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Abstract 

In a semiparametric transformation model, an increasing transformation of the survival time is 

linearly related to a covariate Z with an error distributionε . In other words, the survival time T  

has the property that ( )T zα θ ε= − +  given Z z= , where α is an unknown extended 

real-valued function on R  and θ  is an unknown constant in dR . An observation is said to 

be censored by a general censorship scheme if there are random intervals which, when the 

observation falls inside them, would hide it. In such cases we get the censoring interval instead 

of the actual observation. In this paper we consider maximum likelihood estimation of the 

transformation function α  and the regression coefficient θ  when the survival time data are 

subjected to general censorship. 
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1. Introduction 

Recently, there has been a growing interest in the semiparametric model which 

is the hybrids between parametric and nonparametric model. For the classical parametric 

model, it is usually assumed that the dependent variable is functionally dependent on the 

explanatory or the regressor variable or covariate and unobservable error. One way to 

examine the relationship between the dependent variable or failure time and the covariate is 

through a regression model, in which failure time has a distribution that depends upon the 

covariate. This involves specifying a model for the distribution of survival time, T ,  given 

covariate Z . The exponential, Weibull, log-normal and generalised gamma distribution are 

the most frequently used parametric failure time distribution models. When the circumstances 

do not support the usage of a fully parametric failure time distribution model, one often turns 

to a nonparametric or semiparametric method. The main point in using a semiparametric 

model is that certain of its properties do not depend upon the underlying failure time 

distribution -e.g. the proportional hazard model due to Cox [2] does not specify the form of the 

baseline hazard function, ( )0h t .  

In many situations, it is common to have incomplete data and often, such 

incomplete observation of the data results from a random censoring mechanism. The type 

of censoring we consider here, referred to as general censorship, is a generalization of the 

different types of censoring. Under this scheme some of the data become unobservable when 

they fall inside a random interval. These intervals can be finite or infinite. Various 

combinations of finite and infinite intervals give all the different types of censorship such 

as left censoring, right censoring, double censoring and different cases of interval censoring. 

For a detailed discussion on this see Jammalamadaka and Mangalam [6].  

Let T  be the variable of interest, and Z  be a covariate, an element of .dR  

Let ( ) ( )| zF z F⋅ ≡ ⋅  be the distribution function of T  given Z z= .  Let us consider a 

transformation model  

( ) ( )( )|F t z t zψ α θ= + ,  (1) 

where α  is an unknown extended real-valued function on R ,  θ  is an unknown 

constant in dR  and ψ  be the continuous and  strictly decreasing function. It is easy to 

show that (1) is equivalent to the linear transformation model   

      ( )T zα θ ε= − + ,   (2) 
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where ε  is a random error with a known distribution. The function α  is called the 

transformation function and θ  is referred to as the regression coefficient. The transformation 

function  α  is assumed to satisfy two conditions, α  is monotonic increasing and 

( )lim .
t

tα
→±∞

= ±∞ The proportional hazard model and the proportional odds model are 

special cases of (2) with ε  following the extreme-value distribution and the standard 

logistic distribution, respectively. The generalised odds-rate model also belongs to (2). 

Horowitz [5] developed semiparametric estimators of α  and θ  when the 

distribution function of the error is unknown. Gorgens and Horowitz [4] extended this 

technique to censored data. Gorgens [3] developed better estimators of the transformation 

function and the error distribution. Jammalamadaka and Mangalam [6] provided an 

algorithm to find the self consistent estimator and showed that the nonparametric maximum 

likelihood estimator was satisfied the self consistent equation. Our aim in this paper is to 

estimate the transformation function α  and θ  when failure times are subjected to general 

censorship by Maximum Likelihood Method. The motivation for this is that it is a strong 

generalization of the ordinary regression problem (linear or nonlinear) where the kind of 

relationship between the variable of interest and the covariate is precisely known. The 

computation of maximum likelihood estimator is provided in Section 2. Simulation studies in 

Section 3 and the conclusion of this study is in the last section. 

 

2.  The Computation of Maximum Likelihood Estimator 

Let , 1, ,iT i n=  , be a sequence of independent identically distributed (i.i.d.) 

random variables with distribution function F . Let ( ), ,i iU V   1, ,i n=   be the open 

interval which represent the censoring mechanism, consisting of n pairs of i.i.d. extended real-

valued random variables ( ), ,i iU V  such that ( ), 1i iP U V i< ∀ = . The i th 

observation is said to be censored if ( ),i i iT U V∈  and let ( ),i i i iI T U Vδ = ∉   , 

where ( )I ⋅  is the indicator function, so that 0iδ =  if the i th observation is censored and 

1iδ =  if it is uncensored. We assume that iT  and ( ), ,i iU V are independent given the 

concomitant variable Z .  



84                                                                              Thailand Statistician, 2007; 5: 81-92 

The density function of T  is given by ( ) ( )( ) ( )f t t z tψ α θ α′ ′= + , so the 

likelihood and the log-likelihood functions in the presence of censoring are given by  

( ) ( ) ( ) ( ) 1

1

, i i
n

n i i i
i

L f t F v F u
δ δ

θ α
−

=

= − −      ∏  

and  

( )( ) ( )( )
( ) ( )( ) ( )( )1

log log
log

1 log

n i i i i

n
i

i i i i i

t z t
L

v z u z

δ ψ α θ α

δ ψ α θ ψ α θ=

  ′ ′+ +   =  
 + − − + − +   

∑  

The value of this expression depends on the function α  and its derivative only at the jump 

points and it can be made arbitrarily large by making ( )itα′  as large as we want without 

affecting the values of ( )itα .  Consequently, we work with a discretized version of the likelihood 

function where ( )tα′  is   replaced by a jump size ia  and ( )itα  by  0

i
i kk

A a
=

=∑ .  

Thus we find the function that maximises this modified log-likelihood among all α 's such that 

α  is an increasing step function that is a constant for 1t t<  and jumps at it .  

We replace any empty censoring interval (a censoring interval that contains no 

uncensored observations) by its midpoint as an uncensored observation, group the censored 

and uncensored observations separately and reorder the uncensored observation in the 

ascending order.  Let 1n  be the size of the exact data and 2 1n n n= −  be the size of the 

censored data. Let ( )0 1a tα= −  and ia  be the jump size at it  for 11, ,i n=  . Then 

the modified version of the log-likelihood is given by     

 

( ) ( ){ }

( ) ( )

1

2

1

1 : :

, log log

log
j jk k

n

n i i i
i

n

k j k j
j k t v k t u

l a A z a

a z a z

θ ψ θ

ψ θ ψ θ

=

= ≤ ≤

′= + +  

    
    + + − +

        

∑

∑ ∑ ∑
 

which is to be maximised under the constraint that all of the ia 's except 0a  are non-

negative. If  ˆia , 0i =  to 1n  maximises ( ),nl aθ , then the function α̂  defined as an 

increasing step function with jumps ˆia  at it  and value 0a  for 1t t<  is the MLE of α .  
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Let dΘ⊂ R be the d-dimensional parameter space of θ . Let 0θ  and 0α  

denote the true value of the parameters and let 0F  be the true conditional distribution 

function of  T given Z . The MLE's of α  and θ , α̂  and θ̂ , are obtained by maximising 

( ),nl aθ over AΘ× , where 1nA += ×R R , the set of 1 1n +  dimensional vectors whose 

coordinates are all non-negative except the  first. Under some mild assumptions, it can be shown 

that ( ),nl aθ  is strictly concave for each n  as in proposition 2.1, and that it is bounded 

above.  It therefore has a unique maximiser, and the maximiser ( )ˆ ˆ, aθ   can be obtained by 

equating the first derivative to zero and using the multivariate Newton-Raphson algorithm.  

 

Proposition 2.1  Let ( )tψ be a differentiable distribution function on R . If 

( )( )log tψ ′  is strictly concave in t , then ( ) ( )( )log v uψ ψ−  is strictly concave in u  

and v . Proof is shown in appendix. 

 
3. Numerical Simulation 

A simulation study was performed to measure the performance of maximum likelihood 

estimator. The regression coefficient θ  is estimated by n̂θ , the transformation function α  is 

estimated by ˆˆn Aα =  and the distribution function F by ˆˆ ˆ( ( ) )nF t zψ α θ= + . The 

performance of  n̂F  is more important than ˆnα (see Cheng [1]) and can be measured 

by 0n̂F F− =  ( ) ( )0
ˆmax t nF t F t− . The model for this study was the proportional 

hazards model where ε  has a standard extreme value distribution yielding ( )P tε < =  

( )1 exp exp( )t− − . The dimension of the regression coefficient θ  is taken to be 1, the 

true values of θ , 0 0θ = , is considered and the true transformation function is chosen to 

be ( )0 logt tα = . The values of the covariate Z  are randomly generated from a standard 

normal distribution. The random variables iU  and iV  are produced according to the level of 
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censoring, which is set by letting iU  and iV  as the minimum and the maximum of c 

independent exponential random variables, for 2c = . The sample size n is set to be 100 

and each combination of all these factors was replicated 300 times. The implementations of data 

generation and computation were written in the statistical software package S-Plus. The non-

linear optimisation routine Nonlinear Minimization subject to Box Constraint (NLMINB) was used 

for numerical maximisation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2. The estimated value of α  versus the true value of α .  
 

 

Figure 1. Log-likelihood function for a simulation data. 
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Figure 1 shows the log-likelihood function versus the regression coefficient n̂θ . It 

maximised at n̂θ  = 0.0032 which is the value of our maximum likelihood estimator and the 

estimated value of α  versus the true value of α  is shown in Figure 2. The solid line is the 

estimated value of α  and the dotted line is the true value of α .  The results show that 30.89 % 

of them being censoring, the estimated value n̂θ  is 0.0032 with variance 0.0120 and the maximum 

distance 0n̂F F− = 0.0920 which are fairly good. 

We also tried out various other values of ( )0 ,t tα =  0 1,θ =  different level of 

censoring with 1,2,3c = and 5 , and the genearlised odds-rate (GOR) model with 

coefficient λ  equal 0.5 ( ( )P tε < =  
1

1 (1 exp( ))t λλ
−

− + , 0λ > ). Note that when 

λ equal 1, the GOR model gives the proportional odds model. The results are reported in 

Table 1 and Table 2. In all cases, the conclusions were similar. As for the performance of 

n̂F ,  the values of 0n̂F F−  performed fairly well but they were influenced by the rate of 

censoring. As the rate of censoring increased, the error increased, but continued to be within 

acceptable limits. Hence our method of parameter estimation of both θ  and F  performs 

fairly well.   

 

4.  Conclusions 

Maximum likelihood estimation for the regression coefficients and the transformation 

function are carried out for a semiparametric transformation model where survival time data are 

subjected to general censorship. The multivariate Newton-Raphson method was used for 

optimization and in our entire simulation studies global maximum was attained. The ML 

estimates performed fairly well in the sense that the estimated values were close to the true 

values of the parameter.  
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Table 1. Simulation results for the estimated values of ( )0 logt tα =  in the GOR model 

with 0.5λ = . 

 

0 0θ =  

Percent of censoring 

r=0 r=29.35 r=44.69 r=59.17 

mean var mean var mean var mean var 

n̂θ  0.0054 0.0210 -

0.0035 

0.0223 0.0027 0.0269 0.0155 0.0319 

0n̂F F−  
0.0814 0.0007 0.0915 0.0008 0.1170 0.0016 0.2128 0.0065 

 

0 1θ =  

Percent of censoring 

r=0 r=26.00 r=36.14 r=52.35 

mean var mean var mean var mean var 

n̂θ  1.0374 0.0346 1.0248 0.0303 1.0270 0.0336 1.0058 0.0357 

0n̂F F−  
0.0895 0.0009 0.1010 0.0011 0.1267 0.0019 0.2278 0.0071 

 

Table 2. Simulation results for the estimated values of  ( )0 t tα =  in the GOR model with 

0.5λ = . 

 

0 0θ =  

Percent of censoring 

r=0 r=14.96 r=22.67 r=29.23 

mean var mean var mean var mean var 

n̂θ  0.0016 0.0231 0.0058 0.0210 -

0.0023 

0.0236 -

0.0005 

0.0221 

0n̂F F−  
0.0783 0.0007 0.0869 0.0007 0.0978 0.0009 0.1517 0.0021 

 

0 1θ =  

Percent of censoring 

r=0 r=16.36 r=23.98 r=31.49 

mean var mean var mean var mean var 

n̂θ  1.0315 0.0295 1.0255 0.0340 1.0315 0.0339 0.9818 0.0337 

0n̂F F−  
0.0857 0.0008 0.0901 0.0008 0.1022 0.0009 0.1570 0.0022 
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Appendix 

Proof of the Proposition. 

Proposition 2.1 Let ( )tψ be a differentiable distribution function on R . If ( )( )log tψ ′  

is strictly concave in t , then ( ) ( )( )log v uψ ψ−  is strictly concave in u  and v . 

 

Proof:  Let ( ) ( )( )logg t tψ ′= . Then g  is strictly concave by the assumption and 

( ) ( )g tt eψ ′ = . Now,  

      ( ) ( ) ( )
v

g x

u

v u e dxψ ψ− = ∫  

     ( ) ( )( ) ( )
( ) ( )

log
u

v u
u v u

ψ
ψ ψ

ψ ψ
′−∂

− =
∂ −

 

( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( )

2
2

22 log
v u u u

v u
u v u

ψ ψ ψ ψ
ψ ψ

ψ ψ

′′ ′− + ∂  − = −
∂ −  

 

          
( )

( )
( )

( )

( )

g u g u

v v
g x g x

u u

e eg u
e dx e dx

 
 
 ′= − +
 
 
 

∫ ∫
 

In order to show strictly concavity, we need to show that 

   ( )
( )

( )
0

g u

v
g x

u

eg u
e dx

′ + >

∫
 

If ( ) 0g u′ ≥  there is nothing to show, so assume ( ) 0g u′ <  

For x u> , 

( ) ( ) ( )*g x g u
g x

x u
−

′=
−

  for some  ( )* ,x u x∈ . 

As g  is strictly concave, g′  is strictly decreasing and hence ( ) ( )*g x g u′ ′<   .         
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Therefore, 

                          ( ) ( ) ( )( )g x g u g u x u′< + −      for some  0x > . 

   
( ) ( ) ( )( )

v v
g x g u g u x u

u u

e dx e dx′+ −<∫ ∫  

                        

( ) ( ) ( )

( )
1g u v u g ue e

g u

′− − =
′

  

         
( )

( )
g ue

g u
<

′
 

Consequently, 

( )
( )

( )
0

g u

v
g x

u

eg u
e dx

′ + >

∫
 as   ( ) 0g u′ <  

Thus ( ) ( )( )log v uψ ψ−  is strictly concave in u . 

Now, we will prove that  ( ) ( )( )log v uψ ψ−  is strictly concave in v .  

                   ( ) ( )( ) ( )
( ) ( )

log
v

v u
v v u

ψ
ψ ψ

ψ ψ
′∂

− =
∂ −

 

( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( )

2
2

22 log
v u v v

v u
v v u

ψ ψ ψ ψ
ψ ψ

ψ ψ

′′ ′− − ∂  − =
∂ −  

 

        
( )

( )
( )

( )

( )

g v g v

v v
g x g x

u u

e eg v
e dx e dx

 
 
 ′= −
 
 
 

∫ ∫
 

In order to show strictly concavity, we need to show that  

   ( )
( )

( )
0

g v

v
g x

u

eg v
e dx

′ + <

∫
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If ( ) 0g v′ ≤ ,  there is nothing to show, so assume ( ) 0g v′ >  . 

For x v< , 

( ) ( ) ( )*g v g x
g x

v x
−

′=
−

  for some  ( )* ,x x v∈ . 

As g  is a strictly concave, g′  is strictly decreasing and hence ( ) ( )*g x g v′ ′>   .         

Therefore,   

( ) ( ) ( )( )g x g v g v v x′< − −      for some  0x >       

     
( ) ( ) ( )( )

v v
g x g v g v v x

u u

e dx e dx′− −<∫ ∫  

                                             

( ) ( ) ( )

( )
1g v v u g ve e

g v

′− − − =
′

 

                                             
( )

( )
g ve

g v
<

′
 

Consequently, 

  ( )
( )

( )
0

g v

v
g x

u

eg v
e dx

′ + <

∫
 as   ( ) 0g v′ > . 

Thus   ( ) ( )( )log v uψ ψ−  is strictly concave in v .    

 � 
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