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Abstract

The goal of the study is to select the best goodness-of-fit test among six tests;

the Z, statistic, the Z statistic, the Z, statistic, the Anderson-Darling ( A?) statistic,

the Shapiro-Wilk (W) statistic and the Shapiro-Francia statistic (W '). The tests were
compared when the normal parameters are unknown and sample sizes are 10, 30, 50,
70 and 100 each with 0.05 level of significance. With 1,000 Monte Carlo replications, the
probability of type | error of all six statistics can be controlled for all sample sizes under

study. Both sample sizes and types of the distribution affect the power of the test.
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1. Introduction

Inferential statistics can be categorized into parametric and nonparametric
statistics. Most parametric tests are more reliable than nonparametric tests because of
the known distribution and having some assumptions to be stated. Normal distribution is
also an important assumption in parametric statistics, especially in parameter estimation
and hypothesis testing. If the data set is normally distributed and conform with its
assumptions, parametric tests generally will have more efficiency and power than
nonparametric tests. In order to test whether population follows normal distribution, some
graphical methods are plotted and displayed. However the graphical methods might

have some risk for miss conclusion since they are subjective tools. Nowadays,
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statisticians have proposed various tests for checking the form of a distribution. Those
tests can be grouped into likelihood ratio test statistic and non-likelihood ratio test
statistic which are more efficient than the visual displays.

There are many test statistics for testing normality. In various scenarios, such
as different sample sizes and/or different underline distributions, the power of each
statistic might be different. The researcher would like to use the statistic which is the
most appropriate powerful test. Therefore, the purpose of this research is to compare the

power of the test in different scenarios. Only the following six statistics for normality test
are considered in the study, that is the Anderson-Darling statistic (Az), the Shapiro-

Wilk statistic (W ), the Shapiro-Francia statistic (W ), the Z, statistic, the Z.
statistic and the Z  statistic.

The Z,, Z. and Z, statistics are recently developed for testing normality

based on the likelihood ratio. The W and W statistics are based on the non-likelihood
ratio. Originally the W statistic was proposed for fixing the problem of being unable to

extent the test to the sample size of 50 or more of the W statistic. W ‘and A? statistics
are the most favored statistics which are familiar in some popular software packages
such as SAS, P-Stat and Minitab. The expected utility of this study is to guide a
researcher in selecting the appropriate statistics for testing normality in different practical

situations.

2. Scope of the study
This study will convert all simulated data to have the population mean equal
zero and population variance equal one in order to test the hypotheses as following:
Ho : The data distribution is a standard normal
H; : The data distribution is non-standard normal
The power of the statistics will be calculated if and only if the tests can
control the type | error. The statistics will be compared for various choices of sample

sizes:
10, 30, 50, 70 and 100 for Z,, Z, Z and Anderson-Darling (Az) tests
10, 30, and 50 for Shapiro-Wilk (W ) test

50, 70, and 100 for Shapiro-Francia (W ') test
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The normal parameters are unknown and the tests will be compared at 0.05

level of significance.

3. Goodness-of-fit tests for normality
Let X be a continuous random variable with distribution function F(X), and
X,y X,,.., X, be arandom sample from X with order statistics X(l) , X(z) peens X(n).
To the test hypothesis
H, : F(x) = Fy(x), forall Xe& (—o0,)
against the general alternative
H, : F(x) # Fy(X), forsome X € (—o0,0)
where FO(X) is a hypothetical distribution function which is completely

specified. If F0 (X) is a family of distribution with unknown parameters, it need to

estimate the parameters first and then apply the tests. When testing the goodness-of-fit
for the family of normal distributions, 1 and o are estimated by the sample mean

X = z X, /n and the sample standard deviation S = \/;(Xi —Y)Z/(n -1,

i=1
respectively. The power of the tests also depend on the estimators of p and . Good
estimators should induce powerful tests of normality. For normal distribution, as well

known X and S %are the uniformly minimum variance unbiased estimators of p and o.

Anderson and Darling [1] proposed the Anderson-Darling statistic (A2). It is

defined as:
A2 = _n_ %{Zn:(Zi —1)InF(X,,) + |n(1-p<x(n_i+1)))ﬂ

0.75 2.25
n n

which is modified by computing A¥'=  A? (1+ j where the F(X(i))

provide cumulative distribution function of the normal distribution and the N provide the
sample size.
The critical values for the Anderson-Darling test are dependent on the specific

distribution that is being tested. Tabulated values and formulas have been published in
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Upton and Cook [2] for a few specific distributions (e.g. normal, exponential). The test is

a one-sided test and the hypothesis that the distribution is of a specific form is rejected if
the test statistic, AZ*, is greater than the critical value.
Shapiro and Wilk [4] proposed the Shapiro-Wilk statistic (W ), in 1965, that

tests whether a random sample, X, X,,.., X, comes from (specifically) a normal

n
distribution. Small values of W are evidence of departure from normality and percentage

points for the W test statistic, obtained via Monte Carlo simulations. The Shapiro-Wilk

statistic is defined as:

i=1

K 2
{Z Ay (X neisn) — Xy )}

n
z(x(i) N )T)Z

i=1
where the X(i) are the ordered sample values (X(l) is the smallest) and the K isthe
greatest integer in n/2. Shapiro and Wilk [4] gives tabled values that can be used to
compute the coefficients (@;) and the percentage point of the W statistic. The null
hypothesis will be rejected if the test statistic, W , is less than the percentage point. It is

note that this test statistic can be served for sample as small as 3, or as large as 50.

Shapiro and Francia [3] proposed the Shapiro-Francia statistic (\W '), The W'
test statistic was modified of the Shapiro-Wilk statistic for testing normality which can be
used with large samples.

The Shapiro-Francia statistic is defined as:

Zn:miz.zn:(x(i)—)f)z

i=1 i=1

where the M; are expected value of normal order statistics. The null hypothesis will be

rejected if the statistic, W', is less than the empirical percentage point of the

approximate W' test.
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Zhang and Wu [6] proposed the statistics, Z, , Z, and Z, for testing

normality. The Zhang-Wu statistics are defined as:

;. —Zn: IogFo(X(i))+Iog[1— Fo (X )]
A ~| n-i+0.5 i—0.5 ‘
Z = n F (X)) -1

(i—0.75)

n-i+05

. i—0.5 .
and Z,= max| (i —0.5)log ———— |+[n—i+0.5]lo
“ 1si<n ( )1og nF, (X)) [ : gn(l_ FO(x(i)))

where F, (X(i)) are cumulative distribution function of the normal distribution. The null
hypothesis will be rejected if the statistics, Z,, Z. and Z, , are greater than the table

of percentage pointfor Z,, Z. and Z, in Zhang and Wu [6].

4. Simulation study

The simulation study to compare the six statistics has 4 steps.

Step 1 : Find the probability of type | error
- Simulate the standard normal distribution data set by Minitab 14 for windows
for testing the null hypothesis
HO: The data distribution is a standard normal
against the alternative
H1 : The data distribution is non-standard normal
- Calculate each statistic, then find the empirical type | error rate collected from

1,000 Monte-Carlo replications.

Step 2 : Test the controllable of the probability of type | error

- Binomial test is used to test the null hypothesis
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Ho: & <0.05

against the alternative

H1: a>0.05_ The statistics can control the type | error at 0.05 level of

significance if the empirical type | error rate in step 1 is between 0 and 0.061.

Step 3 : Find the power of each test

- Simulate the non-normal distribution data set with Minitab 14 for windows,
then standardized the data set to have mean zero and variance one for testing the null
hypothesis

HO: The data distribution is a standard normal

against the alternative
H1 : The data distribution is non-standard normal
- Calculate each statistic, then find the empirical power of each test

collected from 1,000 Monte Carlo replications.

Step 4 : Compare the powers of the tests
Find the statistic which has the highest power for each scenario.
The Non-normal distributions under study are t-distribution, Lognormal

distribution, Beta distribution and Weibull distribution with parameters set by the
coefficient of skewness ( ;) and the coefficient of kurtosis (7, ). Shapiro et al. [5]

proposed the classification of distributions from their skewness and kurtosis into five
categories, as the following:

1. Near normal distribution.

2. Symmetric long-tailed distribution.

3. Symmetric short-tailed distribution.

4. Asymmetric long-tailed distribution.

5. Asymmetric short-tailed distribution.

The parameters ¥, and ., of each non-normal distributions are shown in Table 1.
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Table 1. Classification of the distributions under study.

Skewness : y‘ ,

Case Distributions used in the study

Kurtosis : ’YZ
Y, =0

1 ' N | (34), t(14), t(10), 1(8),

ear norma

25<vy,<45 Beta(13.5,13.5)
Y= 0’

2 Symmetric long-tailed 1(7), t(6), t(5)
Y, >45
Y1=0 _ _ Beta(1,1), Beta(L.5,1.5),

3 Symmetric short-tailed Beta(2 252 25) Beta(3.5.3.5
]/2<2.5 eta(2.25,2.25), Beta(3.5,3.5)

Weibull(2.211,1), Weibull(1.563,1),
Weibull(1.211,1), Weibull(1,1),

|Y1| >0.3 Weibull(0.896,1),
4 ! Asymmetric long-tailed |Lognormal(0,0.0269), Lognormal(0,0.0988),
Y, >3.0 Lognormal(0,0.1967), Lognormal(0,0.3040),
Lognormal(0,0.4108),
Beta(7,2), Beta(5,1)
|'Y1| >0.3 . . Beta(2,1.08), Beta(2.28,5), Beta(2,1),
5 ’ Asymmetric short-tailed Beta(2.5), Beta(0.5,1), Beta(2.4)
eta(2,5), Beta(0.5,1), Beta(2,
Y, <3.0
5. Results

The results of this study are as following:

1. The empirical type | error rate at 0.05 level of significance are presented in Table 2.
All six statistics, Z,, Zo,Zy . A% W and W can control the type | error at 0.05
significant level. The type | error decreases if the sample size increases as expected

except for W ‘statistic (Figurel).
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Table 2. The empirical type | error rate at 0.05 level of significance.
The empirical type | error rate
Sample size .
2
(n) Z A ZC Z K A W W
10 0.046 0.045 0.047 0.048 0.045 N/A
30 0.059 0.053 0.048 0.054 0.049 N/A
50 0.056 0.050 0.051 0.057 0.044 0.043
70 0.053 0.055 0.049 0.050 N/A 0.053
100 0.039 0.042 0.048 0.044 N/A 0.060
N/A : Not Applicable
Type | error
0.07
0.06 . 7A
Z —8—7C
% 0.05 sooAkes ZK
Q
o
a - - A2
0.04 -X-w
—
0.03

30

50

Sample size

70

100

Figure 1. The empirical type | error rate of six test statistics for the sample size n
equals 10, 30 50, 70, 100 at 0.05 level of significance.

2. The empirical power of all six statistics are presented in Table 3. The power of ZA

and Z statistics are higher than the power of Z, and A? statistics. The powers of

the test presented here are the average for all sample sizes and for all distributions.

Based on the non-likelihood ratio tests, if the sample size equals 50, the power of A

statistic is higher than the W statistic for the case of near normal distributions and

symmetric long-tailed distributions. On the other hand for other distributions, such as ; (i)
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symmetric short-tailed distribution, (ii) asymmetric long-tailed distribution and (iii)

asymmetric short-tailed distribution, the power of W statistic is higher than W ' statistic.
To compare the power of all scenarios at each specific sample size,

the results are as following:
(@): For n = 10, ZA statistic has the highest power for near normal distribution
and for both symmetric and asymmetric long-tailed distributions. ZC statistic has the

highest power for both symmetric and asymmetric short-tailed distributions.

(ii): For n = 30, ZC statistic has the highest power for near normal distribution

and for symmetric both short-tailed and long-tail distributions. ZA statistic has the
highest power for asymmetric both long-tailed and short-tailed distributions.

(iii): For n = 50, W statistic has the highest power for near normal distribution
and symmetric long-tail distribution. W statistic has the highest power for symmetric
short-tailed distribution. ZA statistic has the highest power for asymmetric both long-
tailed and short-tailed distributions.

(iv): For n =70, W ‘statistic has highest power for near normal distribution and

symmetric long-tailed distribution. ZC statistic has the highest power for asymmetric

short-tailed distribution. ZA statistic has the highest power for asymmetric both long-
tailed and short-tailed distributions.

(v): For n =100, W statistic has the highest power for near normal distribution
and symmetric long-tailed distribution. ZA statistic has the highest power for symmetric

short-tail distribution and asymmetric for both long-tailed and short-tailed distributions.
Notice that the power of the test for all distribution increase if the sample size

increases (Figure 2).
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Table 3. The empirical power of all six statistics.

Power of test
Distribution ZA Zc Z . A2 W W .
Near Normal 0.072 0.066 0.065 0.066 | 0.062 -
Symmetric Long-tailed 0.102 0.097 0.086 0.097 | 0.086 -
10 Symmetric Short-tailed 0.039 0.059 0.051 0.057 | 0.054 -
Asymmetric Long-tailed 0.413 0.408 0.321 0.384 | 0.398 -
Asymmetric Short-tailed 0.118 0.131 0.096 0.121 | 0.123 -
Near Normal 0.094 0.098 0.082 0.084 | 0.081 -
Symmetric Long-tailed 0.213 0.219 0.177 0.181 | 0.192 -
30 Symmetric Short-tailed 0.139 0.184 0.106 0.140 | 0.180 -
Asymmetric Long-tailed 0.831 0.813 0.793 0.778 | 0.812 -
Asymmetric Short-tailed 0.446 0.411 0.377 0.361 | 0.420 -
Near Normal 0.112 0.120 0.104 0.095 | 0.086 0.133
Symmetric Long-tailed 0.271 0.297 0.257 0.238 | 0.214 0.336
50 Symmetric Short-tailed 0.312 0.342 0.178 0.240 | 0.393 0.150
Asymmetric Long-tailed 0.915 0.899 0.886 0.866 | 0.897 0.880
Asymmetric Short-tailed 0.678 0.611 0.604 0.535 | 0.647 0.507
Near Normal 0.113 0.125 0.108 0.096 - 0.156
Symmetric Long-tailed 0.310 0.347 0.301 0.290 - 0.435
70 Symmetric Short-tailed 0.481 0.490 0.306 0.359 - 0.321
Asymmetric Long-tailed 0.952 0.945 0.938 0.929 - 0.925
Asymmetric Short-tailed 0.841 0.779 0.770 0.684 - 0.712
Near Normal 0.141 0.166 0.136 0.127 - 0.218
Symmetric Long-tailed 0.395 0.447 0.386 0.373 - 0.537
100 Symmetric Short-tailed 0.607 0.605 0.429 0.475 - 0.459
Asymmetric Long-tailed 0.971 0.960 0.954 0.939 - 0.954
Asymmetric Short-tailed 0.951 0.909 0.905 0.821 - 0.872
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Figure 2. The power of the test of six test statistics at 0.05 level of significance

for each underline distribution.

6. Conclusion and discussion

All six tests can control the probability of type | error for all sample sizes under
study. The power of Z, and Z statistics are higher than the power of Z, and A?
statistics. Based on the non-likelihood ratio tests, if the sample size equals 50, the power

of W' statistic is higher than the W statistic for near normal distributions and

symmetric long-tailed distributions. For other distributions, such as symmetric short-tailed
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distribution and asymmetric for both long-tailed short-tailed distributions, the power of

W statistic is higher than W statistic.

In this study the data sets were simulated with known coefficient of skewness
and coefficient of kurtosis. In practical situation, the researcher has never known the
shape of the data distribution in hand so some visual displays and some measures of
skewness and kurtosis should be provided before choosing the most appropriate
goodness of fit test. Furthermore other robust estimators of population mean and
variance could be used to see the performance of these six tests and the relationship
between skewness, kurtosis and the power of each statistic should be under studied in

the future.
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