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Abstract 

The goal of the study is to select the best goodness-of-fit test among six tests; 

the AZ  statistic, the CZ  statistic, the KZ   statistic, the Anderson-Darling ( 2A ) statistic, 

the Shapiro-Wilk (W ) statistic and the Shapiro-Francia statistic ( 'W ). The tests were 

compared when the normal parameters are unknown and sample sizes are 10, 30, 50, 

70 and 100 each with 0.05 level of significance.  With 1,000 Monte Carlo replications, the 

probability of type I error of all six statistics can be controlled for all sample sizes under 

study. Both sample sizes and types of the distribution affect the power of the test. 

___________________________ 
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1. Introduction 

Inferential statistics can be categorized into parametric and nonparametric 

statistics. Most parametric tests are more reliable than nonparametric tests because of 

the known distribution and having some assumptions to be stated.  Normal distribution is 

also an important assumption in parametric statistics, especially in parameter estimation 

and hypothesis testing. If the data set is normally distributed and conform with its 

assumptions, parametric tests generally will have more efficiency and power than 

nonparametric tests. In order to test whether population follows normal distribution, some 

graphical methods are plotted and displayed.  However the graphical methods might 

have some risk for miss conclusion since they are subjective tools. Nowadays, 
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statisticians have proposed various tests for checking the form of a distribution. Those 

tests can be grouped into likelihood ratio test statistic and non-likelihood ratio test 

statistic which are more efficient than the visual displays. 

There are many test statistics for testing normality. In various scenarios, such 

as different sample sizes and/or different underline distributions, the power of each 

statistic might be different. The researcher would like to use the statistic which is the 

most appropriate powerful test. Therefore, the purpose of this research is to compare the 

power of the test in different scenarios. Only the following six statistics for normality test 

are considered in the study, that is the Anderson-Darling  statistic ( 2A ), the Shapiro-

Wilk  statistic (W ),  the Shapiro-Francia  statistic ( 'W ), the  AZ   statistic, the  CZ   

statistic and the KZ   statistic. 

The AZ , CZ  and KZ  statistics are recently developed for testing normality 

based on the likelihood ratio. The W  and 'W  statistics are based on the non-likelihood 

ratio. Originally the 'W  statistic was proposed for fixing the problem of being unable to 

extent the test to the sample size of 50 or more of the W  statistic. 'W and 2A  statistics 

are the most favored statistics which are familiar in some popular software packages 

such as SAS, P-Stat and Minitab. The expected utility of this study is to guide a 

researcher in selecting the appropriate statistics for testing normality in different practical 

situations. 

 

2.  Scope of the study     

  This study will convert all simulated data to have the population mean equal 

zero and population variance equal one in order to test the hypotheses as following: 

 H0 : The data distribution is a standard normal 

 H1 : The data distribution is non-standard normal  

  The power of the statistics will be calculated if and only if the tests can 

control the type I error. The statistics will be compared for various choices of sample 

sizes: 

10, 30, 50, 70 and 100 for AZ , CZ , KZ  and Anderson-Darling ( 2A ) tests 

10, 30, and 50 for Shapiro-Wilk (W ) test 

50, 70, and 100 for Shapiro-Francia ( 'W ) test 
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The normal parameters are unknown and the tests will be compared at 0.05 

level of significance. 

 

3.  Goodness-of-fit tests for normality 

Let X  be a continuous random variable with distribution function )(xF , and 

nXXX ,..,, 21  be a random sample from X  with order statistics )()2()1( ,...,, nXXX . 

To the test hypothesis 

 0H   :  )(xF   =  )(0 xF ,     for all  ),( ∞−∞∈x  

 against the general alternative 

 1H   : )(xF  ≠  )(0 xF ,     for some ),( ∞−∞∈x  

 where )(0 xF  is a hypothetical distribution function which is completely 

specified. If  )(0 xF  is a family of distribution with unknown parameters, it need to 

estimate the parameters first and then apply the tests. When testing the goodness-of-fit 

for the family of normal distributions, µ  and σ   are estimated by the sample mean 

nXX
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respectively.  The power of the tests also depend on the estimators of µ and σ. Good 

estimators should induce powerful tests of normality. For normal distribution, as well 

known X and 2S are the uniformly minimum variance unbiased estimators of µ and σ. 

Anderson and Darling [1] proposed the Anderson-Darling statistic ( 2A ). It is 

defined as:  
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A , where the )( )(iXF  

provide cumulative distribution function of the normal distribution and the n   provide the 

sample size. 

 The critical values for the Anderson-Darling test are dependent on the specific 

distribution that is being tested. Tabulated values and formulas have been published in 
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Upton and Cook [2] for a few specific distributions (e.g. normal, exponential). The test is 

a one-sided test and the hypothesis that the distribution is of a specific form is rejected if 

the test statistic, *2A , is greater than the critical value.  

 Shapiro and Wilk [4] proposed the Shapiro-Wilk statistic (W ), in 1965, that 

tests whether a random sample, nXXX ,..,, 21  comes from (specifically) a normal 

distribution. Small values of W are evidence of departure from normality and percentage 

points for the W  test statistic, obtained via Monte Carlo simulations. The Shapiro-Wilk 

statistic is defined as:  

 W       =      

( )

( )

2

1

2
)(

1
)()1(1

∑

∑

=

=
+−+−

−









−

n

i
i

k

i
iinin

XX

XXa
 

where the )(iX  are the ordered sample values ( )1(X  is the smallest) and the k   is the 

greatest integer in 2/n . Shapiro and Wilk [4] gives tabled values that can be used to 

compute the coefficients ( ia ) and the percentage point of the W  statistic. The null 

hypothesis will be rejected if the test statistic, W  , is less than the percentage point.  It is 

note that this test statistic can be served for sample as small as 3, or as large as 50. 

 Shapiro and Francia [3] proposed the Shapiro-Francia statistic ( 'W ), The 'W  

test statistic was modified of the Shapiro-Wilk statistic for testing normality which can be 

used with large samples. 

 The Shapiro-Francia statistic is defined as:  
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where the im  are expected value of normal order statistics. The null hypothesis will be 

rejected if the statistic, 'W , is less than the empirical percentage point of the 

approximate 'W  test.  
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 Zhang and Wu [6] proposed the statistics, AZ , CZ  and KZ  for testing 

normality.  The Zhang-Wu statistics are defined as: 
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where )( )(0 iXF  are cumulative distribution function of the normal distribution. The null 

hypothesis will be rejected if the statistics, AZ , CZ  and KZ , are greater than the table 

of percentage point for AZ , CZ  and KZ  in Zhang and Wu [6].  

 

 
 
4. Simulation study 

The simulation study to compare the six statistics has 4 steps. 

 

Step 1 : Find the probability of type I error 

-  Simulate the standard normal distribution data set by Minitab 14 for windows 

for testing the null hypothesis  

H0: The data distribution is a standard normal   

   against the alternative  

 H1 : The data distribution is non-standard normal  

-  Calculate each statistic, then find the empirical type I error rate collected from 

1,000 Monte-Carlo replications. 

 

Step 2 : Test the controllable of the probability of type I error 

- Binomial test is used to test the null hypothesis 
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H0: 05.0  ≤α   

against the alternative  

H1: 05.0  >α . The statistics can control the type I error at 0.05 level of 

significance if the empirical type I error rate in step 1 is between 0  and 0.061. 

 

  Step 3 : Find the power of each test 

 -  Simulate the non-normal distribution data set with Minitab 14 for windows, 

then standardized the data set to have mean zero and variance one for testing the null 

hypothesis  

 H0: The data distribution is a standard normal   

     against the alternative 

 H1 : The data distribution is non-standard normal  

  -  Calculate each statistic, then find the empirical power of each test  

                            collected from 1,000 Monte Carlo replications. 

 

Step 4 : Compare the powers of the tests  

 Find the statistic which has the highest power for each scenario. 

 The Non-normal distributions under study are t-distribution, Lognormal 

distribution, Beta distribution and Weibull distribution with parameters set by the 

coefficient of skewness ( 1γ ) and the coefficient of kurtosis ( 2γ ). Shapiro et al. [5] 

proposed the classification of distributions from their skewness and kurtosis into five 

categories, as the following: 

1. Near normal distribution. 

2. Symmetric long-tailed distribution. 

3. Symmetric short-tailed distribution. 

4. Asymmetric long-tailed distribution. 

5. Asymmetric short-tailed distribution. 

The parameters 1γ  and 2γ  of each non-normal distributions are shown in Table 1. 
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Table 1.  Classification of the distributions under study. 

Case 
Skewness : 1

γ
, 

Kurtosis :  2
γ

 

 Distributions used in the study 

1 

01 =γ , 

5452 2 .. ≤γ≤
 

Near normal 
t(34), t(14), t(10), t(8),  

Beta(13.5,13.5) 

2 
01 =γ , 

542 .>γ  

Symmetric long-tailed t(7), t(6), t(5) 

3 
01 =γ ,  

5.22 <γ  

Symmetric short-tailed 
Beta(1,1), Beta(1.5,1.5),  

Beta(2.25,2.25), Beta(3.5,3.5) 

4 
301 .>γ

,  

032 .>γ  

Asymmetric long-tailed 

Weibull(2.211,1), Weibull(1.563,1), 

Weibull(1.211,1), Weibull(1,1), 

 Weibull(0.896,1), 

Lognormal(0,0.0269), Lognormal(0,0.0988),  

Lognormal(0,0.1967), Lognormal(0,0.3040), 

Lognormal(0,0.4108), 

Beta(7,2), Beta(5,1) 

5 
301 .>γ

, 

032 .<γ  

Asymmetric short-tailed 
Beta(2,1.08), Beta(2.28,5), Beta(2,1), 

Beta(2,5), Beta(0.5,1), Beta(2,4) 

 

 

5. Results 

The results of this study are as following:  

1. The empirical type I error rate at 0.05 level of significance are presented in Table 2.  

All six statistics, AZ , CZ , KZ  , 2A , W  and 'W  can control the type I error at 0.05 

significant level.  The type I error decreases if the sample size increases as expected 

except for 'W statistic (Figure1).    
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Table 2.  The empirical type I error rate at 0.05 level of significance. 
 

Sample size 

(n) 

The empirical type I error rate 

AZ  CZ
 KZ  

2A  W  
'W  

10 0.046 0.045 0.047 0.048 0.045 N/A 

30 0.059 0.053 0.048 0.054 0.049 N/A 

50 0.056 0.050 0.051 0.057 0.044 0.043 

70 0.053 0.055 0.049 0.050 N/A 0.053 

100 0.039 0.042 0.048 0.044 N/A 0.060 

N/A : Not Applicable 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  The empirical type I error rate  of six test statistics for the sample size n  

equals 10, 30 50, 70, 100 at 0.05 level of significance. 

 

2. The empirical power of all six statistics are presented in Table 3.  The power of AZ  

and CZ  statistics are higher than the power of KZ  and 2A  statistics. The powers of 

the test presented here are the average for all sample sizes and for all distributions. 

Based on the non-likelihood ratio tests, if the sample size equals 50, the power of 'W  

statistic is higher than the W  statistic for the  case of near normal distributions and 

symmetric long-tailed distributions. On the other hand for other distributions, such as ; (i) 
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symmetric short-tailed distribution, (ii) asymmetric long-tailed distribution and (iii) 

asymmetric short-tailed distribution, the power of W  statistic is higher than 'W  statistic.  

 To compare the power of all scenarios at each specific sample size, 

the results are as following: 

(i): For n = 10, AZ  statistic has the highest power for near normal distribution 

and for both symmetric and asymmetric long-tailed distributions. CZ  statistic has the 

highest power for both symmetric and asymmetric short-tailed distributions. 

(ii): For n = 30, CZ  statistic has the highest power for near normal distribution 

and for symmetric both short-tailed and long-tail distributions. AZ  statistic has the 

highest power for asymmetric both long-tailed and short-tailed distributions. 

(iii): For n = 50, 'W  statistic has the highest power for near normal distribution 

and symmetric long-tail distribution.  W  statistic has the highest power for symmetric 

short-tailed distribution. AZ  statistic has the highest power for asymmetric both long-

tailed and short-tailed distributions. 

(iv): For n = 70, 'W statistic has highest power for near normal distribution and  

symmetric long-tailed distribution. CZ  statistic has the highest power for asymmetric 

short-tailed distribution. AZ  statistic has the highest power for asymmetric both long-

tailed and short-tailed distributions. 

(v): For n = 100, 'W  statistic has the highest power for near normal distribution 

and symmetric long-tailed distribution. AZ  statistic has the highest power for symmetric 

short-tail distribution and asymmetric for both long-tailed and short-tailed distributions. 

Notice that the power of the test for all distribution increase if the sample size 

increases (Figure 2). 

 



66                                                                               Thailand Statistician, 2007; 5:57-68 

 

Table 3.  The empirical power of all six statistics. 

 Distribution 
Power of test 

AZ  CZ
 KZ  

2A  W  
'W  

10 

Near Normal 0.072 0.066 0.065 0.066 0.062 - 

Symmetric Long-tailed 0.102 0.097 0.086 0.097 0.086 - 

Symmetric Short-tailed 0.039 0.059 0.051 0.057 0.054 - 

Asymmetric Long-tailed 0.413 0.408 0.321 0.384 0.398 - 

Asymmetric Short-tailed 0.118 0.131 0.096 0.121 0.123 - 

30 

Near Normal 0.094 0.098 0.082 0.084 0.081 - 

Symmetric Long-tailed 0.213 0.219 0.177 0.181 0.192 - 

Symmetric Short-tailed 0.139 0.184 0.106 0.140 0.180 - 

Asymmetric Long-tailed 0.831 0.813 0.793 0.778 0.812 - 

Asymmetric Short-tailed 0.446 0.411 0.377 0.361 0.420 - 

50 

Near Normal 0.112 0.120 0.104 0.095 0.086 0.133 

Symmetric Long-tailed 0.271 0.297 0.257 0.238 0.214 0.336 

Symmetric Short-tailed 0.312 0.342 0.178 0.240 0.393 0.150 

Asymmetric Long-tailed 0.915 0.899 0.886 0.866 0.897 0.880 

Asymmetric Short-tailed 0.678 0.611 0.604 0.535 0.647 0.507 

70 

Near Normal 0.113 0.125 0.108 0.096 - 0.156 

Symmetric Long-tailed 0.310 0.347 0.301 0.290 - 0.435 

Symmetric Short-tailed 0.481 0.490 0.306 0.359 - 0.321 

Asymmetric Long-tailed 0.952 0.945 0.938 0.929 - 0.925 

Asymmetric Short-tailed 0.841 0.779 0.770 0.684 - 0.712 

100 

Near Normal 0.141 0.166 0.136 0.127 - 0.218 

Symmetric Long-tailed 0.395 0.447 0.386 0.373 - 0.537 

Symmetric Short-tailed 0.607 0.605 0.429 0.475 - 0.459 

Asymmetric Long-tailed 0.971 0.960 0.954 0.939 - 0.954 

Asymmetric Short-tailed 0.951 0.909 0.905 0.821 - 0.872 
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Figure 2. The power of the test of six test statistics at 0.05 level of significance 

for each underline distribution. 

 

6.  Conclusion and discussion 

All six tests can control the probability of type I error for all sample sizes under 

study.   The power of AZ  and CZ  statistics are higher than the power of KZ  and 2A  

statistics. Based on the non-likelihood ratio tests, if the sample size equals 50, the power 

of  'W  statistic is higher than the W  statistic for near normal distributions and 

symmetric long-tailed distributions. For other distributions, such as symmetric short-tailed 
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distribution and asymmetric for both long-tailed  short-tailed distributions, the power of  

W  statistic is higher than 'W  statistic.  

 In this study the data sets were simulated with known coefficient of skewness 

and coefficient of kurtosis. In practical situation, the researcher has never known the 

shape of the data distribution in hand so some visual displays and some measures of 

skewness and kurtosis should be provided before choosing the most appropriate 

goodness of fit test.  Furthermore other robust estimators of population mean and 

variance could be used to see the performance of these six tests and the relationship 

between skewness, kurtosis and the power of each statistic should be under studied in 

the future. 
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