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Abstract 

The objective of this study is to introduce an alternative weighted least squares 

estimator called a partial robustifying weighted least squares (RWLS2) estimator. The 

weight is coincided with the weight of robustifying weighted least squares (RWLS1) 

estimator proposed by Gulasirima and Siripanich [3] but is partially applied on residuals. 

Based on ideas of Windham [7] and Gervini and Yohai [2], the proposed weight function 

is assigned to be one for good observations and less than one for outliers or influential 

observations. In particular the weight is a proportion of a power of density of errors. 

RWLS2 is an alternative robust regression estimator which accommodates outliers whilst 

all assumptions are retained. 

 The weighted normal random variable has an invariance property with zero 

mean and decreasing variance. By the results of real data study, it is found that the 

proposed weight can reduce the effect of influential outliers. RWLS2 performs as well as 

RWLS1 by mean of R2 but slightly better by means of relative efficiency based on the 

MSE of least squares (LS) estimator. Both estimators work as well as the LS in situation 

of no outlier but obviously better when outliers exist.  

___________________________ 
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1. Introduction 

In regression analysis, the most well-known estimator is the least squares (LS) 

estimator. However, in practice, only a single outlier may distort the LS dramatically. One 

basic way to overcome the problem of outliers in regression analysis is the robust 

regression in which the effects of outliers are reduced. Many robust regression 

estimators have been developed. In this paper, we focus on weighting-type estimators 

which are obtained by
2

ˆ
min wr

β
∑ . Rousseeuw and Leroy [6] suggested that outliers 

should be deleted by means of the following weight. 

 
ˆ1      if   r / 2.5,

w(r)
ˆ0      if   r / 2.5. 

σ

σ

 ≤= 
>

                          (1) 

Daniel Gervini and Yohai [2] introduced the robust and fully efficient regression 

estimator (REWLS) based on the idea of Rousseeuw and Leroy [6]. Their proposed 

weight function called a down-weight and was defined as 

1          if u 0,
w(u) g(u)     if 0 u 1,

0          if u 1,

 =


= < ≤
 >

                                                                            (2) 

where g(u) > 0 ,  w is a non-increasing function and u is defined to be proportional to r .  

Gulasirima and Siripanich, [3] and Gulasirima, [4] introduced the robustifying 

weighted least squares (RWLS1) estimator on which the weight is based on the idea of 

Windham [7] and was applied on residual distribution.   That is, the weight function is of 

the form  

                      
c

j
R j n

c
j

j 1

nf (r )
w (r )  

f (r )
=

=

∑
,                                        (3) 

where j j jˆr y y= − , ( )jf r  is a normal density function and c is a positive constant.                              

 
2. A Partial Robustifying Weighted Least Squares Estimator (RWLS2) 

 

In this paper we concentrate on a linear regression model y Xβ ε= + , where 

outliers occur one way or another.  Applying equations (1) – (3), the partial weighted 

least squares estimator (RWLS2) is introduced. For instant, let k be a positive constant 

depending on fraction α of influential outliers called a cut-off point, i.e., 
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jP[ R k]µ σ α− > =  where j j j
ˆR Y Y= −  is the jth estimator of residual, ( )jE Rµ =  and 

( )2
jVar Rσ =  for j 1, 2,..., n= . Let  j j jˆr y y= −   be an jth observed residual where j = 1, 

2, …, n. Thus, the partial robustifying weight is defined as 

j

c
P j j

jn
c

j
j 1

ˆ ˆ1                            ;        r  k ,

w (r ) nf (r )
ˆ ˆmin 1 ,  ;        r  k .

f (r )

µ σ

µ σ

=

 − ≤

    =    − >      

∑

            (4) 

where P P

P P

ˆw r w (y y)
ˆ

w w
−

= =∑ ∑
∑ ∑

µ  , 
2

2 P

P

ˆw (r )ˆ
w

−∑=
∑

µ
σ  and ( )P Pw w r= . Hence the 

partial robustifying weighted least square estimator or RWLS2 can be obtained as follow.   
1

P P P
ˆ (X W X) X W Y−′ ′=β   where ( ) ( ) ( )( )P P 1 P 2 P nW diag w r , w r ,..., w r= .        (5) 

 Note that, the equation (4) actually is a part of robustifying weight function using 

for RWLS1. Steps of computing (3) were presented by Gulasirima and Siripanich [3]. 

Hence substituting (3) in (4), a partial robustifying weight for each observation (jth) and 

PW  can be obtained 

 

3. Theoretical result 

Some important properties of random variable X weighted by the partial 

robustifying weight function ( )PWX  are investigated as follows. The main result here 

needs the usages of robustifying weight function of RWLS1 (see Gulasirima and 

Siripanich, [3] and Gulasirima, [4]): 

 Let ( ) ( )
( )

c

R R c

f x
W w x

E f x
= =

  
 be the robustifying weight function satisfied C1: 

c is given a positive constant and C2: a random variable ( )2X ~ N ,µ σ  with a density 

function f(x). The random variable weighted by W R, 
( )

2

RWX ~ N ,
c 1
σµ

 
  + 

.          (6) 

 Consider the partial robustifying weight function 

 ( )
( )P P

R

1               ;  x k ,
W w x

w x       ;  x k .
α

α

µ σ

µ σ

 − ≥= = 
− <

           (7) 
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Lemma 1.  Let X satisfy C1 and C2, and define the weight function Rw (x)  = W R. In 

addition, let PW   as in (7) be ( )P0 P0W w x=  using a given 0σ σ= , then  

 ( )
( )

0
P0

R 0

1              if x k ,  
w x

w x     if x k ,
α

α

µ σ

µ σ

 − ≤= 
− >

 given that                           (8) 

k 0α > , w 00 < 0.5α α< ≤ , 0 0P X kαµ σ α − >  =   and RW 0 wP X kαµ σ α − >  =  . 

Moreover, RWX  is a random variable where X is weighted by RW . Subsequently, 

   ( )P0 0 wE w X 1 0α α= − + >   .                                      (9) 

Proof.  By applying robustifying weight properties, R RW = w (x)  is as in (6), then 

( )( )2
RWX N , c 1µ σ +  is yielded. Let a pdf. of RWX  be denoted by RWf (x) , then 

( ) ( ) ( )P0 P0E w X w x f x dx
∞

−∞

=   ∫   

        ( ) ( ) ( ) ( ) ( ) ( )
0 0

0 0

  k   k

P0 P0 P0
  k   k

w x f x dx w x f x dx w x f x dx
α α

α α

µ σ µ σ

µ σ µ σ

− + ∞

−∞ − +

= + +∫ ∫ ∫  

                       ( ) ( ) ( ) ( ) ( )
0 0

0 0

  k   k

R R
  k   k

w x f x dx f x dx w x f x dx
α α

α α

µ σ µ σ

µ σ µ σ

− + ∞

−∞ − +

= + +∫ ∫ ∫  

                      ( ) ( )
α 0

α 0

μ  k σ

0 RW RW
μ  k σ

1 P x k f x dx f x dxαµ σ
− ∞

−∞ +

= −  − >  + +  ∫ ∫  

                      0 w1 α α= − + . 

Since w 00 < α α < 0.5≤ ,  then ( )P0E w X 0>   .                                                               

 

Theorem 1.    Let X satisfy C1 and C2, and define the weight functions W R and W P0 as 

in (8). In addition, let k 0α > , w 00 < 0.5α α< ≤ , 0 0P X kαµ σ α − >  =   and 

RW 0 wP X kαµ σ α − >  =  , where RWX  is a random variable obtained by weighting X 

by RW .  

 Define ( ) ( )
( )

P0
P1 P1

P0

w x
W w x

E w X
= =

  
, i.e. 
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( )
( )

( ) ( )
P0 0

P1
R P0 0

1 E w X               if  x k ,
w x   

w x E w X     if  x k .
α

α

µ σ

µ σ

 − ≤   = 
− >   

                               (10) 

Let PWX  be the random variable weighted by W P1, then the following statements hold: 

 

1). The pdf. of PWX   is defined in this dissertation as α -contaminated normal  and was 

found to be 

( )
( )

( )

0
P0

PW
RW

0
P0

f (x)         if   x k ,
E w X

f x
f (x)         if   x k ,

E w X

α

α

µ σ

µ σ

 − ≤   = 
 − >
   

                                     (11) 

where ( ) ( ) ( )RW Rf x w x f x=  is the pdf. of RWX                    

        

2).  [ ]PWE X µ=  and 

     ( ) ( ) ( ) ( )c / 2 c
Z Z2

PW 0
w

2 k f k 2 f kcV X 1 1
c 1 c 1

α α αα πασ
α

  − −  = − + − 
+ +    

,            (12) 

 where w

0 w1  
α

α
α α

=
− +

 and ( )
2k / 2

Z
ef k

2

α

α π

−

− =  

    

Proof.  Let ( )PW PWF(x ) F x= be the distribution of the weighted random 

variable PWX . Let the indicator function,
PW( ,x ]

I(x)
−∞

, similar to theorem 3.1, be 

( ) PW

PWPW( ,x ]

1           if  x x ,
I x

0          if  x x .−∞

≤
=  >

  

1). In order to show that the density of PWX  is normally contaminated, consider 

( ) ( ) [ ] ( )PW

PW

PW PW PW PW
( ,x ]

F x F x P X x E I X
−∞

 
= = ≤ =  

 
 

( ) ( ) ( )
PW

P1
( ,x ]

w x I x f x dx
∞

−∞−∞

= ∫               



46                                                                              Thailand Statistician, 2007; 5:41-55 

 

( ) ( ) ( ) ( ) ( ) ( )
PW

PW PWPW

x

P1 P1
( ,x ] ( ,x ]x

w x I x f x dx w x I x f x dx
∞

−∞ −∞−∞

= +∫ ∫   

               
( )
( )

( )
PWx

P0

P0

w x
f x dx

E w X−∞

=
  

∫ . 

Hence, ( )
( )

( ) ( )
PWx

PW P0
P0

1F x w x f x dx
E w X −∞

=
  

∫ .                                                  (13) 

When given normal probabilities, 0α  and wα  , normal distributions 

( ) 0
0 ZF( k ) F k

2α α
α

µ σ− = − =  and  ( ) w
RW 0 ZF ( k ) F k c 1

2α α
α

µ σ− = − + =  can be 

respectively defined, where ( )ZF z is a standard normal distribution. 

With respect to P1W , ( )PWF x  will be considered in the following three cases: 

 

Case 1.  If PW 0x kαµ σ< −  and ( )P0 RW w x= ,  

then as the result of (13) it can be shown that 

( )
( )

( ) ( )
PWx

PW R
P0

1F x w x f x dx
E w X −∞

=
  

∫  

              
( )

( )
PWx

RW
P0

1 f x dx
E w X −∞

=
  

∫ . 

By applying theorem 3.1 and corollary 3.1 of Gulasirima and Siripanich, [3] (see also 

Gulasirima, [4])  

 ( ) ( ) ( ) ( )( )2
RW Rf x =w x f x  is N ,  c 1µ σ +  yielded  

( )
( )

( )PW RW
P0

1F x F x
E w X

=
  

.                                                              (14) 

Case 2.  If PW0 0k x kα αµ σ µ σ− ≤ ≤ +  and P0W 1= , so ( )PWF x is separated into two 

parts; 

( )
( )

( ) ( ) ( )
0 PW

0

k x

PW R
P0 k

1F x w x f x dx f x dx
E w X

α

α

µ σ

µ σ

−

−∞ −

  = + 
      

∫ ∫  

   
( )

( )w 0
PW

P0

1  F x
2 2E w X

α α = + − 
    
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( )
( )

( )w 0
PW

P0

1F x  F x
2 2E w X

α α = + − 
    

.                                     (15) 

 

Case 3.  If PW 0x kαµ σ> −  and ( )P0 RW w x= , there are three parts to ( )PWF x ; 

( )
( )

( ) ( ) ( ) ( ) ( )
0 0 PW

0 0

k k x

PW R R
P0 k k

1F x w x f x dx f x dx w x f x dx
E w X

α α

α α

µ σ µ σ

µ σ µ σ

− +

−∞ − +

  = + + 
      

∫ ∫ ∫
 

                
( )

( ) ( ) ( ){ }w
0 RW PW RW 0

P0

1  1 F x F k
2E w X α

α
α µ σ = + − + − +     

  

   
( )

( )RW PW 0 w
P0

1 F x  
E w X

α α= − +    
 

( )
( )

( )PW RW 0 w
P0

1F x F x  
E w X

α α= − +    
.                                                 (16) 

From the three cases, (14) - (16), perform a distribution of PWX  as 

( )

( )
( )

( )
( )

( )
( ){ }

RW 0
P0

w 0
PW 0 0

P0

RW w 0 0
P0

1 F x                         if   x k ,
E w X

1F x F x       if   k x k ,
2 2E w X

1 F x      if   x k .
E w X

α

α α

α

µ σ

α α
µ σ µ σ

α α µ σ


< −

   
  = + − − ≤ ≤ +  

     

 + − > +

   

       (17) 

Therefore the density of PWX , PWf (x) , is obtained by differentiating 

( )PWF x with respect to the property 1W . If 0x kαµ σ− > , it follows that 

( )
( )

( )PW RW

P0

dF x dF x1
dx dxE w X

=
   ( )

( ) ( )R
P0

1 w x f x
E w X

=
  

 

If 0x kαµ σ− ≤ , then 
( )

( )
( ) ( )

( )
PW

P0 P0

dF x dF x f x1
dx dxE w X E w X

= =
      

. Hence the first 

statement of theorem, (11) holds.                                       
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2).  Derivation of the mean and variance of PWX . 

We can obtain  

       [ ] ( )PW PWE X xf x dx
∞

−∞

= ∫  

                          
( )

( ) ( ) ( )
0 0

0 0

k k

RW RW
P0 k k

1 xf x dx xf x dx xf x dx
E w X

α α

α α

µ σ µ σ

µ σ µ σ

− + ∞

−∞ − +

  = + + 
      

∫ ∫ ∫  

                          { }
0 w

1 A B C
1 α α

= + +
− +

,                                                                 (18) 

by using Lemma 1., ( )P0 0 wE w X 1 α α= − +    , and denoting ( )
0k

RWA xf x dx
αµ σ−

−∞

= ∫ ,  

( )
0

0

k

k

B xf x dx
α

α

µ σ

µ σ

+

−

= ∫  and ( )
0

RW
k

C xf x dx
αµ σ

∞

+

= ∫ .  

Consider the integrals in (18);  

( )
0k

RWA xf x dx
αµ σ−

−∞

= ∫    

                   
( ) 2

0

0

c 11/ 2 xk
2

2
0

c 1x e dx
2

α µµ σ
σ

πσ

+  −− −   
 

−∞

 +
=  

 
∫   

        
2k c 1 z / 2

0 ez dz
c 1 2

α σ
µ

π

− + −

−∞

 
= + 

+ 
∫ ,   using the transformation 

0

xz
c 1
µ

σ
−

=
+

 

        
( )

2k (c 1) / 2w 0 e
2 2 c 1

α
α σ

µ
π

− += −
+

.                                      (19) 

( ) ( ) ( ) ( )
0 0

0 0

k k

k k

B xf x dx xf x dx xf x dx xf x dx
α α

α α

µ σ µ σ

µ σ µ σ

+ −∞ ∞

− −∞ −∞ +

= = − −∫ ∫ ∫ ∫  

        

2 2

0
2 2
0 0

0

1 x 1 xk
2 2

k0 0

x xe dx e dx
2 2

α

α

µ µµ σ
σ σ

µ σ

µ
σ π σ π

   − −− ∞   − −   
   

−∞ +

= − +∫ ∫  

        ( ) ( )
2 2

2 2
0 0

1 x 1 xk
2 2

0 0
k

1 1z e dz z e dz
2 2

α

α

µ µ
σ σµ µ σ µ σ

π π

   − −− ∞   − −   
   

−∞

= − + + +∫ ∫          
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2 2k / 2 k / 20 0 0 0k ke e

2 22 2
α αα αα σ α σ

µ µ µ
π π

− −   
= − − − +   

   
 

        0µ α µ= − .       (20) 

( )
0

RW
k

C xf x dx
αµ σ

∞

+

= ∫
( ) 2

0

0

c 11/ 2 x
2

2
0k

c 1x e dx
2

α

µ
σ

µ σ πσ

+  −∞ −   
 

+

 +
=  

 
∫   

        
( )

2k (c 1) / 2w 0 e
2 2 c 1

α
α σ

µ
π

− += +
+

.                                   (21) 

 

From (19)-(21), ( )0 wA B C 1µ α α+ + = − +  and, by applying lemma 1.,  [ ]PWE X µ= . 

 To find the variance of ( ) 2 2
PW PW PWX ,V X E X µ = −  , it can be defined without 

loss in a generalized form ( ) 2
PW PWV X E X =    with  0µ =  given. Now let us examine 

2
PWE X   . 

      ( )2 2
PW PWE X x f x dx

∞

−∞

  =  ∫  

                     
( )

( ) ( ) ( )
0 0

0 0

k k
2 2 2

RW RW
P0 k k

1 x f x dx x f x dx x f x dx
E w X

α α

α α

µ σ µ σ

µ σ µ σ

− + ∞

−∞ − +

  = + + 
      

∫ ∫ ∫  

                     { }
0 w

1 D E F
1 α α

= + +
− +

,                                                  (22) 

by applying lemma 1., ( )P0 0 wE w X 1 α α= − +    , and denoting ( )
0k

2
RWD x f x dx

ασ−

−∞

= ∫ , 

( )
0

0

k
2

k

E x f x dx
α

α

σ

σ−

= ∫  and ( )
0

2
RW

k

F x f x dx
ασ

∞

= ∫ .    

  Consider the integrals in (22); 

( )
0k

2
RWD x f x dx

ασ−

−∞

= ∫  
( )

2k c 1 2 2 z / 2
0z e dz

c 1 2

α σ
π

− + −

−∞

=
+∫ ,  for 

0

xz
c 1σ

=
+

 

         
( )

2
k c 12

2 z / 20 z e dz
c 1 2

ασ
π

− +
−

−∞

=
+ ∫  
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( )

2
2

k (c 1) / 20 wk c 1 e
c 1 22

αασ α
π

− + + = + 
+   

.                          (23) 

( ) ( ) ( ) ( )
0 0

0 0

k k
2 2 2 2

k k

E x f x dx x f x dx x f x dx x f x dx
α α

α α

σ σ

σ σ

−∞ ∞

− −∞ −∞

= = − −∫ ∫ ∫ ∫   

        

2
0

0

1 xk
22 2

0
0

12 x e dx
2

ασ
σσ

σ π

 − −   
 

−∞

= − ∫   

                 
2k z / 2

2 2 2
0 0

e2 z dz
2

α

σ σ
π

− −

−∞

= − ∫ ,   for 
0

xz
σ

=    
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σ πσ

+  −∞ −   
  +

=  
 

∫ D= , for integral of an 

even function.  

 

Therefore, by combining (22)-(24), we get  

 

2 2
2
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0 0

k 2 k c 1D E F 2 e e
2 c 1 22 2

α αα αα σ α
σ σ

π π
− − + +   + + = − + + +   

+    
 

 ( ) ( ) ( ) ( )c / 2 c
Z2 w

0 0 w Z

2 f kc1 2k f k 1
c 1 c 1α

πα
σ α α

  −  = − + − + − − 
+ +    

                                   (25) 

 

where ( )zf z  is a standard normal density.  

 

Hence, the variance of PWX  can be derived by applying (25) as follows; 

              ( ) ( ) ( ) ( )c / 2 c
Z Z2

PW 0
w

2 k f k 2 f kcV X 1 1
c 1 c 1

α α αα πασ
α

  − −  = − + − 
+ +    

.                                          
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4. Numerical Examples  
 

Three examples are selected from ‘Robust Regression and Outlier Detection’ 

by Rousseeuw and Leroy [6]. The first data set has no outlier and other data sets consist 

of outliers in y – direction and xy – direction, respectively. In each data set, the LS and 

the LMS estimators are already given. The rest is to compute alternative estimators 

(RWLS2) and then compare with the LS and the LMS estimators. 

 

Example 1:   The data is obtained from Afifi and Azen [1] quoted in Rousseeuw and 

Leroy, [6] and it concern the calibration of an instrument that measures the lactic acid 

concentration in the blood where the explanatory variable is the true concentration. 

 In this case, there is no outlier or leverage point. After fitting the data, It is 

found that all 4 methods namely LS, least median square (LMS) suggested by 

Rousseeuw and Leroy, [6] RWLS1 and RWLS2 yield almost the same results. The 

estimates of the intercept term ( 0β̂ ) and the regression coefficient ( 1β ) are in narrow 

ranges: 0β̂ ’s are between 0.15 – 0.16, except that of RWLS1 ( 0β̂ = 0.1207), and 1̂β ’s are 

between 0.120 – 0.125. Consequently, their regression lines are very close together (see 

figure 1). In addition, their coefficient of determinations ( 2R ) are slightly different: 2R  of 

RWLS1 and RWLS2 are respectively 98.26% and 98.11% and 2R  of  both LS and LMS 

are 97.43%. Some differences can be seen in MSE: the MSE obtained from LS and LMS 

methods are respectively 1.1637 and 1.1639 but the MSE for RWLS1 and RWLS2 are 

0.7726 and 0.7378, respectively. 

-8
-4
0
4
8

12
16
20
24

-1 1 3 5 7 9 11 13 15 17
True concentration

M
ea

su
re

d 
co

nc
en

tr
at

io
n

Sample Data Set 1
RWLS1: y = 0.121+1.206x
RWLS2: y = 0.158+1.245x
LMS: y = 0.150+1.230x
LS: y = 0.160+1.228x

 
 
Figure 1.  Observations and regression lines for Example 1: Data on the Calibration of 

an Instrument that Measures Lactic Acid Concentration in Blood. 
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Example 2:  In this case, the data is the total number of international phone calls from 

Belgium in the years 1950-1973, provided by the Belgian Statistical Survey. Unusual 

data points occurred in the year 1964-1969 because the transitions did not happen 

exactly on New Year’s Day. This caused a large fraction of outliers in the y-direction 

(Rousseeuw and Leroy, [6]).  

Consequently, the regression line obtained from LS method is influenced by 

outliers. The regression lines obtained from the other three methods are almost the 

same but obviously different from LS regression line as can be seen in Figure 2. In the 

same manner, 2R of LMS, RWLS1 and RWLS2 methods are slightly different but they 

are much difference from LS method. Also the MSE of RWLS1 and RWLS2 methods are 

almost negligible (0.0036 and 0.0028 respectively), MSE of LMS is 0.0160 and the MSE 

of LS method is 31.6107, very much larger than those obtained from the first 3 methods.  
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Sample Data Set 2
RWLS1: y = -5.5356+0.1146x
RWLS2: y = -5.4875+0.1138x
LMS: y = -5.610+0.115x
LS: y = -26.0059+0.5041x

 
Figure 2.  Observations and regression lines for Example 2: Number of International 

Calls from Belgium (in tens of millions). 

 

Example 3: This data is taken from Mickey et al. [5] quoted in Rousseeuw and Leroy [6]. 

The response is the Gesell adaptive score corresponding to the explanatory, age (in 

month) of 21 children when they uttered their first word. This is a contaminated data 

sample which outliers appear in both of x and y directions.  

Considering the regression lines obtained from 4 methods, they seem to be the 

same. The regression lines of RWLS2 and LMS are closed together whereas that of 

RWLS2 is rather different than the others (see figure 3). However, 2R  and MSE of those 

4 methods are somewhat different. For 2R , the RWLS1 yields the highest value ( 2R  = 

60.86%).  The next highest are obtained from LMS ( 2R  = 57.16%) and RWLS2 ( 2R  = 

55.16%) method, respectively. The least 2R  is obtained from LS method and it is equal 
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to 41.00%. For the MSE, they can be ordered ascending by their values as 66.4371 for 

RWLS1, 74.4458 for LMS, 75.6834 for RWLS2, and 121.5045 for LS method. It is seen 

that, though the regression lines are located closely, the LS method seems to have very 

low performance by means of  2R  and MSE. 
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Sample Data Set 3
RWLS1: y = 101.428-1.213x
RWLS2: y = 109.362-1.187x
LMS: y = 109.305-1.193x
LS: y = 109.874-1.127x

 
Figure 3.  Observations and regression lines for Example 3: First Word-Gesell Adaptive 

Score Data. 

The numerical examples of real data yield obviously that the proposed weight 

function not only reduce effect of the outliers, e.g. Example 2 and 3 but also performed 

as well as the LS in situation of no outlier, e.g. Example 1 (see Gulasirima [4]). The R2 of 

RWLS2 is slightly less than that of RWLS1 but evidently differ from R2 of LS in cases of 

outliers. Comparing between MSE of the four methods, it is found that RWLS2 has 

minimum values of MSE in two cases. To make comparison clearer, relative efficient (RE) 

of MSE for RWLS1, RWLS2 and LMS to the MSE of LS are computed. For the case of 

no outlier, the REs exhibit that RWLS1 and RWLS2 estimators are 1.5 – 1.6 times more 

efficient than LS estimators, while the LMS estimator is as efficient as the LS estimator. 

For the case with outliers in y – direction (Example 2), based on the values of RE, all 3 

estimators are at least 1,900 times more efficient than the LS estimator.  In the last case 

(Example 3), RWLS1, LMS and RWLS2 estimators are respectively 1.83, 1.63 and 1.61 

time more efficient than the LS estimator. Details are shown in Table 1 and Table 2. 

Table 1.  The coefficient of determination ( 2R ) and mean squared error (MSE) obtained 

from the LS, LMS, RWLS1 and RWLS2 methods. 

Data set 
2R  MSE 

LS LMS RWLS1 RWLS2 LS LMS RWLS1 RWLS2 

1.Normal 0.9743 0.9743 0.9826 0.9811 1.1637 1.1639 0.7726 0.7378 

2.Outliers in Y 0.2959 0.9768 0.9940 0.9919 31.6107 0.0160 0.0036 0.0028 

3.Outliers in  

   X  & Y 
0.4100 0.5716 0.6086 0.5516 121.5045 74.4458 66.4371 75.6834 
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Table 2.  The relative efficiency (RE) of the mean squared error (MSE) obtained from the 

LMS, RWLS1 and RWLS2 methods to the MSE obtained from the LS method. 
 RE 

     Data set LMS RWLS1 RWLS2 

1. No outlier 1.00 1.51 1.58 

2. Outliers in Y 1975.67 8780.75 11289.54 

3. Outliers in X and Y  1.63 1.83 1.61 

 
5. Conclusion 

Results from three examples given above show that the partial robustifying 

weight least squared,  RWLS2 method perform as good as RWLS1, LMS and LS 

methods in the case of no outlier but RWLS estimators are much more efficient than LS 

estimator. 

Reconsider the weight. It can be seen that effect of outliers is ignored by small 

value of weight and the 2R , MSE and RE are computed from observations that are 

closed to a regression line. This makes the robustifying weight least squared (RWLS1 

and RWLS2) methods yield “good” result, that is, high value of 2R  and small value of 

MSE (see Gulasirima [4]). It seems that we bestow an advantage on RWLS method 

rather than the LS method. Feasibly, RWLS2 may reduce this disadvantage of LS since 

only few observations (outliers) are transformed into weighted observations, the rest 

which is the most are unchanged. However, it would be interesting to find more 

appropriate statistic(s), besides 2R , MSE and RE, for comparison between these 

methods. 
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