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Abstract

The objective of this study is to introduce an alternative weighted least squares
estimator called a partial robustifying weighted least squares (RWLS2) estimator. The
weight is coincided with the weight of robustifying weighted least squares (RWLS1)
estimator proposed by Gulasirima and Siripanich [3] but is partially applied on residuals.
Based on ideas of Windham [7] and Gervini and Yohai [2], the proposed weight function
is assigned to be one for good observations and less than one for outliers or influential
observations. In particular the weight is a proportion of a power of density of errors.
RWLS?2 is an alternative robust regression estimator which accommodates outliers whilst
all assumptions are retained.

The weighted normal random variable has an invariance property with zero
mean and decreasing variance. By the results of real data study, it is found that the
proposed weight can reduce the effect of influential outliers. RWLS2 performs as well as
RWLS1 by mean of R? but slightly better by means of relative efficiency based on the
MSE of least squares (LS) estimator. Both estimators work as well as the LS in situation

of no outlier but obviously better when outliers exist.
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1. Introduction

In regression analysis, the most well-known estimator is the least squares (LS)
estimator. However, in practice, only a single outlier may distort the LS dramatically. One
basic way to overcome the problem of outliers in regression analysis is the robust
regression in which the effects of outliers are reduced. Many robust regression

estimators have been developed. In this paper, we focus on weighting-type estimators

which are obtained by mjn Zwrz. Rousseeuw and Leroy [6] suggested that outliers
s

should be deleted by means of the following weight.

0 1 if |r/c}|sz.5, W
w(r) =
0 if |r/6]>25.

Daniel Gervini and Yohai [2] introduced the robust and fully efficient regression
estimator (REWLS) based on the idea of Rousseeuw and Leroy [6]. Their proposed

weight function called a down-weight and was defined as

1 ifu=0,
w(u)={g(u) if0<|u|<1, )
0 if |u|>1,

where g(u) > 0, wis a non-increasing function and u is defined to be proportional to |r| .

Gulasirima and Siripanich, [3] and Gulasirima, [4] introduced the robustifying
weighted least squares (RWLS1) estimator on which the weight is based on the idea of
Windham [7] and was applied on residual distribution. That is, the weight function is of

the form

We(r) = ——, 3)

where 1, =y, —9j , f(rj) is a normal density function and c is a positive constant.

2. A Partial Robustifying Weighted Least Squares Estimator (RWLS2)

In this paper we concentrate on a linear regression modely = XS +¢&, where

outliers occur one way or another. Applying equations (1) — (3), the partial weighted
least squares estimator (RWLS2) is introduced. For instant, let k be a positive constant

depending on fracton o« of influential outliers called a cut-off point, i.e.,
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P[|Rj —,u| >ok]=a where R, =, —\A(J. is the | estimator of residual, z = E(RJ—) and

o’ :Var(R j) forj=12,..,n.Let r,=y, -y, bean i observed residual where j = 1,

2, ..., n. Thus, the partial robustifying weight is defined as

L D |n-al< k6,
L) = (r. )
W (1;) minl 1. M L n-al> ke ¥
>ofe(n)
=1

D ow,r :pr(y—y) &ZZZWP(I’_ﬁ)z
D W W L Wp
partial robustifying weighted least square estimator or RWLS2 can be obtained as follow.

B = (X'W,X) X'W,Y where W, =diag(w, (1), W, (1,),...W, (1,)). (5

where [ =

and W, =w, (r) . Hence the

Note that, the equation (4) actually is a part of robustifying weight function using
for RWLS1. Steps of computing (3) were presented by Gulasirima and Siripanich [3].

Hence substituting (3) in (4), a partial robustifying weight for each observation (jth) and

W, can be obtained

3. Theoretical result

Some important properties of random variable X weighted by the partial
robustifying weight function (XPW) are investigated as follows. The main result here
needs the usages of robustifying weight function of RWLS1 (see Gulasirima and

Siripanich, [3] and Gulasirima, [4]):

fo(x
Let W, =wg ()= % be the robustifying weight function satisfied C1:

B[ (x)]

c is given a positive constant and C2: a random variable X ~ N(,u,GZ) with a density

2
function f(x). The random variable weighted by Wgr, Xg,, ~ N(,u,(o-—l)} (6)
C+

Consider the partial robustifying weight function
1 ;I X—u| 2k, o,
W, =w, (x):{ | | ™

We (X) 5 [x—p<k,o.
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Lemma 1. Let X satisfy C1 and C2, and define the weight function W, (X) = Wrg. In

addition, let W, asin (7) be W,, =W, (x) using a given o = g, , then

1 if | x—pyl <k, o,
Wy (X) = I_ x=sl <k, 00 given that 8)
We (X)) if|x— >k, o,

k,>0,0<q, <a<05, P[|X-u>k,0,]=c, and P[|Xg, —4>k,0,]|=a, .
Moreover, X, is a random variable where X is weighted by WR . Subsequently,

E[ Wy (X)]=1-a, +a, >0. )
Proof. By applying robustifying weight properties, W,=w,(X) is as in (6), then

Xew U N(,u,az/(c+1)) is yielded. Let a pdf. of X, be denoted by f,, (), then

£ (X)] = o () ()0

u = Ky0p u+ Ko

= J' W (X)F(x)dx + J. W (X)F (x)dx + I W (X)F (x)dx
—© u - Kkyoq u + kg0
#—K,op u+Kk,op o
= j We (X)f (x)dx + j f(x)dx+ j We (X)f (x)dx
-0 1 —Kk,og 1+ Kk,op

u - k0

=1-Px—p] >k 00 ]+ [ oy (x)dx+ T fr (X)X
—© k,

B+ Ky0p

=l-a,+a,.-

Since 0 < a,, <a,<0.5, then E[w,,(X)]>0.

Theorem 1. Let X satisfy C1 and C2, and define the weight functions Wr and Wgq as
in (8). In addition, let k, >0 , O<¢a, <,<05 , P[|X—y| > ka%] =q, and
P[[Xew — 4> K,0, | = a,,, where X, is a random variable obtained by weighting X

by W;.

Define W,, = W, (X) L(X) i.e.

" E[Wy(X)]
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_ VE[Wpo (X)] if |x—u|<k,oq,
We (X)/E[Weo (X)] if [x— > k,05.

Let X,,, be the random variable weighted by W p1, then the following statements hold:

(10)

Wi, (X)

1). The pdf. of X, is defined in this dissertation as o -contaminated normal and was

found to be
f(x) .
—_ if |Xx—ul<k, oy,
E[Weo (X)] b= < k.o
fPW (X) B fRW (X) (11)

if |X—,u| > K, 0,

E[ W, (X)]

where fg, (X)=wg (x)f(x) is the pdf. of Xg,,

2). E[Xqy]=u# and

ca 2akafz(—ka){(Z’T)Clzfzc(‘ka)_l}], 12)

V(Xpy ) = 02 [1—

c+1 a, c+1
k2 /2
a g
where ¢ =—*— and f,(-k )=
l1-o,+ a, Z( a) 27w

Proof.  Let F(Xpy)=Fow (X) be the distribution of the weighted random

variable X, - Let the indicator function, I(X) , similar to theorem 3.1, be

(=0, Xpw 1

I(x) =

(=0, Xpw ]

1 if x<x,,,
0 if x>x,,.

1). In order to show that the density of X,  is normally contaminated, consider

Fow (X) = F(Xpw ) = P[Xow < X, ] = E{I (Xow )}

(=0, Xpw ]

0

= prl(x) I(x) f(x)dx

—o0 (=0, Xpw ]
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Xpw

= [0 100 Fx)ax [ Wea (%) 1(x) F(x)x

(*30 Xpw] Xpw (=0, Xpw ]

T W, (X)
= L—E[WPO(X)}f(x)dx.

Hence, F(xPW)=; ]WW (x)f(x)dx. (13)

E[we (X)] 2 7

When given normal probabilities, ¢, and ¢,, , normal distributions
F(y—kao-o):Fz(—ka):% and  Foy(u—k,00) =F, (-k,o+1 )=—W can be

respectively defined, where F, (z) is a standard normal distribution.

With respect to W,,, , F(XPW) will be considered in the following three cases:

Case 1. If x,, <u—k,o, and W, =w(X),
then as the result of (13) it can be shown that

1 X].W W (x)f(x)dx

F(XPW ) = E[Wpo (X)] J

E[Wpo _[ wa

By applying theorem 3.1 and corollary 3.1 of Gulasirima and Siripanich, [3] (see also

Gulasirima, [4])

fw (X)=Wg (X)F () is N(1, o*/(c+1)) vielded

Fog (X) = ]FRW(X). (14)

E[ Wy, (X)

Case 2. If u—k,o,<x,, <u+k,o, and W,; =1, so F(x,,, )is separated into two

PW —

parts;

F(Xpw )= ;]{”T% Wi (X)f(x)dx + Xffw f (x)dx}

EI:WPO (X) —o0 u-k, o9

:m{%+ F(xPW)—%}
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1 a, Q,
pr(x)=m{7+ F(X)—j}- (15)

Case 3. If X, > p1—k,0, and W,, =w, (X), there are three parts to F(X.,, );

F(Xpw )= E|:WP0 {ﬂ ]%W x)dx +/1+T%f(x)dx + X]W WR(X)f(X)dX}

n1-kq0q u+k,0p

1 ay, —a )+ Xoo ) — +k, o
E LS ) )P i)
- Xow )=+
_E[wpo(x)][FRw( )=t + @ |

PW X EI:WPO :||: rRw (X)) =& + aw:|' (16)

From the three cases, (14) - (16), perform a distribution of X, as

1

WF (X) if X<,Ll—ka0'0,
FPW(X)z E[W }{F %——0} if u—k,op<x<u+k,o,, 7
PO
E[Wpo J{FRW —ay) if x> u+k,o,.

Therefore the density of X, , T, (X) , is obtained by differentiating

Fow (X) with respect to the property W, . If |x — x| > ko, , it follows that

dr,, (x) _ 1 dFay (X) _ 1
dx E[w,(X)] dx E[ W, (X)

dF,, (x) 1 dF(x)  f(x)

dx  E[wy(X)] dx  E[wy(X)]

]WR (x)f(x)

If [x—u|<k,o,, then . Hence the first

statement of theorem, (11) holds.
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2). Derivation of the mean and variance of X, .

We can obtain

©

E[Xow]= J Xfoy (X)dX

—0

(18)

1 u-k, o9 u+k, o9 w
= Xfo (X)dX + xf (x)dx + xfo (X)dX
E[WPO(X)]{ :[0 RW( ) l’*r([f’o ( ) ,“f([go RW( ) }
1
= {A+B+C},
l-o,+a,

u-K, o0

by using Lemma 1., E[ W, (X)]=1-a, +a, , and denoting A = j Xfaw (X)X,

—0

H+k, o ©
B= j xf (x)dx and C = _[ Xf e (X)X .
u—k, o9 H+k, 00

Consider the integrals in (18);

u=Ky00

A= :[O Xfqw (X )X

2
270,

—00

—kg e+l o e—zzlz
= j [,u+ 0 Z]—dz, using the transformation z =

NJe+l

—0

_ G Oy K2 (c+1)/2
2 far(ern) '
u+Ky0q @ 1=K, 0q o
B= I xf (x)dx = jxf(x)dx— I xf (x)dx — J‘ xf (x)dx
p-k,o0 e S w0
T ot | s L

S ON27 ik oy OoN 27

T 71[:{] dz+ T (u+ aoz)ie;[x";l} dz
k,

:ﬂ_.[(y+aoz)%e2 \/E

o

X—H
2r 0'0/\/C+1

(19)
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a  K,0y i a4, Ko, kz/z}
SH M =8 Ut =8
{ 2 2r } { 2 2z

=H=—e . (20)
w - 12 (c+1)(x-u)
c+1 3 [TJ
C= Xfew (X)X = x(—z) e °/ dx
/”'kJ.qu #"‘kJ'aO'o 27[0-0
_ ﬂa_w+ Oy e—ki (c+1)/12 1)

2 27r(c+1)

From (19)-21), A+B+C = u(1-a, +a, ) and, by applying lemma 1., E[X,,]|=x.
To find the variance of X,V (Xpy ) = E[XﬁW]—,uz , it can be defined without
loss in a generalized form V(XPW) = E[Xﬁw] with =0 given. Now let us examine

E[ X2 ]

E[XﬁWJ = wazfpw (x)dx

H-K, o0 p+k, o o
X (X)dX + x*f (x)dx + X?*f., (X)dx
E[WPO { j RW M= ':[Uo ( ) /”':[Uo RW( ) }
1 (D+E+F} (22)
- l-ag,+¢, '
-k, 00

|=1-a,+a, , and denoting D = J- X (X)X,

—o0

by applying lemma 1., E[WPO (X)

k.00 o
E= I x*f (x)dx and F= I X (X)X
-k, 00 k, o0

Consider the integrals in (22);

k00 , kg Vel 2262 o712 X
D= f = — 0 dz, f =
J; X Faw (X )dX :[0 (c+1)J2_ z, for z= Jo/m
—k, e+l

2
2 -z /2dZ

(c+l \/_ '[
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_ o |k, VC+1e—ki(c+1)/2+a_W _ 23)
(c+1)| 2z 2
k, o -k, o o
E= j xzf(x)dxlzszf(x)dx— I X*f (x)dx — _[ x*f (x)dx
—k, 00 —0 —0 k0o

=0, - Z_TD x? ;e%["i“] dx

% ON2m

2
e—z 12 X
dz, for z=—

N27 o,

a
205—205{ a ek‘z”2+—°}. (24)

,ka
2 2 2
—0'0—2_[200
—00

" - Y2 (D) x—p
F= J X (X)X = I XZ( C+1j e ? ["" ] dx =D, for integral of an

ke00 K00

even function.

Therefore, by combining (22)-(24), we get

NS 2| c+1| or 2
c/2 g¢
=52 [(1_% +aw)—ciwl+2kafz(—k){M—lH (25)

k, _e a 207 |k e+l e a
D+E+F:a§—20§{—" g/ 0Ly T0 T T T gra(eriZ ) Tw

c+ Je+1

where f, () is a standard normal density.

Hence, the variance of XPW can be derived by applying (25) as follows;

ca +Zakafz(—ka){(z”)mfzc(_ka)_ H

c+1 a, Jo+1

w

V(Xpy ) = 02 {1—
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4. Numerical Examples

Three examples are selected from ‘Robust Regression and Outlier Detection’
by Rousseeuw and Leroy [6]. The first data set has no outlier and other data sets consist
of outliers in y — direction and xy — direction, respectively. In each data set, the LS and
the LMS estimators are already given. The rest is to compute alternative estimators
(RWLS2) and then compare with the LS and the LMS estimators.

Example 1: The data is obtained from Afifi and Azen [1] quoted in Rousseeuw and
Leroy, [6] and it concern the calibration of an instrument that measures the lactic acid
concentration in the blood where the explanatory variable is the true concentration.

In this case, there is no outlier or leverage point. After fitting the data, It is
found that all 4 methods namely LS, least median square (LMS) suggested by
Rousseeuw and Leroy, [6] RWLS1 and RWLS2 yield almost the same results. The

estimates of the intercept term (ﬁo) and the regression coefficient (,Bl) are in narrow

ranges: ﬁo 's are between 0.15 — 0.16, except that of RWLS1 (ﬁo =0.1207), and ,31 's are
between 0.120 — 0.125. Consequently, their regression lines are very close together (see
figure 1). In addition, their coefficient of determinations (R?) are slightly different: R? of
RWLS1 and RWLS?2 are respectively 98.26% and 98.11% and R? of both LS and LMS
are 97.43%. Some differences can be seen in MSE: the MSE obtained from LS and LMS

methods are respectively 1.1637 and 1.1639 but the MSE for RWLS1 and RWLS2 are
0.7726 and 0.7378, respectively.

ez
820

S16

812

S8

T4

5, ¢ Sample Data Set 1

§_4 RWLSL: y =0.121+1.206x
p ——RWLS2:y =0.158+1.245x

T . . . LMS: y =0.150+1.230x
True concenitration —— LS y=0.160+1.228x

Figure 1. Observations and regression lines for Example 1: Data on the Calibration of

an Instrument that Measures Lactic Acid Concentration in Blood.
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Example 2: In this case, the data is the total number of international phone calls from
Belgium in the years 1950-1973, provided by the Belgian Statistical Survey. Unusual
data points occurred in the year 1964-1969 because the transitions did not happen
exactly on New Year's Day. This caused a large fraction of outliers in the y-direction
(Rousseeuw and Leroy, [6]).

Consequently, the regression line obtained from LS method is influenced by
outliers. The regression lines obtained from the other three methods are almost the
same but obviously different from LS regression line as can be seen in Figure 2. In the
same manner, R? of LMS, RWLS1 and RWLS2 methods are slightly different but they
are much difference from LS method. Also the MSE of RWLS1 and RWLS2 methods are
almost negligible (0.0036 and 0.0028 respectively), MSE of LMS is 0.0160 and the MSE
of LS method is 31.6107, very much larger than those obtained from the first 3 methods.

¢ Sample Data Set 2

RWLSL: y =-5.5356+0.1146x

—RWLS2: y =-5.4875+0.1138x S
LMS:y =-5.610+0.115x *

— LSy =-26.0059+0.5041x +2

yé

50 55 Year 60 65 70 75

[N
[S IS

Phone calls
o

'
o1

N
o

Figure 2. Observations and regression lines for Example 2: Number of International
Calls from Belgium (in tens of millions).

Example 3: This data is taken from Mickey et al. [5] quoted in Rousseeuw and Leroy [6].
The response is the Gesell adaptive score corresponding to the explanatory, age (in
month) of 21 children when they uttered their first word. This is a contaminated data
sample which outliers appear in both of x and y directions.

Considering the regression lines obtained from 4 methods, they seem to be the
same. The regression lines of RWLS2 and LMS are closed together whereas that of
RWLS2 is rather different than the others (see figure 3). However, R?> and MSE of those
4 methods are somewhat different. For R?, the RWLST1 vyields the highest value (R? =
60.86%). The next highest are obtained from LMS (R? = 57.16%) and RWLS2 (R? =

55.16%) method, respectively. The least R? is obtained from LS method and it is equal
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to 41.00%. For the MSE, they can be ordered ascending by their values as 66.4371 for
RWLS1, 74.4458 for LMS, 75.6834 for RWLS2, and 121.5045 for LS method. It is seen
that, though the regression lines are located closely, the LS method seems to have very

low performance by means of R? and MSE.

L 100

o

§ 80

Z 60

g

gL + Sample Data Set 3

z 2 RWLSL:y =101.428-1.213X

g 0 RWLS2:y =109.362-1.187x
0 5 10 15 LMS: y =109.305-1.193x
Ageatfirstword (months) | —— LSy = 109.874-1.127x

Figure 3. Observations and regression lines for Example 3: First Word-Gesell Adaptive
Score Data.

The numerical examples of real data yield obviously that the proposed weight
function not only reduce effect of the outliers, e.g. Example 2 and 3 but also performed
as well as the LS in situation of no outlier, e.g. Example 1 (see Gulasirima [4]). The R? of
RWLS2 is slightly less than that of RWLS1 but evidently differ from R® of LS in cases of
outliers. Comparing between MSE of the four methods, it is found that RWLS2 has
minimum values of MSE in two cases. To make comparison clearer, relative efficient (RE)
of MSE for RWLS1, RWLS2 and LMS to the MSE of LS are computed. For the case of
no outlier, the REs exhibit that RWLS1 and RWLS2 estimators are 1.5 — 1.6 times more
efficient than LS estimators, while the LMS estimator is as efficient as the LS estimator.
For the case with outliers in y — direction (Example 2), based on the values of RE, all 3
estimators are at least 1,900 times more efficient than the LS estimator. In the last case
(Example 3), RWLS1, LMS and RWLS2 estimators are respectively 1.83, 1.63 and 1.61

time more efficient than the LS estimator. Details are shown in Table 1 and Table 2.

Table 1. The coefficient of determination (R?) and mean squared error (MSE) obtained
from the LS, LMS, RWLS1 and RWLS2 methods.

R?2 MSE
Data set
LS LMS RWLS1 RWLS2 LS LMS RWLS1 | RWLS2
1.Normal 0.9743 | 0.9743 0.9826 0.9811 1.1637 1.1639 0.7726 0.7378
2.0utliersin Y 0.2959 | 0.9768 0.9940 0.9919 31.6107 0.0160 0.0036 0.0028
3.0utliers in
X &Y 0.4100 | 0.5716 | 0.6086 0.5516 121.5045 | 74.4458 | 66.4371 | 75.6834
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Table 2. The relative efficiency (RE) of the mean squared error (MSE) obtained from the
LMS, RWLS1 and RWLS2 methods to the MSE obtained from the LS method.

RE
Data set LMS RWLS1 RWLS2
1. No outlier 1.00 151 1.58
2. Outliersin Y 1975.67 8780.75 11289.54
3. Outliersin X and Y 1.63 1.83 1.61

5. Conclusion

Results from three examples given above show that the partial robustifying
weight least squared, RWLS2 method perform as good as RWLS1, LMS and LS
methods in the case of no outlier but RWLS estimators are much more efficient than LS
estimator.

Reconsider the weight. It can be seen that effect of outliers is ignored by small

value of weight and the R?, MSE and RE are computed from observations that are

closed to a regression line. This makes the robustifying weight least squared (RWLS1

and RWLS2) methods yield “good” result, that is, high value of R? and small value of
MSE (see Gulasirima [4]). It seems that we bestow an advantage on RWLS method
rather than the LS method. Feasibly, RWLS2 may reduce this disadvantage of LS since
only few observations (outliers) are transformed into weighted observations, the rest

which is the most are unchanged. However, it would be interesting to find more

appropriate statistic(s), besides R?, MSE and RE, for comparison between these

methods.
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