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Abstract
In a semiparametric transformation model, an increasing transformation of the survival time is

linearly related to a covariate Z with an error distribution & . In other words, the survival time T

has the property that & (T) =—0Z+¢& givenZ =7, where & is an unknown extended

real-valued function on R and @ is an unknown constant in R® . An observation is said to
be censored by a general censorship scheme if there are random intervals which, when the
observation falls inside them, would hide it. In such cases we get the censoring interval instead
of the actual observation. In this paper we consider maximum likelihood estimation of the
transformation function & and the regression coefficient & when the survival time data are

subjected to general censorship.
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1. Introduction

Recently, there has been a growing interest in the semiparametric model which
is the hybrids between parametric and nonparametric model. For the classical parametric
model, it is usually assumed that the dependent variable is functionally dependent on the
explanatory or the regressor variable or covariate and unobservable error. One way to
examine the relationship between the dependent variable or failure time and the covariate is
through a regression model, in which failure time has a distribution that depends upon the

covariate. This involves specifying a model for the distribution of survival time, T , given

covariate Z . The exponential, Weibull, log-normal and generalised gamma distribution are
the most frequently used parametric failure time distribution models. When the circumstances
do not support the usage of a fully parametric failure time distribution model, one often turns
to a nonparametric or semiparametric method. The main point in using a semiparametric
model is that certain of its properties do not depend upon the underlying failure time

distribution -e.g. the proportional hazard model due to Cox [2] does not specify the form of the
baseline hazard function, hy (t).

In many situations, it is common to have incomplete data and often, such
incomplete observation of the data results from a random censoring mechanism. The type
of censoring we consider here, referred to as general censorship, is a generalization of the
different types of censoring. Under this scheme some of the data become unobservable when
they fall inside a random interval. These intervals can be finite or infinite. Various
combinations of finite and infinite intervals give all the different types of censorship such
as left censoring, right censoring, double censoring and different cases of interval censoring.

For a detailed discussion on this see Jammalamadaka and Mangalam [6].
Let T be the variable of interest, and Z be a covariate, an element of Rd.
Let F (| Z) =F, () be the distribution function of T givenZ =Z. Let us consider a
transformation model
F(tlz)=vy(a(t)+62), @
where @ is an unknown extended real-valued function on R, @ is an unknown

constant in Rd and i be the continuous and strictly decreasing function. It is easy to
show that (1) is equivalent to the linear transformation model

a(T)=-0z+¢, )
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where & is a random error with a known distribution. The function & is called the

transformation function and & is referred to as the regression coefficient. The transformation

function @ is assumed to satisfy two conditions, & is monotonic increasing and

lim a(t) = o0, The proportional hazard model and the proportional odds model are
t—+to

special cases of (2) with & following the extreme-value distribution and the standard
logistic distribution, respectively. The generalised odds-rate model also belongs to (2).
Horowitz [5] developed semiparametric estimators of & and € when the
distribution function of the error is unknown. Gorgens and Horowitz [4] extended this
technique to censored data. Gorgens [3] developed better estimators of the transformation
function and the error distribution. Jammalamadaka and Mangalam [6] provided an
algorithm to find the self consistent estimator and showed that the nonparametric maximum
likelihood estimator was satisfied the self consistent equation. Our aim in this paper is to
estimate the transformation function ¢ and & when failure times are subjected to general
censorship by Maximum Likelihood Method. The motivation for this is that it is a strong
generalization of the ordinary regression problem (linear or nonlinear) where the kind of
relationship between the variable of interest and the covariate is precisely known. The
computation of maximum likelihood estimator is provided in Section 2. Simulation studies in

Section 3 and the conclusion of this study is in the last section.

2. The Computation of Maximum Likelihood Estimator

Let Ti ,i=1,...,n, be a sequence of independent identically distributed (i.i.d.)

random variables with distribution function F . Let (Ui,Vi), i=1,...,n be the open

interval which represent the censoring mechanism, consisting of n pairs of i.i.d. extended real-

valued random variables (U;,V;), such that P(U;<V,,Vi)=1. The i "

observation is said to be censored if T, € (Ui,Vi) and let S, = | [Ti §E(Ui,Vi ):I
where |(-) is the indicator function, so that &; = O if the I " observation is censored and

0, =1if it is uncensored. We assume that T, and (Ui,Vi),are independent given the

concomitant variable Z .
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The density function of T is given by f(t):l//'(oc(t)+l92)a'(t), so the

likelihood and the log-likelihood functions in the presence of censoring are given by

L (6.)=TT0f ()] [F (v)-F )]
.. [ (1oa v (a(t)+02,)] +logr (1)
T [+(1-0)1og [y (a (v -)+07) ~y (a(u) +0z)]

The value of this expression depends on the function & and its derivative only at the jump

logL, =

points and it can be made arbitrarily large by making a'(ti) as large as we want without

affecting the values of & (ti ) . Consequently, we work with a discretized version of the likelihood

_ ) [
function where a'(t) IS replaced by a jump size & and Ot(ti) by A= Zk:o a, .
Thus we find the function that maximises this modified log-likelihood among all ¢ 's such that
o is anincreasing step function that is a constant for t <t, and jumpsat t;.

We replace any empty censoring interval (a censoring interval that contains no
uncensored observations) by its midpoint as an uncensored observation, group the censored

and uncensored observations separately and reorder the uncensored observation in the

ascending order. Let N, be the size of the exact data and N, =N —N, be the size of the

censored data. Let d; = 0(('[1 —) and @, be the jump size at ti fori=1,..., n,. Then

the modified version of the log-likelihood is given by

In(e,a):i{log[y/’(,&1 +01,)]+loga,

i=1

Ny
+lelog vl D a+0z, |-y ktz a, +0z,
= (1 <u

Kty <V k)
which is to be maximised under the constraint that all of the @;'s except @, are non-
negative. If éi , i=0to N, maximises |n (9, a), then the function & defined as an

increasing step function with jumps éii at t; and value @, for t <t is the MLE of & .
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Let ® C R? be the d-dimensional parameter space of & . Let 6?0 and &,

denote the true value of the parameters and let F0 be the true conditional distribution

function of T givenZ . The MLE's of & and &, a and @, are obtained by maximising
|n (9, a) over ®x A, where A=RxR™, the set of N, +1 dimensional vectors whose
coordinates are all non-negative except the first. Under some mild assumptions, it can be shown

that |n ((9, a) is strictly concave for each N as in proposition 2.1, and that it is bounded

above. It therefore has a unique maximiser, and the maximiser (49, é) can be obtained by

equating the first derivative to zero and using the multivariate Newton-Raphson algorithm.

Proposition 2.1  Let l//('[) be a differentiable distribution function on R . If

log (l//'(t)) is strictly concave in t, then 10g (l//(V) —l//(u)) is strictly concave in U

and V. Proof is shown in appendix.

3. Numerical Simulation

A simulation study was performed to measure the performance of maximum likelihood

estimator. The regression coefficient & is estmated by @, the transformation function ¢ is

estimated by @, = A and the distibution functon F by F =y (a(t)+60z) . The

n

~

performance of Fn iS more important than &n (see Cheng [1]) and can be measured

~

by F, (t)— K (t)” . The model for this study was the proportional

F,-F[= max,

hazards model where & has a standard extreme value distribution yielding P (6‘ < t) =
1—exp(—exp(t)). The dimension of the regression coefficient & is taken to be 1, the
true values of @, 190 =0, is considered and the true transformation function is chosen to
be «, (t) =logt. The values of the covariate Z are randomly generated from a standard

normal distribution. The random variables Ui and Vi are produced according to the level of
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censoring, which is set by letting Ui and Vi as the minimum and the maximum of c

independent exponential random variables, for C = 2. The sample size n is set to be 100
and each combination of all these factors was replicated 300 times. The implementations of data
generation and computation were wrtten in the statistical software package S-Plus. The non-
linear optimisation routine Nonlinear Minimization subject to Box Constraint (NLMINB) was used

for numerical maximisation.

likelihood value
-540 -500 <480 -460
1 1 1

=560
1

Figure 1. Log-likelihood function for a simulation data.

alphahat

Logt

Figure 2. The estimated value of & versus the true value of & .
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Figure 1 shows the log-likelihood function versus the regression coefficient (9n. It

maximised at (9n = 0.0032 which is the value of our maximum likelihood estimator and the

estimated value of & versus the true value of & is shown in Figure 2. The solid line is the

estimated value of & and the dotted line is the true value of & . The results show that 30.89 %

of them being censoring, the estimated value Qn is 0.0032 with variance 0.0120 and the maximum

distance

F.-F || =0.0920 which are fairly good.

We also tried out various other values of &, (t) =1, 6, =1, different level of

censoring with C=1,2,3 and 5, and the genearlised odds-rate (GOR) model with

1
coefficient A equal 0.5 (P(&‘ <'[) = 1-(1+Aexp(t)) #, A >0). Note that when

A equal 1, the GOR model gives the proportional odds model. The results are reported in

Table 1 and Table 2. In all cases, the conclusions were similar. As for the performance of

A

F,. the values of

F,- Fo” performed fairly well but they were influenced by the rate of

censoring. As the rate of censoring increased, the error increased, but continued to be within
acceptable limits. Hence our method of parameter estimation of both & and F performs

fairly well.

4. Conclusions

Maximum likelihood estimation for the regression coefficients and the transformation
function are carried out for a semiparametric transformation model where survival time data are
subjected to general censorship. The multivariate Newton-Raphson method was used for
optimization and in our entire simulation studies global maximum was attained. The ML
estimates performed fairly well in the sense that the estimated values were close to the true

values of the parameter.
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Table 1. Simulation results for the estimated values of & (t) =logt in the GOR model

with A =0.5.
Percent of censoring
90 =0 r=0 r=29.35 r=44.69 r=59.17
mean var mean var mean var mean var
é 0.0054 | 0.0210 - 0.0223 | 0.0027 | 0.0269 | 0.0155 | 0.0319
" 0.0035
F" F” 0.0814 | 0.0007 | 0.0915 | 0.0008 | 0.1170 | 0.0016 | 0.2128 | 0.0065
n~To
Percent of censoring
90 =1 r=0 r=26.00 r=36.14 r=52.35
mean var mean var mean var mean var
N 1.0374 | 0.0346 | 1.0248 | 0.0303 | 1.0270 | 0.0336 | 1.0058 | 0.0357
n
lf F” 0.0895 | 0.0009 | 0.1010 | 0.0011 | 0.1267 | 0.0019 | 0.2278 | 0.0071
n~To

Table 2. Simulation results for the estimated values of ('[) =1 in the GOR model with

A1=05.
Percent of censoring
90 =0 r=0 r=14.96 r=22.67 r=29.23
mean var mean var mean var mean var
é 0.0016 | 0.0231 | 0.0058 | 0.0210 - 0.0236 - 0.0221
" 0.0023 0.0005
If F” 0.0783 | 0.0007 | 0.0869 | 0.0007 | 0.0978 | 0.0009 | 0.1517 | 0.0021
n~'o
Percent of censoring
90 =1 r=0 r=16.36 r=23.98 r=31.49
mean var mean var mean var mean var
N 1.0315 | 0.0295 | 1.0255 | 0.0340 | 1.0315 | 0.0339 | 0.9818 | 0.0337
n
If F” 0.0857 | 0.0008 | 0.0901 | 0.0008 | 0.1022 | 0.0009 | 0.1570 | 0.0022
n~ To
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Appendix

Proof of the Proposition.

Proposition 2.1 Let l//('[) be a differentiable distribution function on R . If log (l//'(t))

is strictly concave in t, then l0g (l// (V) el /4 (u )) is strictly concavein U and V.

Proof: Let g(t) = Iog (l//'(t)). Then ( is strictly concave by the assumption and

v (1) =€ Now,

—Iog(v/(v)—%f/(“)):#(;)(lj)

)=y )]y @)+ (v ()
[v(v)-w ()]

ed) ) ed)
= Ty g (U)—l— v
Ieg(x)dx Ieg(x)dx
u u
In order to show strictly concavity, we need to show that
edW
g'(u)+—>0
jeg(x)dx
u
If g'(u) >0 there is nothing to show, so assume g’(u) <0
For X>U,
X)—g(u . *
M:g’(x ) for some X E(U,X).
X—=u

As @ is strictly concave, g’ is strictly decreasing and hence g'(x*) < g’(u) .
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Therefore,
g(x) < g(u)+g'(u)(x—u) forsome x>0,
v v
J‘eg(X)dX < J’eg(U)+9’(U)(X—U) dx
u u
29(0) [ew—u)g'(u) _ 1}
g'(u)
etV
A0
Consequently,
ed®)
g9'(u)+ >0 as g'(u) < O
J.eg(x)dx

Thus log (l,// (V) -y (u)) is strictly concave in U .

Now, we will prove that 10g (l// (V) el (u)) is strictly concave in V.

ed™) ) e?d™)
= (V)
Ieg(x)dx _[eg(x)dx
u u
In order to show strictly concavity, we need to show that
e?™)
g'(v)+—<o0

Ieg(x)dx
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If g’(v) <0 , there is nothing to show, so assume g’(v) >0.

For X<V,

w: g'(X*) for some X E(X,V).

As g is astrictly concave, g’ is strictly decreasing and hence g’(x*) > g’(v) .

Therefore,
9(x)<g(v)-g'(v)(v—x) forsome x>0
v v
J‘eg(X)dX < J’eg(V)—g’(V)(V—X)dX
u u
o9 [1_ e—(v—u)g'(v)]
g'(v)
_ ed™)
9’(v)
Consequently,
g9
g9'(v)+ <0 a g'(v) > 0
J‘eg(X)dX

Thus log (l// (V) -y (u)) is strictly concave in V.

O
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