),

Var(ft(MME))
OL(E,,E,) OL(E,,E,)
OX oy

=Var(T,) aL(El’ 2)j +2cov(T,, T,)

+Var(T, )[8L(E1,E )j +0(n7?).
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Direct evaluation of derivatives gives
M (ELE,) _ # (Au+l) OM(ELE,) _ Ap’
Ox 2Apu+1 oy 2u+1"

L(E,E,) _ Al 8L(E1,E2)=ﬂ,3(ly+1)
ox 2u+1" oy 2u+1

Finally, using relations in (6), we obtain the required asymptotic expansions

which completes the proof.
On the other hand, one can construct the moment estimators of £ and A
directly by using moment estimator of & and ﬂ Having said that, the difficulty is that

the moment estimator for & and ,B may not always exist, and even if they do, the

moment estimator may not be unique. It can be seen (by equating first and second

populations with the sample moments) that if the sample coefficient of variation (CV) is

greater than \/g then the moment estimators do not exist. If the sample CV is less than

\/g, then the moment estimator is tractable. In any event, the moment estimator of ﬂ
may not be unique. Thus, the estimators of & and ﬂ may be constructed by using

moment estimates of 4/ and A accordingly. Ng et al. [16] suggested a modified version

to deal with this problem. However, Wu and Wong [21] reported that those expressions

for the intervals of estimators for ﬂ are presented incorrectly in [16]. Furthermore, there

is no guarantee that the upper bounds of those intervals are always positive.
Again, the focus of this paper is on the estimation of new parameters based on
a re-parametrization which fits the physics of studying phenomena as opposed to usual

shape and scale parameters which do not provide the physical interpretation.
4. Regression-quantile Estimation

In this section, we propose the regression-quantile (least square) method which

is based on the minimization of the quadratic measure of the difference between the

empirical distribution function F, (X) and the theoretical cumulative distribution function

F(X) =1- ®(AX — uv/x).
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f X <X, <K<X

o < X (ny are order statistics of X, X, K, X, . then by

definition the empirical distribution function is given by F (X)) =k/n, k =1,K,n.

Consider the following asymptotic equality

@1(1—sz A X k=1K,n-1,
(k)
n Xm

which can be used for the parameter estimation. Hence, estimations of
parameters are obtained by finding the minimum of the function
2

X ~t |

G(4,u) = Z \/x—
(k)
where t, = ®'(1—k/n) for k =1,K,n—1. Since ®*(0) =—oo,t is
chosen by the condition of further minimization of the function G. ttis interesting to note
that the simulation study (Section 5) indicates that the optimal choice of '[n is close to
t ,—1fornearlyall gz, A and n.
Rewriting the statistics T, and T, in (5) in the following form:

SEN iy !
‘R;van §:X

N Ao

Further,

1 n
E:HZﬁV(W D‘_Z
k=1

nkl (k)

Hence, the regression-quantile estimators (RQE) of x4 and A, can be written

respectively as

LISl PR QP Pl 1
"o1-TT, "1-TT,

The consistency of the RQE is readily obtained from the application of the

Glivenko-Cantelli theorem, which states that an empirical distribution function is a
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strongly (even uniformly) consistent estimator of a true distribution function. However,

the evaluation of asymptotic MSE seems to be mathematically intractable.
5. Computation and simulation

In order to compare the performance of all above estimators, we performed a
numerical study for different sample sizes and for different parameter values. Thus, in
this section we will study the statistical properties of the proposed estimators by
numerical methods. For the MLE and the MME we will numerically compute the
asymptotic MSE of theses estimators using direct computations. Further, the simulated
biases and MSE are also presented. On the other hand, the behavior of the RQE is

investigated only via a simulation study by calculating bias and MSE.
5.1. Computational Study

As pointed out in Section 2, the iteration process may diverge for a solution of

the system of maximum likelihood equations (cf. Section 2, (4)) in the region

1> 0,4>0. For our numerical work, we chose a rectangle, which is divided into 100

congruent rectangles. Then we find a point (,u.,ﬂ,_), for which the sum of squares of
differences of the left hand and right hand sides of the equations (4) of the maximum

likelihood system is obtained. The point (,u',/l) is surrounded by a rectangle of smaller
size, which is also divided into 100 parts and the process is repeated until the required

accuracy 1073 is achieved. Hence, numerical values of asymptotic MSE of MLE are
computed.

On the other hand, the numerical values of asymptotic MSE of MME are
computed using the relation (7) given in Theorem 1.

The results are reported in Tables 1-3 and Tables 4-6 for bias and MSE of the

estimators, respectively.

5.2. Simulation Study

If Y has the standard normal distribution, then the root
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2
w=| =Y +4 Y2 +4ud

2p

of the equation A//X =Y + u~+/ X will have the Bimbaum-Saunders

distribution ~ with  parameters 4  and A. Noting the second root

2

—Y =\ Y2 +4u0

X = of the equation will not produce the Birnbaum-Saunders

2p

distribution. First, we must generate a sample Y;,K,Y,, of given size N from the
standard normal distribution, and then a sample X,,K, X, is obtained from
Y, KLY,

From 5,000 simulated values of (ﬁ,i) ([J(MME)J}MME)), and (ﬁ,Z)

we calculated the biases and the MSE of suggested estimators at selected values of 1

and A and for given sample size N. These simulated results are reported in Tables 1-9.
5.3. Bias Analysis

Note that all six estimators are consistent. Therefore, all proposed estimators
are asymptotically unbiased. The simulated bias analysis is in agreement with the
theoretical result since bias is a decreasing function of N. In other words, as sample
size increases, the magnitude of the bias decreases and approaches to 0asn—oo.
Furthermore, we make the following observations from Tables 1-9.

« It is evident from Tables 1—3 that the MLE has a systematic positive bias

(under-estimation) when the true value of at least one parameter is sufficiently large and

the bias is an increasing function of the value of the parameters. For example, for

N=50 and A =5, =10, the bias of A is 0.003, while for 4 =50, ¢z =50 the

bias of A is 0.084. Having said that, the amount of the bias may be considered

negligible overall.
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« Tables 4 —6 reveal that the MME has a systematic negative bias (over-

estimation). For fixed sample size N, the value of the absolute bias increases as the

values the parameters increases. For example, for N =50 and 4 =5, £ =10, the

bias of A is —0.129, while for 4 =50, 1z =50 the bias of A is —1.277. The

magnitude of bias seems to be significant, and may have an adverse effect on the MSE
behavior.

« Finally, it is seen from Tables 7-9 that the RQE has a positive bias for the

parameter A and a negative bias for M when the values of the parameters are small.
For example, for N =50 and 4 = 0.5, £ = 0.5, the bias of A is 0.009 and the bias

for 12 is —0.047 . For larger values of parameters, a systematic over-estimation is
observed. Further, as the value of the parameters increase, the bias also increases. For

N=50 and A =5, £ =10, the bias of A is —0.117 and the bias for z is
—-0.318.

Based on the results of the Monte Carlo simulation study, we observed that the
MLEs and MMEs performance are very similar in terms of bias, however, MLE is less
biased than that of MME in almost all instances. On the other hand, the RQE procedure
gives more bias than the other two. It is possible to inspect the pattern of the bias
functions of all the estimators and to suggest bias-reduced estimators. Alternatively, one

can consider Jackknife estimation for the parameter of interest.

5.4. MSE Analysis
The the numerical values of the MSE of all the three estimators are reported in
Tables 1-9. Clearly, MLE outperforms the other two estimators in the simulated
parameter space. The simulation study also reveals that the MME performs better than
the RQE for small samples. However, for large samples the performance of the RQE and
the MME is similar.
Based on the results of our Monte Carlo simulation, we observed following
interesting points:
» The MSE functions for all estimators are a decreasing function of N. In
other words, the larger the sample size, the smaller is the MSE.
* On the other hand, it is seen from the Tables that in most of the cases the

MSE increases as the values of the parameters increase.
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» The asymptotic MSE and the simulated MSE of MLE and MME are
comparable, except in a few instances.
» The numerical values of MSE are larger when the parameters are

disproportionate, that is, one parameter is much bigger than the other. For example, for

Nn=50 and A =0.5, £ =0.5, the MSE of A for MLE is 0.005, while for

A =50,u=0.5, the MSE of A is 1.942.
« The difference between the asymptotic MSE and the simulated MSE is
small for proportional values of £ and A.

« It is noted that the asymptotic MSE of the MME is much higher than the

MSE of the MLE, particularly for large values of the parameters. For example, for
n=50,4 =50, and u =50 the asymptotic MSE for the MLE of A is 0.020, while
for MME itis 25.005.

* The simulated MSE of all the estimators MSE tend to zero as N — o0.

The practical application of the proposed estimators is illustrated in the following

section.

6. lllustrative Examples
We consider two examples, one involving a small sample (n = 10) and the
other with a relatively large sample (n =101).

Example 1. The data is given by Birnbaum and Saunders [3] on the fatigue

life of 6061-T6 aluminum coupons cut parallel to the direction of the roll and oscillated at
18 cycles/s (cps). The data set has 101 observations with maximum stress per cycle
31,000 psi. For this example, the point estmates of gz and A obtained by three
methods are summarized in Table 10. Further, the point estimates for the parameters &
and ,B are also calculated. Interestingly, the point estimates of & and ﬁ are

comparable with those of Ng et al. [16] and Wu and Wong [21]. More importantly,

estimators [1 and A correspond to the thickness of the sample and nominal treatment

loading on the sample, respectively. The estimators a and ,8 lack these

characteristics.
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Example 2. This example is taken from McCool [15] on the fatigue life in

hours of 10 bearings of a certain type. The data are

152.7 172.0 172.5 173.5 193.0

204.7 216.5 234.9 262.6 422.6

The above data was used by Cohen et al. [7] to illustrate an example for the

three parameter Weibull distribution.
For this example, the point estimates of x and A are obtained by three

methods and summarized in Table 11. Further, using these values the point estimates

for the parameters & and ,B are also calculated. Again, they are comparable with the

point estimates of & and ﬂ reported in Ng et al. [16] and Wu and Wong [21].

7. Summary

A new parametrization of the two-parameter Birnbaum-Saunders lifetime
distribution to fit the physics of studying phenomena is tackled. Importantly, the proposed
parameters correspond to the thickness of the sample and the nominal treatment loading
on the sample, respectively. These usual scale and shape parameters lack these
characteristics. Three classical estimation schemes for suggested new parameters are
presented and their statistical properties investigated and compared. An extensive
sampling experiment is used to investigate the finite-sample performance of the
suggested estimation strategy. The numerical study reveals that the performance of
maximum likelihood estimators is relatively better than the other two proposed estimators.
However, moment estimators may have a more desirable property such as ease of
calculation.

In this article we discussed point estimation of new parameters and the
guestion of interval estimation, and the test of hypothesis remains to be considered for
future research. However, it is expected that in the asymptotic sequence, tests and
confidence estimation procedures based on suggested methods will begin behaving
correctly in terms of coverage and size. If a bias correction is applied and an appropriate
distribution is used for establishing critical values, then target size and coverage
probabilities, and reasonably good power of test, can be achieved for moderate sample
sizes. We suggest a more computationally intensive nested bootstrap, which calculates
critical values of the test statistic from its bootstrapped distribution rather than using tests

on the critical value of the student-t distribution for a fruitful testing procedure. To
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calculate the asymptotically valid variances, covariances, and bias measures, one can
use the balanced bootstrapping re-sampling methods. There are several techniques for
generating confidence intervals available, for example the percentile methods and bias
corrected method with acceleration. However, it is beyond the scope of this paper and

will be dealt with in a separate communication.

Acknowledgement. The authors are grateful to the referee for offering some valuable

suggestions which enabled them to improve the overall presentation.
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Appendix
Bias and MSE for Maximum Likelihood Estimators, N =10
Simul. Bias MSE
y) Y7 i ,[l Asympt. | Simul. Asympt. Simul.
y) A H 7
0.5 0.5 -0.008 -0.010 0.023 0.002 0.023 0.002
0.5 1 -0.007 +0.007 0.019 0.002 0.076 0.010
0.5 5 -0.005 -0.002 0.008 0.002 0.765 0.232
0.5 10 +0.000 +0.012 0.004 0.000 1.736 0.011
0.5 50 +0.001 +0.022 0.000 0.000 9.708 0.248
1 0.5 +0.008 -0.008 0.076 0.001 0.019 0.002
1 -0.003 -0.004 0.056 0.009 0.056 0.009
1 5 -0.013 -0.025 0.017 0.007 0.434 0.197
1 10 +0.001 +0.013 0.009 0.000 0.930 0.011
1 50 +0.001 -0.006 0.002 0.000 4.926 0.239
5 0.5 -0.001 -0.006 0.766 0.229 0.008 0.002
5 1 -0.032 -0.011 0.434 0.197 0.017 0.007
5 5 -0.094 -0.090 0.097 0.192 0.097 0.188
5 10 +0.003 +0.009 0.049 0.003 0.197 0.011
5 50 +0.006 +0.043 0.010 0.002 0.997 0.228
10 0.5 +0.012 +0.000 1.736 0.011 0.004 0.000
10 1 +0.015 +0.000 0.930 0.011 0.009 0.000
10 5 +0.007 +0.004 0.197 0.011 0.049 0.003
10 10 +0.005 +0.006 0.099 0.010 0.099 0.010
10 50 +0.009 +0.046 0.020 0.007 0.499 0.206
50 0.5 -0.217 +0.001 9.708 0.243 0.001 0.000
50 1 +0.002 +0.001 4.926 0.242 0.002 0.000
50 5 +0.036 +0.004 0.997 0.230 0.010 0.002
50 10 +0.049 +0.012 0.499 0.204 0.020 0.007
50 50 +0.051 +0.054 0.100 0.194 0.100 0.189
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Bias and MSE for Maximum Likelihood Estimators, N =50
Simul. bias MSE
y) y7s /{ ,[‘ Asympt. Simul. Asympt. Simul.
y) A H 7
0.5 0.5 -0.003 -0.003 0.005 0.002 0.005 0.002
0.5 1 -0.003 +0.001 0.004 0.002 0.015 0.007
0.5 5 -0.003 -0.002 0.002 0.001 0.153 0.125
0.5 10 +0.000 +0.014 0.001 0.000 0.347 0.010
0.5 50 +0.000 +0.023 0.000 0.000 1.942 0.225
1 0.5 -0.000 -0.003 0.015 0.007 0.004 0.002
1 1 -0.004 -0.003 0.011 0.006 0.011 0.006
1 5 -0.006 -0.017 0.004 0.005 0.087 0.109
1 10 +0.001 +0.011 0.002 0.000 0.186 0.010
1 50 +0.001 +0.036 0.000 0.000 0.985 0.214
5 0.5 -0.012 -0.003 0.153 0.126 0.002 0.001
5 1 -0.025 -0.006 0.087 0.114 0.003 0.005
5 5 -0.044 -0.042 0.019 0.141 0.019 0.137
5 10 +0.003 +0.008 0.011 0.002 0.039 0.009
5 50 +0.005 +0.059 0.002 0.002 0.199 0.184
10 0.5 +0.018 +0.000 0.010 0.347 0.001 0.000
10 1 +0.015 +0.001 0.186 0.010 0.002 0.000
10 5 +0.006 +0.003 0.039 0.009 0.010 0.002
10 10 +0.005 +0.006 0.020 0.008 0.020 0.008
10 50 +0.010 +0.055 0.004 0.007 0.100 0.187
50 0.5 +0.018 +0.000 1.942 0.226 0.000 0.000
50 1 +0.015 +0.001 0.985 0.221 0.000 0.000
50 5 +0.034 +0.004 0.199 0.175 0.002 0.002
50 10 +0.054 +0.011 0.100 0.180 0.004 0.007
50 50 +0.084 +0.085 0.020 0.232 0.020 0.227
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Bias and MSE for Maximum Likelihood Estimators, N =100

Simul. bias MSE
y) y7s /{ ,[‘ Asympt. Simul. Asympt. Simul.
y) A 7 7
05| 05 -0.001 -0.001 0.002 0.001 0.002 0.001
0.5 1 -0.002 -0.000 0.002 0.001 0.008 0.005
0.5 5 -0.002 -0.006 0.001 0.001 0.077 0.092
0.5 10 +0.000 +0.017 0.000 0.000 0.174 0.010
0.5 50 +0.000 +0.055 0.000 0.000 0.971 0.022
1 0.5 -0.002 -0.001 0.008 0.005 0.002 0.001
1 1 -0.003 -0.002 0.006 0.005 0.006 0.005
1 5 -0.003 -0.006 0.002 0.003 0.043 0.083
1 10 +0.001 +0.014 0.001 0.000 0.093 0.009
1 50 +0.001 +0.034 0.000 0.000 0.493 0.191
5 0.5 -0.015 -0.002 0.076 0.091 0.001 0.001
5 1 -0.011 -0.002 0.043 0.083 0.002 0.003
5 5 -0.034 -0.032 0.010 0.108 0.010 0.110
5 10 +0.004 +0.010 0.005 0.002 0.020 0.008
5 50 +0.005 +0.054 0.001 0.002 0.100 0.184
10 0.5 +0.011 +0.001 0.174 0.975 0.000 0.000
10 1 +0.010 +0.001 0.093 0.009 0.001 0.000
10 5 +0.007 +0.004 0.020 0.008 0.005 0.002
10 10 +0.009 +0.007 0.010 0.007 0.010 0.008
10 50 +0.014 +0.075 0.002 0.007 0.050 0.189
50 0.5 +0.025 +0.001 0.971 0.210 0.000 0.000
50 1 +0.021 +0.001 0.493 0.191 0.000 0.000
50 5 +0.056 +0.050 0.010 0.175 0.001 0.002
50 10 +0.066 +0.014 0.050 0.187 0.002 0.007
50 50 +0.076 +0.078 0.010 0.235 0.010 0.240
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Bias and MSE for Moment Method Estimators, N =10

Simul. bias MSE
y) y7s ﬂ: /} Asympt. Simul. Asympt. Simul.
A A 2 7
0.5 0.5 -0.107 -0.105 0.024 0.073 0.024 0.067
0.5 1 -0.945 -0.186 0.020 0.053 0.081 0.196
0.5 5 -0.079 -0.777 0.015 0.033 1.476 3.203
0.5 10 -0.076 -1.503 0.014 0.031 11.901 5.475
0.5 50 -0.073 -7.299 0.013 0.028 127.475 279.978
1 0.5 -0.189 -0.093 0.081 0.211 0.020 0.049
1 1 -0.172 -0.169 0.069 0.164 0.069 0.155
1 5 -0.152 -0.751 0.055 0.123 1.369 2.975
1 10 -0.149 -1.476 0.052 0.117 5.244 11.454
1 50 -0.146 -7.274 0.059 0.112 126.244 278.042
5 0.5 -0.788 -0.078 1.476 3.340 0.015 0.032
5 1 -0.760 -0.150 1.369 3.069 0.055 0.119
5 5 -0.734 -0.730 1.275 2.840 1.275 2.780
5 10 -0.730 -1.454 1.262 2.809 5.050 11.122
5 50 -0.727 -7.257 1.252 2.781 125.250 276.804
10 0.5 -1.519 -0.075 5.475 12.277 0.014 0.030
10 1 -1.488 -0.148 5.244 11.715 0.052 0.114
10 5 -1.460 -0.727 5.050 11.236 1.262 2.779
10 10 -1.457 -1.452 5.025 11.168 5.025 11.088
10 50 -1.453 -7.255 5.006 11.106 125.125 276.737
50 0.5 -7.339 -0.073 127.480 284.042 0.013 0.028
50 1 -7.303 -0.145 126.243 280.903 0.051 0.111
50 5 -7.269 -0.726 125.250 278.079 1.252 2.768
50 10 -7.265 -1.451 125.125 277.638 5.005 11.070
50 50 -7.259 -7.255 125.025 277.186 125.025 276.783
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Bias and MSE for Moment Method Estimators, N = 50
Simul. bias MSE
y) M /{ ,[t Asympt. Simul. Asympt. Simul.
y) A H i

0.5 0.5 -0.018 -0.016 0.005 0.006 0.005 0.006
0.5 1 -0.016 -0.030 0.004 0.005 0.016 0.019
0.5 5 -0.014 -0.134 0.003 0.004 0.295 0.348
0.5 10 -0.014 -0.261 0.003 0.003 1.095 1.299
0.5 50 -0.013 -1.278 0.003 0.003 25.495 30.685
1 0.5 -0.033 -0.015 0.016 0.021 0.004 0.005
1 1 -0.030 -0.028 0.014 0.017 0.014 0.016
1 5 -0.027 -0.131 0.011 0.014 0.274 0.325
1 10 -0.026 -0.258 0.011 0.013 1.049 1.254
1 50 -0.026 -1.276 0.010 0.012 25.250 30.491
5 0.5 -0.140 -0.013 0.295 0.367 0.003 0.003
5 1 -0.135 -0.261 0.274 0.339 0.011 0.013
5 5 -0.130 -0.128 0.255 0.313 0.255 0.307
5 10 -0.129 -0.255 0.252 0.309 1.010 1.220
5 50 -0.128 -1.275 0.250 0.306 25.050 30.386
10 0.5 -0.269 -0.013 1.095 1.356 0.003 0.003
10 1 -0.263 -0.026 1.049 1.294 0.011 0.013
10 5 -0.258 -0.128 1.010 1.238 0.253 0.305
10 10 -0.257 -0.255 1.005 1.229 1.005 1.217
10 50 -0.256 -1.275 1.001 1.221 25.025 30.387
50 0.5 -1.296 -0.013 25.495 31.324 0.003 0.003
50 1 -1.288 -0.026 25.249 30.945 0.010 0.012
50 5 -1.279 -0.127 25.049 30.589 0.249 0.304
50 10 -1.279 -0.255 25.025 30.531 1.001 1.215
50 50 -1.277 -1.276 25.005 30.468 25.005 30.404
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Bias and MSE for Moment Method Estimators, N =100
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Simul. bias MSE
y) y7s ﬂ: ,[t Asympt. Simul. Asympt. Simul.
A y) 7 7
0.5 0.5 -0.007 -0.006 0.002 0.003 0.002 0.003
0.5 1 -0.007 -0.012 0.002 0.002 0.008 0.009
0.5 5 -0.005 -0.049 0.001 0.002 0.148 0.163
0.5 10 -0.005 -0.095 0.001 0.002 0.548 0.604
0.5 50 -0.005 -0.465 0.001 0.001 12.748 14.133
1 0.5 -0.013 -0.006 0.008 0.009 0.002 0.002
1 1 -0.012 -0.011 0.007 0.008 0.007 0.008
1 5 -0.010 -0.047 0.005 0.006 0.137 0.151
1 10 -0.010 -0.093 0.005 0.006 0.524 0.579
1 50 -0.010 -0.465 0.005 0.006 12.624 14.018
5 0.5 -0.055 -0.005 0.148 0.168 0.001 0.002
5 1 -0.052 -0.009 0.137 0.155 0.005 0.006
5 5 -0.049 -0.047 0.127 0.143 0.127 0.141
5 10 -0.048 -0.093 0.126 0.141 0.505 0.561
5 50 -0.047 -0.467 0.125 0.140 12.525 13.939
10 0.5 -0.103 -0.005 0.548 0.620 0.001 0.002
10 1 -0.100 -0.009 0.524 0.591 0.005 0.006
10 5 -0.096 -0.047 0.505 0.566 0.126 0.139
10 10 -0.095 -0.093 0.502 0.562 0.502 0.559
10 50 -0.094 -0.467 0.499 0.559 12.512 13.933
50 0.5 -0.485 -0.005 12.748 14.312 0.001 0.001
50 1 -0.479 -0.009 12.624 14.145 0.005 0.006
50 5 -0.473 -0.047 12.525 13.996 0.139 0.125
50 10 -0.472 -0.093 12.512 13.974 0.499 0.557
50 50 -0.470 -0.468 12.502 13.951 12.502 13.933
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Bias and MSE for Regression-Quantile Estimators, N = 10

Bias MSE
p Z 7 i 7 i
0.5 0.5 +0.004 -0.200 0.048 0.115
0.5 1 -0.007 -0.319 0.038 0.296
0.5 5 -0.029 -1.009 0.029 3.885
0.5 10 -0.037 -1.750 0.028 13.599
0.5 50 -0.048 -7.102 0.027 298.306
1 0.5 -0.013 -0.159 0.152 0.074
1 1 -0.034 -0.257 0.130 0.210
1 5 -0.074 -0.875 0.111 3.400
1 10 -0.086 -1.572 0.109 12.619
1 50 -0.103 -6.741 0.110 291.790
5 0.5 -0.295 -0.101 2.880 0.039
5 1 -0.369 -0.175 2.768 0.136
5 5 -0.483 -0.710 2.726 2.983
5 10 -0.514 -1.348 2.738 11.672
5 50 -0.555 -6.264 2.764 284.279
10 0.5 -0.738 -0.088 11.074 0.034
10 1 -0.855 -0.157 10.925 0.126
10 5 -1.027 -0.674 10.954 2.918
10 10 -1.069 -1.296 10.997 11.497
10 50 -1.129 -6.151 11.095 282.945
50 0.5 -4.833 -0.071 272.615 0.030
50 1 -5.136 -0.135 273.840 0.117
50 5 -5.547 -0.626 276.407 2.843
50 10 -5.644 -1.230 277.385 11.318
50 50 -5.782 -6.009 278.701 281.186
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Bias and MSE for Regression-Quantile Estimators, N = 50
Bias MSE
2 Z 7 i 7 i
0.5 0.5 +0.009 -0.047 0.005 0.009
0.5 1 +0.004 -0.078 0.005 0.027
0.5 5 -0.006 -0.249 0.003 0.401
0.5 10 -0.007 -0.420 0.003 1.443
0.5 50 -0.011 -1.735 0.003 31.649
1 0.5 +0.008 -0.039 0.018 0.007
1 1 -0.002 -0.063 0.015 0.021
1 5 -0.016 -0.215 0.012 0.357
1 10 -0.018 -0.375 0.013 1.361
1 50 -0.024 -1.641 0.012 31.006
5 0.5 -0.055 -0.025 0.329 0.004
5 1 -0.080 -0.043 0.310 0.014
5 5 -0.114 -0.173 0.279 0.316
5 10 -0.117 -0.318 0.315 1.289
5 50 -0.133 -1.519 0.297 30.296
10 0.5 -0.160 -0.022 1.240 0.004
10 1 -0.195 -0.039 1.203 0.013
10 5 -0.233 -0.159 1.259 0.322
10 10 -0.256 -0.315 1.186 1.225
10 50 -0.271 -1.490 1.190 30.171
50 0.5 -1.136 -0.017 29.668 0.003
50 1 -1.219 -0.033 29.617 0.012
50 5 -1.278 -0.147 31.426 0.317
50 10 -1.357 -0.298 29.739 1.207
50 50 -1.393 -1.453 29.830 30.023
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Bias and MSE for Regression-Quantile Estimators, N =100

Bias MSE
PR 7 i 7 i
0.5 0.5 +0.008 -0.024 0.003 0.003
0.5 1 +0.004 -0.038 0.002 0.011
0.5 5 -0.001 -0.115 0.002 0.167
0.5 10 -0.002 -0.195 0.001 0.603
0.5 50 -0.004 -0.749 0.001 13.642
1 0.5 +0.009 -0.019 0.009 0.003
1 1 +0.003 -0.030 0.008 0.009
1 5 -0.005 -0.097 0.006 0.151
1 10 -0.007 -0.170 0.005 0.568
1 50 -0.010 -0.700 0.005 13.441
5 0.5 -0.010 -0.011 0.166 0.002
5 1 -0.024 -0.019 0.154 0.006
5 5 -0.043 -0.075 0.133 0.136
5 10 -0.048 -0.140 0.132 0.538
5 50 -0.054 -0.636 0.131 13.254
10 0.5 -0.049 -0.010 0.614 0.002
10 1 -0.069 -0.017 0.545 0.006
10 5 -0.095 -0.070 0.528 0.134
10 10 -0.102 -0.133 0.526 0.533
10 50 -0.110 -0.621 0.526 13.224
50 0.5 -0.425 -0.007 14.343 0.001
50 1 -0.477 -0.014 13.200 0.005
50 5 -0.537 -0.064 13.148 0.133
50 10 -0.551 -0.124 13.149 0.529
50 50 -0.562 -0.593 14.132 14.152
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Point estimates for Example 1.

Estimator H A a Yij
MLE 0.511188 67.3842 0.170385 131.81882
MME 0.511187 67.3843 0.170385 131.81927
RQE 0.243114 66.7805 0.171449 131.08943

Point estimates of for Example 2.

Estimator H A a Yij
MLE 0.243097 51.5486 0.282489 212.04951
MME 0.243114 51.5451 0.282489 212.02028
RQE 0.242734 48.0368 0.292852 197.89893
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