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Abstract 

This study proposed a multilevel logistic regression model to evaluate variation 

of differential item functioning (DIF). The model accounts for the three level nested 

structure of the data and combines results of logistic regression analyses to investigate 

the variation of DIF across level-3 units. A simulation study is presented to assess the 

adequacy of the proposed model. The parameters of the proposed model were 

estimated by using a Bayesian approach implemented by the WinBUGS 1.4. 
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1.  Introduction 

DIF is presented for a test item when respondents from two subpopulations with 

the same trait level have different probability of answering the item correctly. A 

consequence of having a DIF item is that the same true trait levels for examinees from 

different subpopulations could indicate different total test scores or trait level estimates. 

Currently, many statistical techniques have been proposed, based upon various 

theoretical backgrounds and practical purposes. A thorough review of DIF detection 

methods can be found in Millsap and Everson [6]. 

Once an item is identified as functioning differently from one subpopulation to 

another, understanding why the item is functioning differently between groups may be 

useful for many audiences. As one attempt, Gierl et al. [4] studies gender DIF in 

mathematics by combing substantive and statistical analyses, as a two-stage process. 

Three difference statistical methods: SIBTEST, DIMTEST, and multiple linear regression, 

were used to test hypotheses about gender differences and to test whether content and 

cognitive differences were among items. Bolt [2], for another example, found that 

multiple-choice items had more DIF characteristic than constructive-response items 

between males and females on SAT math pretest items. These results can possibly 

provide suggestions that may be informative to minimize DIF items in future by many 

different means, including instruction, policy and test construction. These studies were 

based on multidimensional IRT based approaches. 

As another statistical approach, Swanson et al. [8] proposed a two-level logistic 

regression model to evaluate sources of DIF. This approach explicitly accounts for the 

nested structure of the data and combines results of logistic regression analyses across 
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individual items to investigate the variation of DIF. Their level-1 model is a logistic 

regression model for DIF detection proposed by Swanminathan and Rogers [7]. In the 

level-2 models, the coefficients from level-1 model are treated as random variables and 

allow one to incorporate item characteristic variables to the models in order to explain 

the variation of DIF across items.  

There is also a possibility that the magnitude of the DIF varies across group 

units, such as schools, and communities. Kamata and Binici [5] first attempted to extend 

a two-level DIF model to three-level model using the hierarchical generalized linear 

model (HGLM) framework. Their three-level model approach can be used to model 

variation of DIF across school as well as applied to identify the school characteristic 

variables that explain such variation. Their models were implemented by the HLM-5 

software, which uses the penalized or predictive quasi-likelihood (PQL) method. They 

found that the variance estimates produced by the HLM-5 for the level 3 parameters are 

substantially negatively biased. This study extends their work by using a Bayesian 

approach to obtain more accurate parameter estimates. More specifically, this study will 

demonstrate a model in such a way that DIF of a particular item may vary among level-3 

units. 

  

2.1 Model Specification 

To set the notation, let i  denote the level-3 units (schools), j  denote the level-

2 units (students), and k  denote the level-1 units (items). Assume that  

si ,...,2,1=  , inj ,...,2,1=  and tk ,...,2,1= . Let ijky  be the dichotomous response 

with code 1 if student j  in school i  responds to item k  correctly and 0 otherwise.  For 

all ji, and k , ijky  are assumed to be independent Bernoulli random variables with the 

probability of correct response )1( == ijkijk yPp .  The random effect DIF model 

can be written as: 

                           ~ijky Bernoulli( ijkp ) 
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logit( ijkp ) ,40023 ijikijkkijiji GuGGuu +−−++= γβα               (1) 

where   

- iu3  is the random effect for school i . It is assumed to be normally distributed with 

zero mean and constant variance (i.e., ))3(,0(~3 2σNu i  

- iju2  is the ability of student j  in the school i . It is a random effect and is assumed to 

be normally distributed with a non-zero mean and a group-specific variance (i.e., 

)).,(~2 2
Gij Nu σµ  

 - 0α is the fixed effect of belonging to the focal group compared to the reference group, 

i.e., it is the mean difference between the focal and reference group. 

- ijG is the group indicator that either indicates the reference group or the focal group. 

ijG equals 0 if student j in school i belongs to the reference group and equals 1 if 

student j in school i belongs to the focal group. 

- kβ is a fixed effect representing the difficulty of item k for the reference group. 

- k0γ represents the overall mean DIF for item k  across schools 

- iku4 is a random increment to the DIF for item k  in school i . It is assumed to be 

normally distributed with mean zero and item-specific variance (i.e., 

)).)4(,0(~4 2
kik Nu σ  It is further assumed that the random effects iu3  , iju2  , 

and iku4 are assumed to be mutually independent.  

The values k4σ provide a set of indices that describe how the DIF varies across 

schools. A large value of k4σ  indicates that, after controlling for school and student 

abilities, the DIF varies a great deal from school to school. On the other hand, a small or 

zero value of k4σ  indicates that the DIF varies little from school to school. 

 The model (1) is not identified because a constant can be added to all iju2  and 

all kβ , but the logit of the model does not change. Similarly, a constant can be added to 

all 0α and all of the k0γ without changing the logits. To solve the non-identification 

problem, Bafumi et al. [1] suggested replacing the model parameters with new (adjusted) 

quantities that are well-identified but preserve the logit of the model. This study adopts 
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Bafumi et al.’s general approach to identify the model (1) by defining the model 

parameters as: 
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These adjusted quantities will be used in place of the original quantities. The random 

effect DIF model now can be defined as: 

 

logit ( ijkp ) ijikijk
adj
k

adj
kij

adjadj
ij

adj
i GuGGuu 40023 +−−++= γβα              (3)            

  

2.2 Estimation with WinBUGS  

The random effect DIF model can be easily implemented in WinBUGS, an 

available software for Bayesian analysis, using Gibbs sampling. The parameters in the 

model are fixed effects ( ,,0 kβα  and k0γ ), µ , the random effects ( 4,2,3 uuu ), 

and the standard deviation parameters ( ,3,2 σσ G and k4σ ). The parameters of the 

greatest interest for the random effect DIF model are the standard deviation of the 

random DIF magnitude, k4σ . If the k4σ is large, it indicates that the DIF magnitude of 

item k  is different across schools.  

The Bayesian approach treats all unknown parameters as random quantities 

with appropriate prior distributions. Estimation is based on the joint posterior distribution 

)|( yP θ  where θ  is the vector of unknown model parameters (i.e., 

=θ ({ },{},0 kβα { k0γ }, µ ,{ ,3},2 σσ G k4σ )) and y  is the sample data. The 

posterior distribution of θ  is obtained from Bayes’ theorem as:  
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where )|( θyP  is the likelihood and )(θP is the prior.  

 The posterior distribution for θ  is proportional to the likelihood multiplied by the 

prior distribution. Since the item responses given the school and student ability are 

assumed to be independent, the likelihood for the random effect DIF model is given as: 

,432)4,3,2|()2,;2()3,0;3()4,0;4()|(
,,

ikiij
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ikiijijkGk dududuuuuyfugugugyP ∏∫ ∫ ∫= σµσσθ  
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and )4,0;4( kug σ , )3,0;3( σug , and )2,;2( Gug σµ  are multivariate normal 

density of }4{4 ikuu = , }3{3 iuu = , and }2{2 ijuu = , respectively, 

=ijkη logit )( ijkp  from equation (1). 

 

2.3 Choice of Prior Distributions and Specification of Initial Values 

Bayesian estimation of the model parameters requires the specification of a 

prior distribution for all the unknown parameters. In our prior distribution, we use a 

noninformative, but proper prior distribution. We assume the fixed effect 

({ },{},0 kβα { k0γ }), and µ  of 2u are independent and normally distributed with 

mean zero and a huge variance 410  ))10,0(( 4N .  For the variance parameters, we 

follow the recommendation of Gelman [3] that suggests the use of a noninformative 

uniform prior density on standard deviation parameters unless a weakly informative prior 

is desired, in which case a half-t family such as a half-Cauchy prior distribution on σ is 

recommended instead of a uniform prior. The half-t distribution can be defined as the 
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ratio of the absolute value of a normal random variable centered at 0 and the square root 

of a gamma random variable. Further details on this distribution can be seen in Gelman 

[3]. For  G2σ and 3σ  a noninformative proper uniform prior density with a wide range 

(i.e., unif(0, 1000)) are used. For the between-school standard deviation of DIF 

parameter for each item ( k4σ ), half-Cauchy prior distributions with scale parameter (ξ ) 

of 25 as recommended by Gelman [3] are used. 

After setting the prior density for all unknown parameters, the model is 

completely specified in WinBUGS. Then WinBUGS loads the data and compiles the 

model. When the model compiles successfully, WinBUGS will load the initial values in 

the next step. For the random DIF model, we specify 0 as initial value for the fixed effects 

({ },{},0 kβα { k0γ }) and µ  of 2u , and 1 as the initial value for the standard 

deviation parameters of ( ,3,2 σσ G k4σ ). Using Gelman's [3] approach to 

implementing the half-cauchy prior, the values of k4σ are actually represented as 

 

                         
k

k
k τ

ξ
σ

||
4 =  

 

where )25,0(~ Nkξ  and 2
1~ χτ k . We assign kξ and kτ  initial values of 1, so that 

k4σ  is also initially equal to 1. The initial values for the random effects 

)4,3,2( uuu are generated by WinBUGS itself.  

When the initial values have been loaded or generated by WinBUGS 

successfully, WinBUGS now is ready to run the Gibbs sampling to obtain statistical 

inferences for the unknown parameters. In each situation we study, only one chain is run 

and the chain is run for 11,000 iterations with a burn-in of 1,000. 
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3. Simulation Study and Results 

3.1 Simulation Design 

              The simulation study consists of three conditions that vary the number of 

students per school (n) and number of schools (s): (a) n=50, s=20, (b) n=20, s=50, and 

(c) n=40, s=40. For each of the three conditions, we simulate 100 data sets from the 

model (1). For all these simulations, the number of test items is fixed at 10 with the 

difficulties kβ  = -1.0, -1.0, 0, 0, 0, 0, 0, 0, 1.0, 1.0. The mean difference between the 

reference and focal group is 0α  = -1.0. Three situations for DIF will be considered. First, 

DIF exists but is not consistent across schools. Second, DIF exists and is consistent 

across schools. Third, DIF is negligible overall but varies from school to school. In order 

to study these three situations, for items 3, 4, and 5, we take k0γ  to be 0.7, 0.7, and 0.4, 

respectively, and k4σ  to be 1.0, 0.2, and 1.0, respectively. Then items 3, 4, and 5 

represent the first, second, and third situation for DIF, respectively. For the others items, 

we take k0γ  = 0 and k4σ   = 0.2. The ability of students ( iju2 ) is sampled from N(0,1). 

The ability of schools ( iu3 ) is sampled from N(0,4). The random effects iju2  , iu3 , and 

iku4 are generated independently in each data set. It is assumed that iju2  , iu3 , and 

iku4 are mutually independent. Splus is used to create the simulated data, and 

WinBUGS is used for the subsequent analysis.  

 

3.2 Simulation Results 

 For each data set and analysis, our posterior inference is based on the output 

of a Gibbs sampler. We illustrate some typical Gibbs sample output using one data set 

from the first condition (n=50, s=20). Sample history plot (trace plot), autocorrelation plot 

and posterior density plot are given for selected parameters for 10,000 iterations after 

eliminating the first 1,000 iterations. These plots are shown in Figures 1 to 3, respectively. 
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Figure 1.  Gibbs sampling trace plots for some standard deviation parameters under 

condition 1 ( 20,50 == sn ). 
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Figure 2. Gibbs sampling autocorrelation plots for some standard deviation parameters 

under condition 1 ( 20,50 == sn ).  

                

  
Figure 3. Gibbs sampling density plots for some standard deviation parameters under 

condition 1 ( 20,50 == sn ).  
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 The trace plots are shown in Figure 1. Each parameter of interest becomes 

stationary by 1,000 iterations, indicating that convergence has been reached by 1,000 

iterations. The autocorrelation plots (Figure 2) show that for all parameters, except the 

level-2 standard deviations, the autocorrelations decrease to near zero in fewer than l0 

lags. The autocorrelations of the level-2 standard deviations approach to near zero by 

about lag 20. This indicates that the correlation between any two values separated by 10 

or more iterations is close to zero, and these values can be treated as being roughly 

independent. These autocorrelation plots suggest that the chains are mixing well and 

quickly. In other words, the chains rapidly explore the entire posterior distribution. 

The density plots for parameters (Figure 3) show unimodal distributions which 

are nearly symmetric, and look close to normal except for the plot of 14σ  , which has a 

long right tail and a high peak close to zero. This result is likely due to the values of 14σ  

being close to zero, the lower boundary of the parameter space. 

 Each Gibbs sampler run produces 10,000 values for each parameter in the 

model.  The sample mean and standard deviation (SD) of these 10,000 values estimate 

the posterior mean and standard deviation for that parameter.  For each of the three 

conditions, the estimates of the posterior mean, standard deviation were computed for all 

100 simulated data sets. These results are summarized in Table 1. From this table, we 

see that the mean over the 100 data sets of standard deviation parameters is far from 

the true parameter value used in the simulation.  Substantial relative bias exists when 

k4σ  is small (0.2 in our simulations). In order to study the effect of varying the number 

of schools and the number of students per school on the bias, the relative bias of σ  is 

computed using σσσ /)ˆ( − . The estimates of the relative bias for all the standard 

deviation parameters under each condition are presented in Table 2. It can be seen 

immediately from this table that the point estimates of the standard deviations are 

positively biased, except for the 22σ  (This exception are likely due to random variation.) 
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The standard deviations of level-2 ( 21 2,2 σσ ) are estimated with less bias 

than the level-3 standard deviations ( k4,3 σσ ). Among the level-3 standard deviation 

parameters, the relative bias of 3σ  is smaller than that of k4σ  .  

 

Table 1. Statistics of Gibbs sampling of standard deviation parameters under all 

conditions. 
 
Parameter True 

value 
20,50 == sn  50,20 == sn  40,40 == sn  

Mean SD Mean SD Mean SD 

12σ  1.0 1.0251 0.0659 1.0138 0.0677 1.0085 0.0579 

22σ  1.0 1.0361 0.0698 1.0268 0.0717 0.9973 0.0543 

3σ  2.0 2.1733 0.3971 2.1005 0.2332 2.0881 0.2546 

14σ  0.2 0.3092 0.1897 0.3194 0.1937 0.2506 0.1482 

24σ  0.2 0.3201 0.1906 0.3192 0.1933 0.2665 0.1500 

34σ  1.0 1.1107 0.3170 1.0666 0.2602 1.0490 0.2111 

44σ  0.2 0.3223 0.2050 0.3197 0.2032 0.2680 0.1603 

54σ  1.0 1.1185 0.3164 1.0666 0.2457 1.0499 0.2074 

64σ  0.2 0.3259 0.1976 0.3361 0.2000 0.2605 0.1530 

74σ  0.2 0.3053 0.1916 0.3299 0.1956 0.2469 0.1499 

84σ  0.2 0.3139 0.1944 0.3579 0.2049 0.2626 0.1538 

94σ  0.2 0.3350 0.2152 0.3298 0.2065 0.2797 0.1652 

104σ  0.2 0.3035 0.2048 0.3557 0.2130 0.2957 0.1688 
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Table 2. Estimates of the percentage relative bias for the standard deviation parameters 

under all conditions. 

 
Parameter True 

value 
Relative bias % 

20,50 == sn  50,20 == sn  40,40 == sn  

12σ  1.0 2.51 1.38 0.85 

22σ  1.0 3.61 2.68 -0.27 

3σ  2.0 8.67 5.03 4.41 

14σ  0.2 54.6 59.70 25.3 

24σ  0.2 60.05 59.60 33.25 

34σ  1.0 11.07 6.66 4.90 

44σ  0.2 61.15 59.85 34.00 

54σ  1.0 11.85 6.66 4.99 

64σ  0.2 62.95 68.05 30.25 

74σ  0.2 52.65 64.95 23.45 

84σ  0.2 56.95 78.95 31.30 

94σ  0.2 67.50 64.90 39.85 

104σ  0.2 51.75 77.85 47.55 

“Relative bias %” of  σ  is computed using [ σσσ /)ˆ( − ]× 100% 

 

4. Conclusion and Suggestion 

From these results, we can conclude that the estimates for the standard 

deviations are positively biased. The relative bias of standard deviation estimates is 

inversely related to amount of information in the data that they are based on, and their 

magnitudes. The positive bias of the standard deviation parameters can be explained 

from the Bayesian point of view. Bayesian estimation combines the prior distribution with 

the likelihood to obtain the posterior distribution. When the data provide less information, 

the posterior distribution more heavily weights the prior resulting in shrinkage of the 

standard deviations toward the mean of the prior, which is a large positive value for a 

uniform distribution with a wide range from 0 to 1000 or a half-Cauchy distribution. 
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The bias can be reduced by increasing the number of schools and the number 

of students per school as can be seen from Table 2. In addition, the skewness of the 

posterior density estimate for 14σ  shown in Figure 3 suggests that the use of the 

median or mode of its posterior density as a point estimate may also reduce the relative 

bias.  
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