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Abstract 

In this article, we consider a new parametrization of the two-parameter 

Birnbaum-Saunders lifetime distribution. Importantly, this re-parametrization fits the 

physics of studying phenomena since the proposed parameters characterize or specify 

the thickness of the sample and the nominal treatment loading on the sample, 

respectively. The usual shape and scale parameters of the distribution do not offer this 

physical interpretation. Instead of substitution method of the parameter estimators of the 

original Birnbaum-Saunders model into the new model, the statistical properties of the 

direct application of the standard methods of point estimation to the new parameters are 

investigated. In an effort to appraise the performance of proposed estimators in a 

practical setting, Monte-Carlo simulations are conducted for small, moderate and large 

sample sizes. Two real life examples based on published data are used to illustrate the 

suggested estimation methods. Some concluding remarks and areas for further research 

are also presented. 
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1. Introduction 

The two-parameter Birnbaum-Saunders distribution was introduced by 

Birnbaum and Saunders [2] as a failure time distribution for fatigue failure caused under 

cyclic loading. This distribution is widely used as a lifetime distribution in the various 

models of reliability theory in the case when a failure of the object under consideration 

appears to be due to the development of fatigue cracks. Desmond [10,11] provided a 

more general derivation based on a biological model and strengthened the physical 

justification for the use of this distribution. This derivation follows from considerations of 

renewal theory for the number of cycles needed to force a fatigue crack extension to 

exceed a critical value. Birnbaum and Saunders [3] presented a comprehensive review, 

both theoretical and practical, of the fitting of this family of distributions to the solution of 

the problem of crack development. Desmond [11] considered estimation of the 

parameters for censored data. Ahmad [1] considered the estimation of the scale 

parameter (which overestimates the median life) by the jackknife method to eliminate 

first-order bias. This estimate has the same limiting behavior as that of Birnbaum and 

Saunders [3]. Rieck [18] derived asymptotically optimal linear estimator for symmetrically 

type II censored samples. We refer to the monograph by Bogdanoff and Kozin [4] for 

motivating examples of probabilistic models of cumulative damage. A more recent view 

on the problem of fatigue crack damages based on stochastic differential equations is 

suggested by Singpurwalla [20]. Some recent work on Birnbaum-Saunders distribution 

can be found in Chang and Tang [5,6], Dupis and Mills [12], Rieck [19], and a review of 

these developments can be found in Johnson  et al.[14]. 

A continuous random variable X  has a Birnbaum-Saunders distribution if X  

has the following cumulative distribution function  

  
1( ; , ) = 1 , > 0, > 0, > 0,X

xF x x
x
βα β α β

α β

  
−Φ −      

                            (1) 

where )(⋅Φ  is the cumulative distribution function of the standard normal 

distribution. The parameters α  and β  are the shape and scale parameters, 

respectively. The probability density function (pdf) is a mixture (with equal weights) of the 

inverse Gaussian pdf and reciprocal inverse Gaussian pdf. It is well know that the pdf of 

Birnbaum-Saunders is unimodal and although the hazard is not an increasing function of 

x  but the average hazard rate is nearly a non-decreasing function of x . 



Syed E. Ahmed                                                   215 

The maximum likelihood estimators (MLE) were first discussed by Birnbaum 

and Saunders [3] and suggested some iterative schemes to solve the required non-linear 

equation. Engelehardt  et al. [13] established the asymptotic distribution of the MLE. 

Further, the conventional moment estimators also have a difficulty in that they may not 

always exist and even if this the case, they may not be unique. Ng  et al. [16] considered 

the modified moment estimators for the parameters to overcome this problem. However, 

Wu and Wong [21] reported that those expressions for the intervals of estimators for β  

suggested by Ng et al.[16] are presented incorrectly. Furthermore, there is no guarantee 

that the upper bounds of those intervals are always positive. 

Our contribution in this article suggests a new parametrization of Birnbaum-

Saunders distribution and develops the estimation scheme for the new parameters which 

are meaningful in a practical setting. Based on the reviewed literature, this kind of study 

is not available for the model under consideration. 

 

1.1. A New Parametrization  

Birnbaum and Saunders [2] considered a probability model of a fatigue crack 

development under cyclic loading in the framework of renewal theory. However, a more 

general model of such phenomena can be described by recurrence equations that have 

a similar form to ones that produce the lognormal distribution. We refer to Cramer [8], 

Parzen [17] and Desmond [11] for a description of the recurrence equations methods in 

connection with the lognormal distribution. Indeed, the later approach gives a richer 

picture of the physical phenomena of fatigue cracks. Moreover, the distribution of the 

size of a crack by a fixed moment of time can be arbitrary, while in the Birnbaum-

Saunders method it has to be normal. The use of recurrence relations is given in 

Birnbaum and Saunders [2]. Interestingly, these recurrence relations lead to a new 

parametrization of the model. For example, on a metallic sample, which has the form of a 

rectangular plate of thickness h  and is fixed on two sides, suppose there is a cyclic 

loading, which results in the development of a crack. Let kX  be the size of the crack at 

time ,1,2,= Kk  that is, after the k th loading cycle. The following recurrence equations 

are derived [11]:  

0.=(0)0,==,0,1,=),(= 001 /++ gXYkXgYXX kkkk K  

These equations connect the crack size in previous and next moments of time 

by a positive continuous function g  and a sequence of random variables ,,, 21 KYY  that 
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take care of variations in values of loading and some other physical factors that influence 

the development of the crack. Assume that the random variables kY  are nonnegative, 

independent and identically distributed. Further, we assume the existence of the second 

moment of kY . We are interested in the time 1,2,...),(=U  at which the crack achieves 

the critical value h . By the recurrence equations we obtain  

                                 .
)()(

=
0

1
1

0=

1

0= xg
dx

Xg
XXY

UX

k

kk
U

k
k

U

k
∫∑∑ ≈

−+
−−

 

Here we assume, of course, that the increments kk XX −+1  are sufficiently 

small. 

For each sufficiently large value t  of the variable ,U  the random variable on 

the left hand side of the equality can be approximated by a normal distribution with mean 

tm  and variance ,2σt  where ).(=),(= 1
2

1 YVarYEm σ  Hence, for large ,t   
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where  

 
)(

=)(
0 xg

dxha
h

∫  

is a strictly increasing function of the upper limit 0),(>h  since 0.)( ≥xg  

We obtain a natural re-parametrization by letting  

 

 ./=,)/(= σµσλ mha  

Importantly, this re-parameterization fits the physics of studying phenomena 

since the proposed parameters λ  and µ  correspond to the thickness of the sample 

and nominal treatment loading on the sample, respectively. 
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Thus, in terms of mu  and λ  the cumulative distribution function of U  is given 

by  

, ( ) = 1 , > 0, > 0, > 0.F x x x
xµ λ
λ µ λ µ 

−Φ − 
 

                    (2) 

Finally, we find the interrelations between the usual parameters βα ,  and new 

parameters µ  and λ  are as follows:  

   

1 1= , =

= .= ,

µ α
α β µλ

λβ βλ µα

                                                     (3) 

 

One may attempt to estimate µ  and λ  by considering the above relations 

with the use of existing estimators of α  and β . However, the relationship is highly 

nonlinear which may complicate the inference process. For this reason we direct develop 

estimation methods for the parameters of interest, that is, µ  and λ . 

 

1.2. Outline of the Paper  

Our contribution in this article is to establish various estimation strategies for the 

new well-defined and meaningful parameters µ  and λ  for Birnbaum-Saunders 

distribution. The article is organized as follows. In Section 2 we derive maximum 

likelihood estimators for the new parametrization. Further, expression for asymptotic 

mean squared error (AMSE) of the proposed estimators are derived analytically and 

some computational aspects are discussed. In Section 3, we propose the method of 

moment estimation for the parameters of interest and derive the expression for the 

AMSE of the estimators. The regression-quantile estimation is discussed in Section 4. 

The strong consistency of the estimators are established. In Section 5, numerical values 

of the biases and mean squared errors (MSE) of the estimators are calculated by 

numerical methods and compared with each other. A detailed Bias and MSE analysis is 

also provided. Concluding remarks are offered in Section 6, and areas for further 

research are also discussed. 
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2. Maximum Likelihood Estimation 

 

The probability density function of the Birnbaum-Saunders distribution after the 

re-parameterization is as follows:  
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The observed likelihood function is  
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 We obtain the system of maximum likelihood equations by evaluating 

derivatives with respect to µ  and .λ   
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 Hence the MLE )(ˆ MLEµ  and )(̂MLEλ  of µ  and λ  can be obtained by 

simultaneously solving 0=),(
µ
λµ
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 and 0,=),(
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It seems to be natural to use certain iteration methods to obtain a solution of the 

above system of equations. However, for a parametric space 0>µ  and 0>λ  there 

are no initial points that can ensure the convergence of the iteration process. 

A necessary (but not sufficient) condition for convergence of the iteration 

process is the inequality 1,<),( �� λµA  where the operator ).,(=),( 21 ffA λµ  In the 

2L -metric the norm of operator A  is equal to the largest eigenvalue of the Jacobian 

matrix  
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The equation for eigenvalues is  
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Note that .> 21 aa  So ).,(= 1 λµaA��  It is safe to conclude that 

1>),(1 λµa  for all 0>µ  and 0.>λ  Hence, most likely there do not exist the initial 

values of parameters that will ensure the convergence of the iteration process. 

An alternative method will be discussed in Section 5 to obtain a solution to the 

maximum likelihood equations. In passing, we would like to remark here that the MLE of 

original parameters α  and β  suffer similar problems. Birnbaum-Saunders [3] proposed 

two iterative procedures to compute MLE of β̂ . However both procedures fail to work in 

the entire range of sample space. 

 

3. Moment Estimation  

 

To obtain the point estimators canonical parameters µ  and λ  by the method 

of moment, let  

1 2 1 2
=1 =1

1 1 1= , = , = .
n n

k
k k k

T X T T TT
n n X∑ ∑                                        (5) 

Then, by using the results of Birnbaum and Saunders [3], we get  

,1/2=)(=,1/2=)(= 222211 λ
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λµ ++ TEETEE  

,5/4=)(,5/4=)( 4241 λ
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n
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n
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2
1 1 1/2( ) = .nE T
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λµ
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 − +
+  

 
                                                          (6) 

Now, by equating these expectations with their sample values, we find the 

moment method estimators (MME)  

.
1)(2

=ˆ,
1)(2

=ˆ 1)(

1

)(

−− TT
T

TT
T MME

n
MME

n λµ  

The expressions for the asymptotic MSE of MME are given in the following 

theorem. 
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THEOREM.  As ∞→n , the MSE of )(ˆ MME
nµ  and )(̂MME

nλ  are given by   
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  PROOF. Following the method outlined in [8] (p.352-358), we introduce 

functions nTTM µ̂=),( 21  and .ˆ=),( 21 nTTL λ  Rewriting the functions M  and L  in 

the following canonical forms  
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 Direct evaluation of derivatives gives  
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Finally, using relations in (6), we obtain the required asymptotic expansions 

which completes the proof. 

On the other hand, one can construct the moment estimators of µ  and λ  

directly by using moment estimator of α  and β . Having said that, the difficulty is that 

the moment estimator for α  and β  may not always exist, and even if they do, the 

moment estimator may not be unique. It can be seen (by equating first and second 

populations with the sample moments) that if the sample coefficient of variation (CV) is 

greater than 5 , then the moment estimators do not exist. If the sample CV is less than 

5 , then the moment estimator is tractable. In any event, the moment estimator of β  

may not be unique. Thus, the estimators of α  and β  may be constructed by using 

moment estimates of µ  and λ  accordingly. Ng et al. [16] suggested a modified version 

to deal with this problem. However, Wu and Wong [21] reported that those expressions 

for the intervals of estimators for β  are presented incorrectly in [16]. Furthermore, there 

is no guarantee that the upper bounds of those intervals are always positive. 

Again, the focus of this paper is on the estimation of new parameters based on 

a re-parametrization which fits the physics of studying phenomena as opposed to usual 

shape and scale parameters which do not provide the physical interpretation. 

 

4. Regression-quantile Estimation 

 

In this section, we propose the regression-quantile (least square) method which 

is based on the minimization of the quadratic measure of the difference between the 

empirical distribution function )(xFn  and the theoretical cumulative distribution function  

                              )./(1=)( xxxF µλ −Φ−  
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If )((2)(1) nXXX ≤≤≤ K  are order statistics of nXXX ,,, 21 K , then by 

definition the empirical distribution function is given by .,1,=,/=)( )( nknkXF kn K  

Consider the following asymptotic equality  

             1,,1,=,1 )(
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which can be used for the parameter estimation. Hence, estimations of 

parameters are obtained by finding the minimum of the function  
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where )/(1= 1 nktk −Φ−  for 1.,1,= −nk K  Since nt,=)0(1 −∞Φ−  is 

chosen by the condition of further minimization of the function .G  It is interesting to note 

that the simulation study (Section 5) indicates that the optimal choice of nt  is close to 

11 −−nt  for nearly all ,µ  λ  and .n  

Rewriting the statistics 1T  and 2T  in (5) in the following form:  
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Hence, the regression-quantile estimators (RQE) of µ  and λ , can be written 

respectively as  
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The consistency of the RQE is readily obtained from the application of the 

Glivenko-Cantelli theorem, which states that an empirical distribution function is a 
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strongly (even uniformly) consistent estimator of a true distribution function. However, 

the evaluation of asymptotic MSE seems to be mathematically intractable. 

 
5. Computation and simulation 

 

In order to compare the performance of all above estimators, we performed a 

numerical study for different sample sizes and for different parameter values. Thus, in 

this section we will study the statistical properties of the proposed estimators by 

numerical methods. For the MLE and the MME we will numerically compute the 

asymptotic MSE of theses estimators using direct computations. Further, the simulated 

biases and MSE are also presented. On the other hand, the behavior of the RQE is 

investigated only via a simulation study by calculating bias and MSE. 

 

5.1. Computational Study 

 

As pointed out in Section 2, the iteration process may diverge for a solution of 

the system of maximum likelihood equations (cf. Section 2, (4)) in the region 

0>0,> λµ . For our numerical work, we chose a rectangle, which is divided into 100  

congruent rectangles. Then we find a point ),,( ⋅⋅ λµ  for which the sum of squares of 

differences of the left hand and right hand sides of the equations (4) of the maximum 

likelihood system is obtained. The point ),( ⋅⋅ λµ  is surrounded by a rectangle of smaller 

size, which is also divided into 100  parts and the process is repeated until the required 

accuracy 310−  is achieved. Hence, numerical values of asymptotic MSE of MLE are 

computed. 

On the other hand, the numerical values of asymptotic MSE of MME are 

computed using the relation (7) given in Theorem 1. 

The results are reported in Tables 1-3 and Tables 4-6 for bias and MSE of the 

estimators, respectively. 

 

5.2. Simulation Study 

 

If Y  has the standard normal distribution, then the root  
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µλYYX  of the equation will not produce the Birnbaum-Saunders 

distribution. First, we must generate a sample ,,,1 nYY K  of given size n  from the 

standard normal distribution, and then a sample ,,,1 nXX K  is obtained from 

.,,1 nYY K  

From 5,000  simulated values of )ˆ,ˆ( λµ , )ˆ,ˆ( )()( MMEMME λµ , and )~,~( λµ , 

we calculated the biases and the MSE of suggested estimators at selected values of µ  

and λ  and for given sample size .n  These simulated results are reported in Tables 1-9. 

 

5.3. Bias Analysis  

 

Note that all six estimators are consistent. Therefore, all proposed estimators 

are asymptotically unbiased. The simulated bias analysis is in agreement with the 

theoretical result since bias is a decreasing function of n . In other words, as sample 

size increases, the magnitude of the bias decreases and approaches to 0  as ∞→n . 

Furthermore, we make the following observations from Tables 1-9. 

  • It is evident from Tables 31−  that the MLE has a systematic positive bias 

(under-estimation) when the true value of at least one parameter is sufficiently large and 

the bias is an increasing function of the value of the parameters. For example, for 

50=n  and 10=5,= µλ , the bias of λ  is 0.003 , while for 50=50,= µλ  the 

bias of λ  is 0.084.  Having said that, the amount of the bias may be considered 

negligible overall. 
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    • Tables 64−  reveal that the MME has a systematic negative bias (over-

estimation). For fixed sample size n , the value of the absolute bias increases as the 

values the parameters increases. For example, for 50=n  and 10=5,= µλ , the 

bias of λ  is 0.129− , while for 50=50,= µλ  the bias of λ  is 1.277.−  The 

magnitude of bias seems to be significant, and may have an adverse effect on the MSE 

behavior. 

    • Finally, it is seen from Tables 7-9 that the RQE has a positive bias for the 

parameter λ  and a negative bias for µ  when the values of the parameters are small. 

For example, for 50=n  and 0.5=0.5,= µλ , the bias of λ  is 0.009  and the bias 

for µ  is 0.047− . For larger values of parameters, a systematic over-estimation is 

observed. Further, as the value of the parameters increase, the bias also increases. For 

50=n  and 10=5,= µλ , the bias of λ  is 0.117−  and the bias for µ  is 

0.318.−   

Based on the results of the Monte Carlo simulation study, we observed that the 

MLEs and MMEs performance are very similar in terms of bias, however, MLE is less 

biased than that of MME in almost all instances. On the other hand, the RQE procedure 

gives more bias than the other two. It is possible to inspect the pattern of the bias 

functions of all the estimators and to suggest bias-reduced estimators. Alternatively, one 

can consider Jackknife estimation for the parameter of interest. 

 

5.4. MSE Analysis 

The the numerical values of the MSE of all the three estimators are reported in 

Tables 1-9. Clearly, MLE outperforms the other two estimators in the simulated 

parameter space. The simulation study also reveals that the MME performs better than 

the RQE for small samples. However, for large samples the performance of the RQE and 

the MME is similar. 

Based on the results of our Monte Carlo simulation, we observed following 

interesting points: 

     • The MSE functions for all estimators are a decreasing function of n . In 

other words, the larger the sample size, the smaller is the MSE.  

    • On the other hand, it is seen from the Tables that in most of the cases the 

MSE increases as the values of the parameters increase.  
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    • The asymptotic MSE and the simulated MSE of MLE and MME are 

comparable, except in a few instances.  

    • The numerical values of MSE are larger when the parameters are 

disproportionate, that is, one parameter is much bigger than the other. For example, for 

50=n  and 0.5=0.5,= µλ , the MSE of λ̂  for MLE is 0.005 , while for 

0.5=50,= µλ , the MSE of λ̂  is 1.942.   

    • The difference between the asymptotic MSE and the simulated MSE is 

small for proportional values of µ  and λ .  

    • It is noted that the asymptotic MSE of the MME is much higher than the 

MSE of the MLE, particularly for large values of the parameters. For example, for 

50,=50,= λn  and 50=µ  the asymptotic MSE for the MLE of λ  is 0.020,  while 

for MME it is 25.005.   

    • The simulated MSE of all the estimators MSE tend to zero as .∞→n   

The practical application of the proposed estimators is illustrated in the following 

section. 

 

6. Illustrative Examples 

We consider two examples, one involving a small sample 10)=(n  and the 

other with a relatively large sample 101)=(n . 

  Example 1.  The data is given by Birnbaum and Saunders [3] on the fatigue 

life of 6061-T6 aluminum coupons cut parallel to the direction of the roll and oscillated at 

18  cycles/s (cps). The data set has 101 observations with maximum stress per cycle 

31,000  psi. For this example, the point estimates of µ  and λ  obtained by three 

methods are summarized in Table 10. Further, the point estimates for the parameters α  

and β  are also calculated. Interestingly, the point estimates of α  and β  are 

comparable with those of Ng et al. [16] and Wu and Wong [21]. More importantly, 

estimators µ̂  and λ̂  correspond to the thickness of the sample and nominal treatment 

loading on the sample, respectively. The estimators α̂  and β̂  lack these 

characteristics. 
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  Example 2.  This example is taken from McCool [15] on the fatigue life in 

hours of 10  bearings of a certain type. The data are 

 152.7 172.0 172.5 173.5 193.0 

204.7 216.5 234.9 262.6 422.6 

  

  The above data was used by Cohen et al. [7] to illustrate an example for the 

three parameter Weibull distribution. 

For this example, the point estimates of µ  and λ  are obtained by three 

methods and summarized in Table 11. Further, using these values the point estimates 

for the parameters α  and β  are also calculated. Again, they are comparable with the 

point estimates of α  and β  reported in Ng et al. [16] and Wu and Wong [21]. 

 

7. Summary  

A new parametrization of the two-parameter Birnbaum-Saunders lifetime 

distribution to fit the physics of studying phenomena is tackled. Importantly, the proposed 

parameters correspond to the thickness of the sample and the nominal treatment loading 

on the sample, respectively. These usual scale and shape parameters lack these 

characteristics. Three classical estimation schemes for suggested new parameters are 

presented and their statistical properties investigated and compared. An extensive 

sampling experiment is used to investigate the finite-sample performance of the 

suggested estimation strategy. The numerical study reveals that the performance of 

maximum likelihood estimators is relatively better than the other two proposed estimators. 

However, moment estimators may have a more desirable property such as ease of 

calculation. 

In this article we discussed point estimation of new parameters and the 

question of interval estimation, and the test of hypothesis remains to be considered for 

future research. However, it is expected that in the asymptotic sequence, tests and 

confidence estimation procedures based on suggested methods will begin behaving 

correctly in terms of coverage and size. If a bias correction is applied and an appropriate 

distribution is used for establishing critical values, then target size and coverage 

probabilities, and reasonably good power of test, can be achieved for moderate sample 

sizes. We suggest a more computationally intensive nested bootstrap, which calculates 

critical values of the test statistic from its bootstrapped distribution rather than using tests 

on the critical value of the  student-t distribution for a fruitful testing procedure. To 
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calculate the asymptotically valid variances, covariances, and bias measures, one can 

use the balanced bootstrapping re-sampling methods. There are several techniques for 

generating confidence intervals available, for example the percentile methods and bias 

corrected method with acceleration. However, it is beyond the scope of this paper and 

will be dealt with in a separate communication. 
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Appendix 

 

Bias and MSE for Maximum Likelihood Estimators, 10=n   

 

          Simul. Bias  MSE   

 λ  µ  
 λ̂    µ̂  Asympt. Simul.   Asympt. Simul.  

                λ̂    λ̂   µ̂   µ̂   

 0.5  0.5  -0.008  -0.010 0.023  0.002  0.023  0.002  

 0.5   1  -0.007  +0.007 0.019  0.002  0.076  0.010  

 0.5   5  -0.005  -0.002 0.008  0.002  0.765  0.232  

 0.5   10  +0.000  +0.012 0.004  0.000  1.736  0.011  

 0.5   50  +0.001  +0.022 0.000  0.000  9.708  0.248  

 1   0.5  +0.008  -0.008 0.076  0.001  0.019  0.002  

 1   1  -0.003  -0.004 0.056  0.009  0.056  0.009  

 1   5  -0.013  -0.025 0.017  0.007  0.434  0.197  

 1   10  +0.001  +0.013 0.009  0.000  0.930  0.011  

 1   50  +0.001  -0.006 0.002  0.000  4.926  0.239  

 5   0.5  -0.001  -0.006 0.766  0.229  0.008  0.002  

 5   1  -0.032  -0.011 0.434  0.197  0.017  0.007  

 5   5  -0.094  -0.090 0.097  0.192  0.097  0.188  

 5   10  +0.003  +0.009 0.049  0.003  0.197  0.011  

 5   50  +0.006  +0.043 0.010  0.002  0.997  0.228  

 10  0.5  +0.012  +0.000 1.736  0.011  0.004  0.000  

 10   1  +0.015  +0.000 0.930  0.011  0.009  0.000  

 10   5  +0.007  +0.004 0.197  0.011  0.049  0.003  

 10   10  +0.005  +0.006 0.099  0.010  0.099  0.010  

 10   50  +0.009  +0.046 0.020  0.007  0.499  0.206  

 50  0.5  -0.217  +0.001 9.708  0.243  0.001  0.000  

 50   1  +0.002  +0.001 4.926  0.242  0.002  0.000  

 50   5  +0.036  +0.004 0.997  0.230  0.010  0.002  

 50   10  +0.049  +0.012 0.499  0.204  0.020  0.007  

 50   50  +0.051  +0.054 0.100  0.194  0.100  0.189  
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  Bias and MSE for Maximum Likelihood Estimators, 50=n   

 

        Simul. bias MSE   

 λ  µ  
 λ̂    µ̂   Asympt. Simul.   Asympt. Simul.  

                λ̂    λ̂   µ̂   µ̂   

 0.5  0.5  -0.003  -0.003 0.005  0.002  0.005  0.002  

 0.5   1  -0.003  +0.001 0.004  0.002  0.015  0.007  

 0.5   5  -0.003  -0.002 0.002  0.001  0.153  0.125  

 0.5   10  +0.000  +0.014 0.001  0.000  0.347  0.010  

 0.5   50  +0.000  +0.023 0.000  0.000  1.942  0.225  

 1   0.5  -0.000  -0.003 0.015  0.007  0.004  0.002  

 1   1  -0.004  -0.003 0.011  0.006  0.011  0.006  

 1   5  -0.006  -0.017 0.004  0.005  0.087  0.109  

 1   10  +0.001  +0.011 0.002  0.000  0.186  0.010  

 1   50  +0.001  +0.036 0.000  0.000  0.985  0.214  

 5   0.5  -0.012  -0.003 0.153  0.126  0.002  0.001  

 5   1  -0.025  -0.006 0.087  0.114  0.003  0.005  

 5   5  -0.044  -0.042 0.019  0.141  0.019  0.137  

 5   10  +0.003  +0.008 0.011  0.002  0.039  0.009  

 5   50  +0.005  +0.059 0.002  0.002  0.199   0.184  

 10  0.5  +0.018  +0.000 0.010  0.347  0.001  0.000  

 10   1  +0.015  +0.001 0.186  0.010  0.002  0.000  

 10   5  +0.006  +0.003 0.039  0.009  0.010  0.002  

 10   10  +0.005  +0.006 0.020  0.008  0.020  0.008  

 10   50  +0.010  +0.055 0.004  0.007  0.100  0.187  

 50  0.5  +0.018  +0.000 1.942  0.226  0.000  0.000  

 50   1  +0.015  +0.001 0.985  0.221  0.000  0.000  

 50   5  +0.034  +0.004 0.199  0.175  0.002  0.002  

 50   10  +0.054  +0.011 0.100  0.180  0.004  0.007  

 50   50  +0.084  +0.085 0.020  0.232  0.020  0.227  
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  Bias and MSE for Maximum Likelihood Estimators, 100=n    

  

        Simul. bias MSE   

 λ  µ  
 λ̂    µ̂   Asympt. Simul.   Asympt. Simul.  

                λ̂    λ̂   µ̂   µ̂   

 0.5  0.5  -0.001  -0.001 0.002  0.001  0.002  0.001  

 0.5   1  -0.002  -0.000 0.002  0.001  0.008  0.005  

 0.5   5  -0.002  -0.006 0.001  0.001  0.077  0.092  

 0.5   10  +0.000  +0.017 0.000  0.000  0.174  0.010  

 0.5   50  +0.000  +0.055 0.000  0.000  0.971  0.022  

 1   0.5  -0.002  -0.001 0.008  0.005  0.002  0.001  

 1   1  -0.003  -0.002 0.006  0.005  0.006  0.005  

 1   5  -0.003  -0.006 0.002  0.003  0.043  0.083  

 1   10  +0.001  +0.014 0.001  0.000  0.093  0.009  

 1   50  +0.001  +0.034 0.000  0.000  0.493  0.191  

 5   0.5  -0.015  -0.002 0.076  0.091  0.001  0.001  

 5   1  -0.011  -0.002 0.043  0.083  0.002  0.003  

 5   5  -0.034  -0.032 0.010  0.108  0.010  0.110  

 5   10  +0.004  +0.010 0.005  0.002  0.020  0.008  

 5   50  +0.005  +0.054 0.001  0.002  0.100  0.184  

 10  0.5  +0.011  +0.001 0.174  0.975  0.000  0.000  

 10   1  +0.010  +0.001 0.093  0.009  0.001  0.000  

 10   5  +0.007  +0.004 0.020  0.008  0.005  0.002  

 10   10  +0.009  +0.007 0.010  0.007  0.010  0.008  

 10   50  +0.014  +0.075 0.002  0.007  0.050  0.189  

 50  0.5  +0.025  +0.001 0.971  0.210  0.000  0.000  

 50   1  +0.021  +0.001 0.493  0.191  0.000  0.000  

 50   5  +0.056  +0.050 0.010  0.175  0.001  0.002  

 50   10  +0.066  +0.014 0.050  0.187  0.002  0.007  

 50   50  +0.076  +0.078 0.010  0.235  0.010  0.240  
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  Bias and MSE for Moment Method Estimators, 10=n   

 

        Simul. bias MSE   

 λ  µ  
 λ̂    µ̂   Asympt. Simul.   Asympt.  Simul.  

                λ̂    λ̂    µ̂   µ̂   

 0.5  0.5  -0.107  -0.105 0.024  0.073  0.024  0.067  

 0.5   1  -0.945  -0.186 0.020  0.053  0.081  0.196  

 0.5   5  -0.079  -0.777 0.015  0.033  1.476  3.203  

 0.5   10  -0.076  -1.503 0.014  0.031  11.901  5.475  

 0.5   50  -0.073  -7.299 0.013  0.028  127.475  279.978  

 1   0.5  -0.189  -0.093 0.081  0.211  0.020  0.049  

 1   1  -0.172  -0.169 0.069  0.164  0.069  0.155  

 1   5  -0.152  -0.751 0.055  0.123  1.369  2.975  

 1   10  -0.149  -1.476 0.052  0.117  5.244  11.454  

 1   50  -0.146  -7.274 0.059  0.112  126.244  278.042  

 5   0.5  -0.788  -0.078 1.476  3.340  0.015  0.032  

 5   1  -0.760  -0.150 1.369  3.069  0.055  0.119  

 5   5  -0.734  -0.730 1.275  2.840  1.275  2.780  

 5   10  -0.730  -1.454 1.262  2.809  5.050  11.122  

 5   50  -0.727  -7.257 1.252  2.781  125.250  276.804  

 10  0.5  -1.519  -0.075 5.475  12.277  0.014  0.030  

 10   1  -1.488  -0.148 5.244  11.715  0.052  0.114  

 10   5  -1.460  -0.727 5.050  11.236  1.262  2.779  

 10   10  -1.457  -1.452 5.025  11.168  5.025  11.088  

 10   50  -1.453  -7.255 5.006  11.106  125.125  276.737  

 50  0.5  -7.339  -0.073 127.480  284.042  0.013  0.028  

 50   1  -7.303  -0.145 126.243  280.903  0.051  0.111  

 50   5  -7.269  -0.726 125.250  278.079  1.252  2.768  

 50   10  -7.265  -1.451 125.125  277.638  5.005  11.070  

 50   50  -7.259  -7.255 125.025  277.186  125.025  276.783  
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 Bias and MSE for Moment Method Estimators, 50=n   

 

        Simul. bias MSE   

 λ  µ  
 λ̂    µ̂   Asympt. Simul.   Asympt. Simul.  

                λ̂    λ̂   µ̂   µ̂   

 0.5  0.5  -0.018  -0.016 0.005  0.006  0.005  0.006  

 0.5   1  -0.016  -0.030 0.004  0.005  0.016  0.019  

 0.5   5  -0.014  -0.134 0.003  0.004  0.295  0.348  

 0.5   10  -0.014  -0.261 0.003  0.003  1.095  1.299  

 0.5   50  -0.013  -1.278 0.003  0.003  25.495  30.685  

 1   0.5  -0.033  -0.015 0.016  0.021  0.004  0.005  

 1   1  -0.030  -0.028 0.014  0.017  0.014  0.016  

 1   5  -0.027  -0.131 0.011  0.014  0.274  0.325  

 1   10  -0.026  -0.258 0.011  0.013  1.049  1.254  

 1   50  -0.026  -1.276 0.010  0.012  25.250  30.491  

 5   0.5  -0.140  -0.013 0.295  0.367  0.003  0.003  

 5   1  -0.135  -0.261 0.274  0.339  0.011  0.013  

 5   5  -0.130  -0.128 0.255  0.313  0.255  0.307  

 5   10  -0.129  -0.255 0.252  0.309  1.010  1.220  

 5   50  -0.128  -1.275 0.250  0.306  25.050  30.386  

 10  0.5  -0.269  -0.013 1.095  1.356  0.003  0.003  

 10   1  -0.263  -0.026 1.049  1.294  0.011  0.013  

 10   5  -0.258  -0.128 1.010  1.238  0.253  0.305  

 10   10  -0.257  -0.255 1.005  1.229  1.005  1.217  

 10   50  -0.256  -1.275 1.001  1.221  25.025  30.387  

 50  0.5  -1.296  -0.013 25.495  31.324  0.003  0.003  

 50   1  -1.288  -0.026 25.249  30.945  0.010  0.012  

 50   5  -1.279  -0.127 25.049  30.589  0.249  0.304  

 50   10  -1.279  -0.255 25.025  30.531  1.001  1.215  

 50   50  -1.277  -1.276 25.005  30.468  25.005  30.404  
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  Bias and MSE for Moment Method Estimators, 100=n   

  

        Simul. bias MSE   

 λ  µ  
 λ̂    µ̂   Asympt. Simul.   Asympt. Simul.  

                λ̂    λ̂   µ̂   µ̂   

 0.5  0.5  -0.007  -0.006 0.002  0.003  0.002  0.003  

 0.5   1  -0.007  -0.012 0.002  0.002  0.008  0.009  

 0.5   5  -0.005  -0.049 0.001  0.002  0.148  0.163  

 0.5   10  -0.005  -0.095 0.001  0.002  0.548  0.604  

 0.5   50  -0.005  -0.465 0.001  0.001  12.748  14.133  

 1   0.5  -0.013  -0.006 0.008  0.009  0.002  0.002  

 1   1  -0.012  -0.011 0.007  0.008  0.007  0.008  

 1   5  -0.010  -0.047 0.005  0.006  0.137  0.151  

 1   10  -0.010  -0.093 0.005  0.006  0.524  0.579  

 1   50  -0.010  -0.465 0.005  0.006  12.624  14.018  

 5   0.5  -0.055  -0.005 0.148  0.168  0.001  0.002  

 5   1  -0.052  -0.009 0.137  0.155  0.005  0.006  

 5   5  -0.049  -0.047 0.127  0.143  0.127  0.141  

 5   10  -0.048  -0.093 0.126  0.141  0.505  0.561  

 5   50  -0.047  -0.467 0.125  0.140  12.525  13.939  

 10  0.5  -0.103  -0.005 0.548  0.620  0.001  0.002  

 10   1  -0.100  -0.009 0.524  0.591  0.005  0.006  

 10   5  -0.096  -0.047 0.505  0.566  0.126  0.139  

 10   10  -0.095  -0.093 0.502  0.562  0.502  0.559  

 10   50  -0.094  -0.467 0.499  0.559  12.512  13.933  

 50  0.5  -0.485  -0.005 12.748  14.312  0.001  0.001  

 50   1  -0.479  -0.009 12.624  14.145  0.005  0.006  

 50   5  -0.473  -0.047 12.525  13.996  0.139  0.125  

 50   10  -0.472  -0.093 12.512  13.974  0.499  0.557  

 50   50  -0.470  -0.468 12.502  13.951  12.502  13.933  
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    Bias and MSE for Regression-Quantile Estimators, 10=n   

  

        Bias MSE   

 λ    µ   
 λ̂    µ̂    λ̂    µ̂   

 0.5  0.5  +0.004  -0.200 0.048  0.115  

 0.5   1  -0.007  -0.319 0.038  0.296  

 0.5   5  -0.029  -1.009 0.029  3.885  

 0.5   10  -0.037  -1.750 0.028  13.599  

 0.5   50  -0.048  -7.102 0.027  298.306  

 1   0.5  -0.013  -0.159 0.152  0.074  

 1   1  -0.034  -0.257 0.130  0.210  

 1   5  -0.074  -0.875 0.111  3.400  

 1   10  -0.086  -1.572 0.109  12.619  

 1   50  -0.103  -6.741 0.110  291.790  

 5   0.5  -0.295  -0.101 2.880  0.039  

 5   1  -0.369  -0.175 2.768  0.136  

 5   5  -0.483  -0.710 2.726  2.983  

 5   10  -0.514  -1.348 2.738  11.672  

 5   50  -0.555  -6.264 2.764  284.279  

 10  0.5  -0.738  -0.088 11.074  0.034  

 10   1  -0.855  -0.157 10.925  0.126  

 10   5  -1.027  -0.674 10.954  2.918  

 10   10  -1.069  -1.296 10.997  11.497  

 10   50  -1.129  -6.151 11.095  282.945  

 50  0.5  -4.833  -0.071 272.615  0.030  

 50   1  -5.136  -0.135 273.840  0.117  

 50   5  -5.547  -0.626 276.407  2.843  

 50   10  -5.644  -1.230 277.385  11.318  

 50   50  -5.782  -6.009 278.701  281.186  

  

 

 

 



Syed E. Ahmed                                                   237 

 

  Bias and MSE for Regression-Quantile Estimators, 50=n   

 

        Bias MSE   

 λ    µ   
 λ̂    µ̂    λ̂    µ̂   

 0.5  0.5  +0.009  -0.047 0.005  0.009  

 0.5   1  +0.004  -0.078 0.005  0.027  

 0.5   5  -0.006  -0.249 0.003  0.401  

 0.5   10  -0.007  -0.420 0.003  1.443  

 0.5   50  -0.011  -1.735 0.003  31.649  

 1   0.5  +0.008  -0.039 0.018  0.007  

 1   1  -0.002  -0.063 0.015  0.021  

 1   5  -0.016  -0.215 0.012  0.357  

 1   10  -0.018  -0.375 0.013  1.361  

 1   50  -0.024  -1.641 0.012  31.006  

 5   0.5  -0.055  -0.025 0.329  0.004  

 5   1  -0.080  -0.043 0.310  0.014  

 5   5  -0.114  -0.173 0.279  0.316  

 5   10  -0.117  -0.318 0.315  1.289  

 5   50  -0.133  -1.519 0.297  30.296  

 10  0.5  -0.160  -0.022 1.240  0.004  

 10   1  -0.195  -0.039 1.203  0.013  

 10   5  -0.233  -0.159 1.259  0.322  

 10   10  -0.256  -0.315 1.186  1.225  

 10   50  -0.271  -1.490 1.190  30.171  

 50  0.5  -1.136  -0.017 29.668  0.003  

 50   1  -1.219  -0.033 29.617  0.012  

 50   5  -1.278  -0.147 31.426  0.317  

 50   10  -1.357  -0.298 29.739  1.207  

 50   50  -1.393  -1.453 29.830  30.023  
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Bias and MSE for Regression-Quantile Estimators, 100=n   

 

        Bias MSE   

 λ    µ   
 λ̂    µ̂    λ̂    µ̂   

 0.5  0.5  +0.008  -0.024 0.003  0.003  

 0.5   1  +0.004  -0.038 0.002  0.011  

 0.5   5  -0.001  -0.115 0.002  0.167  

 0.5   10  -0.002  -0.195 0.001  0.603  

 0.5   50  -0.004  -0.749 0.001  13.642  

 1   0.5  +0.009  -0.019 0.009  0.003  

 1   1  +0.003  -0.030 0.008  0.009  

 1   5  -0.005  -0.097 0.006  0.151  

 1   10  -0.007  -0.170 0.005  0.568  

 1   50  -0.010  -0.700 0.005  13.441  

 5   0.5  -0.010  -0.011 0.166  0.002  

 5   1  -0.024  -0.019 0.154  0.006  

 5   5  -0.043  -0.075 0.133  0.136  

 5   10  -0.048  -0.140 0.132  0.538  

 5   50  -0.054  -0.636 0.131  13.254  

 10  0.5  -0.049  -0.010 0.614  0.002  

 10   1  -0.069  -0.017 0.545  0.006  

 10   5  -0.095  -0.070 0.528  0.134  

 10   10  -0.102  -0.133 0.526  0.533  

 10   50  -0.110  -0.621 0.526  13.224  

 50  0.5  -0.425  -0.007 14.343  0.001  

 50   1  -0.477  -0.014 13.200  0.005  

 50   5  -0.537  -0.064 13.148  0.133  

 50   10  -0.551  -0.124 13.149  0.529  

 50   50  -0.562  -0.593 14.132  14.152  
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  Point estimates for Example 1. 

  

  Estimator  µ     λ     α    β   

 MLE  0.511188  67.3842   0.170385   131.81882  

MME  0.511187  67.3843   0.170385   131.81927  

RQE  0.243114  66.7805   0.171449   131.08943  

  

 

  Point estimates of for Example 2. 

 

  Estimator  µ    λ     α    β   

 MLE  0.243097   51.5486   0.282489   212.04951  

MME  0.243114   51.5451   0.282489   212.02028  

RQE  0.242734   48.0368   0.292852   197.89893  
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