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Abstract

This study proposed a multilevel logistic regression model to evaluate variation
of differential item functioning (DIF). The model accounts for the three level nested
structure of the data and combines results of logistic regression analyses to investigate
the variation of DIF across level-3 units. A simulation study is presented to assess the
adequacy of the proposed model. The parameters of the proposed model were

estimated by using a Bayesian approach implemented by the WinBUGS 1.4.
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1. Introduction

DIF is presented for a test item when respondents from two subpopulations with
the same trait level have different probability of answering the item correctly. A
consequence of having a DIF item is that the same true trait levels for examinees from
different subpopulations could indicate different total test scores or trait level estimates.
Currently, many statistical techniques have been proposed, based upon various
theoretical backgrounds and practical purposes. A thorough review of DIF detection
methods can be found in Millsap and Everson [6].

Once an item is identified as functioning differently from one subpopulation to
another, understanding why the item is functioning differently between groups may be
useful for many audiences. As one attempt, Gierl et al. [4] studies gender DIF in
mathematics by combing substantive and statistical analyses, as a two-stage process.
Three difference statistical methods: SIBTEST, DIMTEST, and multiple linear regression,
were used to test hypotheses about gender differences and to test whether content and
cognitive differences were among items. Bolt [2], for another example, found that
multiple-choice items had more DIF characteristic than constructive-response items
between males and females on SAT math pretest items. These results can possibly
provide suggestions that may be informative to minimize DIF items in future by many
different means, including instruction, policy and test construction. These studies were
based on multidimensional IRT based approaches.

As another statistical approach, Swanson et al. [8] proposed a two-level logistic
regression model to evaluate sources of DIF. This approach explicitly accounts for the

nested structure of the data and combines results of logistic regression analyses across
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individual items to investigate the variation of DIF. Their level-1 model is a logistic
regression model for DIF detection proposed by Swanminathan and Rogers [7]. In the
level-2 models, the coefficients from level-1 model are treated as random variables and
allow one to incorporate item characteristic variables to the models in order to explain
the variation of DIF across items.

There is also a possibility that the magnitude of the DIF varies across group
units, such as schools, and communities. Kamata and Binici [5] first attempted to extend
a two-level DIF model to three-level model using the hierarchical generalized linear
model (HGLM) framework. Their three-level model approach can be used to model
variation of DIF across school as well as applied to identify the school characteristic
variables that explain such variation. Their models were implemented by the HLM-5
software, which uses the penalized or predictive quasi-likelihood (PQL) method. They
found that the variance estimates produced by the HLM-5 for the level 3 parameters are
substantially negatively biased. This study extends their work by using a Bayesian
approach to obtain more accurate parameter estimates. More specifically, this study will
demonstrate a model in such a way that DIF of a particular item may vary among level-3

units.

2.1 Model Specification

To set the notation, let i denote the level-3 units (schools), j denote the level-
2 units (students), and K denote the level-1 units (items). Assume that
i=12..,s,]=12,..,n,and k=12,..,t. Let Yii be the dichotomous response
with code 1 if student J in school | responds to item k correctly and 0 otherwise. For
all i, jand K, Yij are assumed to be independent Bernoulli random variables with the
probability of correct response Py = P(yijk =1). The random effect DIF model

can be written as:

Yix ~ Bernoulli( Py )
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logit( Py ) = U3; +u2; +a0G; — B, —70,G; +ud, G;, 1)
where
- U3i is the random effect for school i. It is assumed to be normally distributed with
zero mean and constant variance (i.e., U3, ~ N(0,(c3)?)

- U2;; is the ability of student ] in the school i . Itis a random effect and is assumed to
be normally distributed with a non-zero mean and a group-specific variance (i.e.,
uz; ~ N(x,08)).

- aQis the fixed effect of belonging to the focal group compared to the reference group,
i.e., itis the mean difference between the focal and reference group.

- Gij is the group indicator that either indicates the reference group or the focal group.
Gij equals O if student j in school ibelongs to the reference group and equals 1 if
student ] in school i belongs to the focal group.

- ﬁk is a fixed effect representing the difficulty of item K for the reference group.

- y0, represents the overall mean DIF for item K across schools

- u4ik is a random increment to the DIF for item K in school i. It is assumed to be
normally distributed with mean zero and item-specific variance (i.e.,
u4, ~ N(0,(c4,)%)). it is further assumed that the random effects U3, , uz; ,
and u4ik are assumed to be mutually independent.

The values G4k provide a set of indices that describe how the DIF varies across
schools. A large value of O'4k indicates that, after controlling for school and student
abilities, the DIF varies a great deal from school to school. On the other hand, a small or
zero value of 0'4k indicates that the DIF varies little from school to school.

The model (1) is not identified because a constant can be added to all U2ij and
all ,Bk , but the logit of the model does not change. Similarly, a constant can be added to
all @0 and all of the }/Ok without changing the logits. To solve the non-identification
problem, Bafumi et al. [1] suggested replacing the model parameters with new (adjusted)

quantities that are well-identified but preserve the logit of the model. This study adopts
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Bafumi et al.’s general approach to identify the model (1) by defining the model

parameters as:
u3* =u3, - U3
adj _ 7T
uz2;” =uz; -p+u3
a0 = a0-70 @)
adj _ n
k= ﬂk - ,3
VOEdj =0, = 70.
These adjusted quantities will be used in place of the original quantities. The random

effect DIF model now can be defined as:
logit ( Py) = U3 +u2i? +a0*G; - Y -0, G; +u4, G, )

2.2 Estimation with WinBUGS

The random effect DIF model can be easily implemented in WinBUGS, an
available software for Bayesian analysis, using Gibbs sampling. The parameters in the
model are fixed effects (0 , S, , and y0,), i, the random effects (U3,u2,u4),
and the standard deviation parameters (O'ZG,O'3, and O'4k). The parameters of the
greatest interest for the random effect DIF model are the standard deviation of the
random DIF magnitude, O'4k. If the 0'4k is large, it indicates that the DIF magnitude of
item K is different across schools.

The Bayesian approach treats all unknown parameters as random quantities
with appropriate prior distributions. Estimation is based on the joint posterior distribution
P(@|y) where @ is the vector of unknown model parameters (i.e.,
0=(a0 }{B.} {70} {02;},03, 04,) and Y is the sample data. The

posterior distribution of & is obtained from Bayes’ theorem as:
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P(y|0)P(9)
[P©)P(y|6)do
« P(y|9)P(6).

where P(y | @) is the likelihood and P(8) s the prior.

P@1y) =

The posterior distribution for & is proportional to the likelihood multiplied by the
prior distribution. Since the item responses given the school and student ability are

assumed to be independent, the likelihood for the random effect DIF model is given as:

P(y|6) :jg(u4;0,a4k)jg(u3;0, GB)IQ(UZ;ﬂ,GZG)H f(yye 1U2;,u3;,ud, )du2; du3; du4,,

ijk
where
1-v.
e*ﬂijk Yijk

1 Yijk
f(y; |u2;,u3,,ud,) = ,
(ka | I k) (1+e77ijk j 1+e77ijk

and g(u4;0,04,). 9(u3,0,03), and g(u2; u,02;) are multivariate normal
density of u4={ud4,} , ud3={u3;} . and u2={u2;} , respectively,

Ni =logit(Py; ) from equation (1).

2.3 Choice of Prior Distributions and Specification of Initial Values

Bayesian estimation of the model parameters requires the specification of a
prior distribution for all the unknown parameters. In our prior distribution, we use a
noninformative, but proper prior distribution. We assume the fixed effect
(a0 },{ﬂk},{}/Ok}), and 4 of U2 are independent and normally distributed with
mean zero and a huge variance 10* (N(0,10*)). For the variance parameters, we
follow the recommendation of Gelman [3] that suggests the use of a noninformative
uniform prior density on standard deviation parameters unless a weakly informative prior
is desired, in which case a half-t family such as a half-Cauchy prior distribution on O is

recommended instead of a uniform prior. The half-t distribution can be defined as the
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ratio of the absolute value of a normal random variable centered at 0 and the square root
of a gamma random variable. Further details on this distribution can be seen in Gelman
[3]. For O'ZG and 03 a noninformative proper uniform prior density with a wide range
(i.e., unif(0, 1000)) are used. For the between-school standard deviation of DIF
parameter for each item (0'4k ), half-Cauchy prior distributions with scale parameter (5)
of 25 as recommended by Gelman [3] are used.

After setting the prior density for all unknown parameters, the model is
completely specified in WinBUGS. Then WinBUGS loads the data and compiles the
model. When the model compiles successfully, WinBUGS will load the initial values in
the next step. For the random DIF model, we specify 0 as initial value for the fixed effects
(a0 }{B,}, {70, ) and g of U2, and 1 as the initial value for the standard
deviation parameters of ( 0'26,0'3, 0'4k ). Using Gelman's [3] approach to

implementing the half-cauchy prior, the values of 0'4k are actually represented as

| S |
od, =
Joo

where &~ N(0,25) and 7, ~ y;. We assign &, and 7, initial values of 1, so that

(74k is also initially equal to 1. The initial values for the random effects
(u2,u3,u4) are generated by WinBUGS itself.

When the initial values have been loaded or generated by WinBUGS
successfully, WinBUGS now is ready to run the Gibbs sampling to obtain statistical
inferences for the unknown parameters. In each situation we study, only one chain is run

and the chain is run for 11,000 iterations with a burn-in of 1,000.



34 Thailand Statistician, 2006; 4:27-41

3. Simulation Study and Results
3.1 Simulation Design

The simulation study consists of three conditions that vary the number of
students per school (n) and number of schools (s): (a) n=50, s=20, (b) n=20, s=50, and
(c) n=40, s=40. For each of the three conditions, we simulate 100 data sets from the
model (1). For all these simulations, the number of test items is fixed at 10 with the
difficulties ﬁk =-1.0,-1.0,0,0,0,0, 0,0, 1.0, 1.0. The mean difference between the
reference and focal group is @0 = -1.0. Three situations for DIF will be considered. First,
DIF exists but is not consistent across schools. Second, DIF exists and is consistent
across schools. Third, DIF is negligible overall but varies from school to school. In order
to study these three situations, for items 3, 4, and 5, we take }/0k to be 0.7, 0.7, and 0.4,
respectively, and O'4k to be 1.0, 0.2, and 1.0, respectively. Then items 3, 4, and 5
represent the first, second, and third situation for DIF, respectively. For the others items,
we take }/0k =0and G4k = 0.2. The ability of students (u2ij ) is sampled from N(O,1).

The ability of schools (u3i) is sampled from N(0,4). The random effects U2 u3i, and

ij

u4ik are generated independently in each data set. It is assumed that U2 U3i, and

ij
u4ik are mutually independent. Splus is used to create the simulated data, and

WinBUGS is used for the subsequent analysis.

3.2 Simulation Results

For each data set and analysis, our posterior inference is based on the output
of a Gibbs sampler. We illustrate some typical Gibbs sample output using one data set
from the first condition (n=50, s=20). Sample history plot (trace plot), autocorrelation plot
and posterior density plot are given for selected parameters for 10,000 iterations after

eliminating the first 1,000 iterations. These plots are shown in Figures 1 to 3, respectively.
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Figure 1. Gibbs sampling trace plots for some standard deviation parameters under

condition 1 (N =50, s = 20).



36 Thailand Statistician, 2006; 4:27-41

sigmaz[1] =sigmal
1.III'| 10r
0.5 I . &
o.nb |l.“|.-| ---------- ook e . . - - -
-0.5F -05-
-1'D-| T T -1D-| T T
1] 20 40 1] 20 40
lag lag
sigmad[1] sigm ad[3]
1.0F 1.0
0.5k 0.5
oo I = -— i E 0.0 III__ o
-0.5F -0.58F
-1.0p -1.0p
u] 20 0 1] 20 40
lag lag

Figure 2. Gibbs sampling autocorrelation plots for some standard deviation parameters

under condition 1 (N =50, s = 20).
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Figure 3. Gibbs sampling density plots for some standard deviation parameters under

condition 1 (N =50, s = 20).
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The trace plots are shown in Figure 1. Each parameter of interest becomes
stationary by 1,000 iterations, indicating that convergence has been reached by 1,000
iterations. The autocorrelation plots (Figure 2) show that for all parameters, except the
level-2 standard deviations, the autocorrelations decrease to near zero in fewer than 10
lags. The autocorrelations of the level-2 standard deviations approach to near zero by
about lag 20. This indicates that the correlation between any two values separated by 10
or more iterations is close to zero, and these values can be treated as being roughly
independent. These autocorrelation plots suggest that the chains are mixing well and
quickly. In other words, the chains rapidly explore the entire posterior distribution.

The density plots for parameters (Figure 3) show unimodal distributions which
are nearly symmetric, and look close to normal except for the plot ofO'41 , Which has a
long right tail and a high peak close to zero. This result is likely due to the values of 0'41
being close to zero, the lower boundary of the parameter space.

Each Gibbs sampler run produces 10,000 values for each parameter in the
model. The sample mean and standard deviation (SD) of these 10,000 values estimate
the posterior mean and standard deviation for that parameter. For each of the three
conditions, the estimates of the posterior mean, standard deviation were computed for all
100 simulated data sets. These results are summarized in Table 1. From this table, we
see that the mean over the 100 data sets of standard deviation parameters is far from
the true parameter value used in the simulation. Substantial relative bias exists when
0'4k is small (0.2 in our simulations). In order to study the effect of varying the number
of schools and the number of students per school on the bias, the relative bias of o is
computed using (6 — )/ o . The estimates of the relative bias for all the standard
deviation parameters under each condition are presented in Table 2. It can be seen
immediately from this table that the point estimates of the standard deviations are

positively biased, except for the 0'22 (This exception are likely due to random variation.)
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The standard deviations of level-2 (0'21,0'22) are estimated with less bias
than the level-3 standard deviations (o3, O'4k ). Among the level-3 standard deviation

parameters, the relative bias of o3 is smaller than that of0'4k .

Table 1. Statistics of Gibbs sampling of standard deviation parameters under all

conditions.
Parameter TnIJe n=50,5=20 | n=20,s=50 | n=40,s5=40
vajue Mean SD Mean SD Mean SD
0.21 1.0 1.0251 0.0659 1.0138 0.0677 1.0085 0.0579
0.22 1.0 1.0361 0.0698 1.0268 0.0717 0.9973 0.0543
o3 2.0 2.1733 0.3971 2.1005 0.2332 2.0881 0.2546
0.41 0.2 0.3092 0.1897 0.3194 0.1937 0.2506 0.1482
0.42 0.2 0.3201 0.1906 0.3192 0.1933 0.2665 0.1500
0.43 1.0 1.1107 0.3170 1.0666 0.2602 1.0490 0.2111
0.44 0.2 0.3223 0.2050 0.3197 0.2032 0.2680 0.1603
ol 1.0 1.1185 0.3164 1.0666 0.2457 1.0499 0.2074
5
0.46 0.2 0.3259 0.1976 0.3361 0.2000 0.2605 0.1530
0'47 0.2 0.3053 0.1916 0.3299 0.1956 0.2469 0.1499
0.48 0.2 0.3139 0.1944 0.3579 0.2049 0.2626 0.1538
0.49 0.2 0.3350 0.2152 0.3298 0.2065 0.2797 0.1652
ol 6 0.2 0.3035 0.2048 0.3557 0.2130 0.2957 0.1688
1
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Table 2. Estimates of the percentage relative bias for the standard deviation parameters

under all conditions.

Parameter | True Relative bias %
value N=50,5=20 | n=20,5=50 | n=40, s = 40
0.21 1.0 251 1.38 0.85
o2, 1.0 3.61 2.68 -0.27
o3 2.0 8.67 5.03 4.41
0.41 0.2 54.6 59.70 25.3
0.42 0.2 60.05 59.60 33.25
J43 1.0 11.07 6.66 4.90
0.44 0.2 61.15 59.85 34.00
J45 1.0 11.85 6.66 4.99
0.46 0.2 62.95 68.05 30.25
0.47 0.2 52.65 64.95 23.45
o4, 0.2 56.95 78.95 31.30
0.49 0.2 67.50 64.90 39.85
0410 0.2 51.75 77.85 47.55

“Relative bias %" of O is computed using [(5‘ - G)/G]x 100%

4. Conclusion and Suggestion

From these results, we can conclude that the estimates for the standard
deviations are positively biased. The relative bias of standard deviation estimates is
inversely related to amount of information in the data that they are based on, and their
magnitudes. The positive bias of the standard deviation parameters can be explained
from the Bayesian point of view. Bayesian estimation combines the prior distribution with
the likelihood to obtain the posterior distribution. When the data provide less information,
the posterior distribution more heavily weights the prior resulting in shrinkage of the
standard deviations toward the mean of the prior, which is a large positive value for a

uniform distribution with a wide range from 0 to 1000 or a half-Cauchy distribution.
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The bias can be reduced by increasing the number of schools and the number
of students per school as can be seen from Table 2. In addition, the skewness of the
posterior density estimate for 641 shown in Figure 3 suggests that the use of the
median or mode of its posterior density as a point estimate may also reduce the relative

bias.
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