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Abstract
The purpose of this study is to evaluate the hierarchical generalized linear
model (HGLM) used for detecting differential item functioning (DIF) as proposed by
Kamata when the distribution of examinees’ abilities is a Fisher-Tippett distribution. In
the study, 1,000 examinees are divided equally into two groups. In the study, we
investigated four factors. The first factor is whether or not there is difference in mean
ability between two groups. The second factor is the DIF proportion, which is arbitrary
set to 3 different levels, 5%, 15%, and 30%. The third factor is the DIF magnitude, which
is set to 3 levels in a logit scale, 0.3, 0.5, and 0.7. The fourth factor is the type of method
used for detecting DIF of the HGLM, a simultaneous method or an item-by-item method.
This work is a simulation study in which the data are generated by using R Program
version 2.5.1. After the data are generated, they are analyzed by using HLM version 6.0,
with 100 runs for each set of conditions. The performance of the HGLM used for
detecting DIF is evaluated using hit and false alarm rates. The result from this study is
that the Fisher-Tippett distribution as an ability distribution does not affect the detection
of DIF in a significant manner for the HGLM-DIF model.
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1. Introduction

Differential item functioning (DIF) refers to differences in item performance
between two or more subpopulations of examinees when their abilities are made equal.
This means that there is relationship between the item response and group variables

after controlling for the ability level. Non-DIF can be statistically defined as (Chang et al.,
[1]):
E¥Y|®=0,6=R=Exy|®=0,6=r) V0O, 6N

where Y is a dichotomous score of the studied item (Y =0 or Y =1), O is a trait
variable (either latent or observed) measured from the test and used as a matching

criterion, G is a group indicator variable where G=R represents a reference group and

G=F represents a focal group, and E(Y| O= H,G =R) and

E(Y|®=9,G=F) are the regressions of Y on the matching variable for the

reference group and focal group, respectively. An item is considered to be non-DIF item
when the relationship of equation (1) holds.

The assessment of DIF is an essential step in the validation of educational and
psychological tests. If an item or the whole test is biased, the inferences and decisions
about the true ability of examinees may not be made correctly on the basis of such a test.
DIF detecting procedures are designed to detect such differential item validity. Currently,
many statistical techniques have been proposed based upon various theoretical
backgrounds and practical purposes. Recently, Kamata [4] has proposed a hierarchical
generalized linear model used for detecting DIF, which is named the HGLM-DIF model.
The HGLM-DIF model considers a two-nested-level structure of data in which the items are
level-1 and are nested to the students, who are in level-2. The level-1 model is an item
level where the logit link function is utilized to relate the probability of answering correctly to
linear predictors of item dummy codes. The level-2 model is a person level where the
intercept coefficient and the item coefficients that are suspected to have DIF from level-1
are modeled by adding a group indicator (0: reference, 1: focal groups). The coefficients of
the group indicator for a particular item can be interpreted as the difference in the item
difficulty parameter between the reference and focal groups, which is the DIF magnitude.
Many researchers have studied and extend Kamata’'s model in order to detect DIF in many
focuses. For example, Luppescu [7] has compared the efficiency of detecting the DIF of the
Kamata and Rasch methods by using the difference in item difficulty parameters between

two groups. Kim [6] has modified level-2 of Kamata’s model by adding matching variables
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estimated from Kamata’s multilevel item analysis model [5], group variables, and their
interaction terms. Chaimongkol [2] has extended Kamata's models of detecting DIF for
data with two nested levels to data with a three-nested-level structure and has used a
Bayesian approach to estimate parameters. Kamata’'s model was implemented by using
HLM 6 software that uses the penalized or predictive quasi-likelihood (PQL) method to
approximate maximum likelihood. This estimation method requires a normal distribution of
examinees’ ability. In a real testing situation, the ability does not necessarily follow a
standard normal but follows one of the various other distributions according to how the test
was constructed.

Thus, the purpose of this study is a Monte Carlo investigation of the functionality
of Kamata's HGLM model of detecting DIF when the distribution of examinees’ ability is

Fisher-Tippett distribution.
2. Theoretical Framework
2.1 Hierarchical Generalized Linear Model for Detecting DIF (HGLM-DIF)

The hierarchical generalized linear model for detecting DIF proposed by Kamata

[4] extends the hierarchical Rasch model by including person characteristic variables in the

model. Let y; = 1 if person j responds to item i correctly and Y = 0 if otherwise, and let
p; be the probability that Y = 1. This probability varies according to the person. However,
as a condition of this probability, we have Yij | Pjj ~ Bernoulli, with E(Yij | pij) = Pj

and V(Y | py) = p; (1= p;j) - Therefore, the level-1 model (item-level) is

Py
log :7717 :’BOJ' +Zﬁinqu’ @

l_p q=1

ij
where qu_j is the item dummy variable for item i(i =1,2,...,k) responded to by

person j(j=1,2,...,n), with values -1 when ¢ =i and 0 wheng % i. Thus, ﬂq/ is the

item effect for the gth item, and ﬂo/ is the intercept for the model which indicates the

overall effect to all items.
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For the level-2 model, ﬂoj is assumed to have a random effect across the

population of people. Thus, a latent trait that is common to all items but varies across

people can be modeled. The level-2 model is a person model specified as

ﬂo/ :700 +7/01G./ +u0/"

and 3)

B.=7, if no DIF,

B,=y,+7,G otherwise.
Here, Gj_ is the group of person who was coded as 1 if the person belongs to focal group
and coded as O if the person belongs to reference group. 7/00 is the mean ability of

reference group, while }/01 is the mean ability difference between the focal and reference

groups. j/qlis the difference of difficulty between focal and reference groups for the gth

item or DIF magnitude. Thus, the item qth presents DIF when the hypotheses of

HO : ]/q] =0 are rejected by the chi-square tests with one degree of freedom.

However, this model is assumed that Uy, is normally distributed with a mean of 0

and variance of T, (N(0,7)) . This study investigates the performance of the HGLM-DIF

with a violation of the ability distribution assumption.

2.2 Fisher-Tippett Distribution

The Fisher-Tippett distribution is also known as log-Weibull distribution
(http://len.wikipedia.org/wiki/Fisher-Tippett_distribution). Fisher-Tippett distribution is used
as an alternative to the normal distribution in the case of skewed data. The probability
density function is

Zexp(—2) —
f(x)zL,whereZ:exp _— H , @)

g
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—OOSxSOO, ,Ll is location parameter, and ﬂ>0 is scale parameter. For

generating the Fisher-Tippett variate, a random U variate is generated first from a uniform

distribution in the interval (0, 1]. Then the random U variate is transformed to the Fisher-

Tippett variate (X) by using the relationship of X = LI — ﬂln(—ln(U)). This study uses

M =—05772 andﬁ =1 in order to get the mean of 0. However, the choice of these

values does not affect the results of the simulations. The generated random numbers are

trimmed to interval [-3, 3] and treated as person abilities in which the mean is 0, the

124/6°(3)

standard deviation is 1.283, and the skewness is — ~1.14.
T

3. Simulation Study

The simulated dichotomous data is based on the model:

Py
log _7/00+7/0]G,+7/q0+7/q1G,+”0,-'
l_pii
which is the combined level-1 and level-2 models. The data sets were generated for 1,000
examinees and divided equally into two groups (reference and focal) in which each

examinee answers all the items in the test. The item difficulty parameter of the reference
group (]/qo ) for DIF items was fixed to 0, and for non-DIF items it was set to
-1, 0, or 1. The other conditions were set as follows:
1. The number of items in the test was fixed at 20 and proportion of DIF-items
was set to 3 different levels, 5%, 10%, and 15%. Thus, the total number of

DIF items in the test was 1, 3, and 6, respectively.

2. The difference of the item difficulty parameter between the reference and

focal groups or DIF magnitude(]/ql) was set to 3 different levels in the logit

scale, 0.3, 0.5, and 0.7.

3. The true values of the examinee ability parameter (qu) for both the

reference and focal groups were randomly generated from normal and

Fisher-Tippett distributions in which the mean ability of the reference group
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()/00)was fixed to 0. The mean ability of the focal group compared to the
reference group, or the mean difference between the focal and reference
groups ()/m ), was set to either 0 or-1. In the case of}/m =0, the mean

ability parameter for the reference and focal groups was 0. In other words,

there was no difference in mean ability between two groups. For the case
of )/m = —1, the mean ability of the reference and focal groups was 0 and -

1, respectively. This implies that the focal group has a lower ability than the
reference group.

Two methods of detecting DIF were studied, both the item-by-item and
simultaneous methods. Only the level-2 models of these two detecting
methods were different. For the item-by-item detecting method, only the item
coefficient of testing item was modeled by adding the group indicator. On the

other hand, in the simultaneous method, the group indicator was added to all

k-1 item coefficients in the level-2 model except for the reference item.

For each simulation condition, data were generated for 100 sets by using the R
2.5.1 program. Once the data were generated, the HGLM-DIF model for each detecting
method was fitted to estimate and test the statistical significance of their parameters.
HLM 6 software (Raudenbush, Bryk, Cheong, and Congdon [9]) was used to estimate
the HGLM-DIF models’ parameters. In HLM 6, parameters were estimated by a sixth
order approximation of the likelihood for the model based on a Laplace transformation. In
this study, only the DIF parameters were of interest, and these were examined to
investigate the functioning of the HGLM-DIF model by evaluating the hit and false alarm
rates. The hit rate means a number of times that a DIF item resulted in a significant DIF
flag from 100 runs, whereas the false alarm rate indicates a number of times that a non-
DIF item showed a significant DIF flag. The results of the hit and false alarm rates under

all the study conditions are presented in Table 1 and Table 2, respectively.

4. Results

Table 1 shows the results of the hit rates for the DIF items under all study
conditions. It can be concluded from this table that the HGLM-DIF model with a Fisher-
Tippett distribution performed in a similar fashion to the HGLM-DIF model with a normal
distribution. The hit rates did not depend on whether or not there is difference in mean

ability between two groups and the number of DIF items in the test, but they varied
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across the detecting methods and the DIF magnitudes. The item-by-item detecting
method showed higher hit rates across different DIF magnitudes than those of the
simultaneous method. The hit rates were proportional to the DIF magnitude. When the
DIF magnitude in logit is 0.7, the item-by-item method had almost perfect hits, whereas
the simultaneous detecting method revealed an approximate average of 90% for hits. In
contrast, when the DIF magnitudes were decreased to 0.3 in logit, the hits for the item-
by-item and the simultaneous methods were, on average, less than 45% and 30%,
respectively.

Table 1. The hit rates for the DIF items under all conditions.

Normal distribution Fisher-Tippett Distribution
S L B T A I R R AR
A B A B A B A B
1 0.3 32 47 33 51 24 56 27 42
0.5 68 87 70 86 61 95 75 91
0.7 89 98 90 100 94 100 95 100
3 0.3 24 29 28 31 22 22 33 51
0.5 60 85 62 72 65 82 70 86
0.7 91 99 85 98 91 100 90 100
6 0.3 30 19 31 31 25 12 20 22
0.5 75 84 70 70 66 67 63 83
0.7 93 98 94 94 90 98 96 100

’ 7/01 =0 "means there is no difference in mean ability between reference and focal groups.

’ 7/01 — —1"means there is difference in mean ability between reference and focal groups.

‘A" means the Simultaneous detecting DIF method and ‘B means the item-by-item detecting method.

The means of false alarm rates computed from the non-DIF items that have the
same item difficulty as the reference group are shown in Table 2. The observations of
false alarm findings showed that the HGLM-DIF model worked equally well regardless of
its latent ability distribution. The false alarms did not depend on whether or not there was
a difference in mean ability between two groups, but they did depend on the detection
method. The false alarms of the simultaneous method were close to the 5% nominal
error level across the number of DIF items in the test and item difficulty parameters. In
contrast, the item-by-item method inflated the false alarms when there are 3 or 6 DIF
items in the test. Especially when there are 6 DIF items in the test, the false alarms
deviated much more clearly from the 5% nominal level and they were also apparently

higher for the Fisher-Tippett distribution than normal distribution.
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Table 2. The mean of false alarm rates for the non-DIF items under all conditions.

Normal distribution Fisher-Tippett Distribution

U Vel Ya=0 vy =Ty =0 | Y=

A B A B A B A B

1 -1.0 4.7 4.4 4.4 5.0 5.0 6.4 54 5.5
0.0 4.0 4.7 4.2 51 3.7 4.4 5.2 5.4

1.0 4.4 51 4.7 4.6 4.4 4.7 4.7 4.4

3 -1.0 4.3 6.0 7.0 7.1 5.0 7.3 5.3 7.8
0.0 3.6 8.0 5.7 7.0 4.8 7.8 6.4 7.6

1.0 4.5 7.7 6.3 8.3 5.6 9.0 5.6 8.2
6 -1.0 6.2 13.0 4.3 12.2 5.0 19.2 6.0 18.6
0.0 5.0 12.0 55 12.1 4.6 18.2 6.6 18.4
1.0 43 13.1 4.4 12.3 4.7 18.7 53 19.0

' }/qO "means the item difficulty for the reference group.
’ ]/01 =0 means there is no difference in mean ability between reference and focal groups.

’ 70| = —1 " means there is difference in mean ability between reference and focal groups.

"A’ means the simultaneous method of detecting DIF and ‘B’ means the item-by-item detecting
method.

The mean of false alarm rates is computed from all items in the test which have the same values

of}/qo.

5. Conclusion and Discussion

The HGLM-DIF model where the ability of examinees follows a normal
distribution is anticipated to behave in a superior way to the model with a Fisher-Tippett
distribution. However, the findings from this study indicate that there was not a distinction
of behavior for the HGLM-DIF model with a normal and a Fisher-Tippett distribution. Shin
and Wall [10] also found that a violation of the ability distribution assumption showed little
impact on the behavior of the IRT test for DIF detection. A more interesting and
practically valuable finding from this study was that the performance of the HGLM-DIF
model did not depend on the existence of a difference in mean ability between two
groups. This result implied that Kamata’s HGLM-DIF model was a good and suitable
model for detecting DIF in a real test situation. This is because the HGLM-DIF model can

make a distinction between item impact and DIF. ltem impact refers to a group difference



Sutipon Surathanee

in measured performance on a test or test items (Dorans & Holland [3]). In addition, one
more benefit of the HGLM-DIF model was that it can detect all items except the
reference item in the test simultaneously, and its performance was more prevalent and
reliable than item-by-item detection. In summary, the HGLM-DIF model appears to be a

good device to detect DIF in most testing and measurement data regardless of its latent

ability assumption.
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