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Abstract
For the basic logit models, the response Y takes the value 1 with the success
probability P;, and the value 0 with the failure probability (1-P;). Problems arise with
several proposed statistics for assessing the fit of the models and often be questioned
which one of them is more preferable. In this article, 1,000 computer simulation
experiments in each condition of the probabilities of Y=1( Pl), the calculated parameters
and X's distributions, were generated to evaluate the performance of various statistics,
all of which were used for assessing the goodness-of-fit of the logit models. Ten statistics
were computed for each combination of base rate levels and model conditions: the
likelihood ratio statistics G ,,, the indexes of predictive efficiency which consist of /1P ,
7, and ¢P, the coefficients of determination or R analogs which consist of R%c (the
contingency coefficient R? ), R (the log likelihood ratio R? ), R%w (the geometric
mean squared improvement per observation Rz), R\ (the adjusted geometric mean
squared improvement R? ), and R% (the ordinary least squares Rz). The correlation

coefficients for determining their magnitude (absolute values) of the measures of
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independence from the base rate levels, the percentages of correct classification of the
model (%correct) and the type Il error rates, corresponding to the percentages of power
of the tests (%accept) were also computed.

The research results show that, for hypothesis testing goodness-of-fit of
models, both of the %correct and the %accept all are satisfied. The average
of %correct, when X is Exponential is around 77% and when X's are Bernoulli and
multinomial distributed, they are approximately equal to 99%. Similarly for the average
of %accept which are all approximately equal to 95%. For X~ Exponential, the R’c, R%w,
and R% are preferable and for X~ Bernoulli R%, R%, R% are still preferable but R%
outperforms. For (X1, X2)~ Multinomial, the results are similar but slightly superior to
those of X~ Bernoulli. The indexes of predictive efficiency of the multinomial case, when
the success probability P, is high, suggest that the ZP, T statistics may be used as
the alternatives of the RZC, R2M and Rzo. Some recommendations are made for logit
models with the exponential explanatory variable, the statistics R, R, R%, /IP and
¢P probably be interesting to use. However, when P, is closed to 0.5 the %correct is
low and the range is high. Therefore, further studies in more details for the exponential
explanatory variable together with the increased sample sizes would be recommended.
For the logit models with Bernoulli and multinomial explanatory variables are much
improved. Then, the statistics R%, R, R%, /IP and 7, are probably appropriate,

especially the R?o statistic.

Keywords: base rate levels, Bayes’ theorem, indexes of predictive efficiency, likelihood

ratio statistic, logit models.

1. Introduction
Dichotomous logit models for one or more than one explanatory variables have

become the standard method of analysis for explaining the relationship between
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explanatory variables and a dichotomous response variable [5]. For multinomial or
polytomous response, the logit models are also exist to handle the cases of response with
more categories and can be called as many other names; such as, the cumulative logit
models, the cumulative odds ratios [3]. In the usual case of the dichotomous logit model, it
is now commonly used procedure in many disciplines; for example, in health-sciences
research, particularly in medical sciences, engineering settings, and is becoming
increasingly popular in the behavioral and social sciences. It is also an important endpoint
in quality control and quality testing [11]. In this model the basic random variable Y is
dichotomous response data taking the value 1 with the success probability P1, and the
value 0 with the failure probability (1-P1). The relationship between the response
probability value P; and the explanatory variable value x; of the same individual is from the

logit transformed function (1).
k
exp(p, + Zﬂ, Xij
i=1
k
1+exp(B, + ZIB. X;
i=1

P(x;)= , 1=l kj=1,...,n (1)

where P(Xj ) = P(Y=1|X=x) = E(Y=1|X=X) denote the expected probability value of Y
given x, and X,-/- = (Xoj X1j,..., Xq) denote the jth setting of values of k explanatory
variables, i=1,...,k, j=1,..., n, for which Xo/' =1, k is a constant, n is the sample size,
B, i =1,.., k are the model parameters, and Y= P(Xj) + e, whereas e is an
random error which has a distribution with mean zero and variance equals to P(X) [1-
P(X)1.

The values {y i j=1,..., n}is assumed to follow a Bernoulli (P1) or a binomial (1,
P1) distribution, so that Y =1 represents a success and y i= 0 represents a failure. The
model in (1) is typically used with continuous explanatory variables and is often called as
the logistic regression model; however, it is also appropriate when X's are categorical
variables [13] and is usually called logit models, especially either when it is used with

only categorical predictors or multinomial responses [1]. Since statistical methods and
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techniques for categorical data analyses have undergone development in the past 25
years, and several statistics for assessing and evaluating the goodness-of-fit of logit
models have been proposed. It is probably concluded that there are two basic
approaches to evaluating the association between the explanatory variables and the
response variable in the logit model analysis. One approach discussed by Ryan, 1997
[12], Hosmer and Lemshow, 1989 [5], and Menard, 1995 [8] is to compare predicted and
observed discrete values of the response variable, using the prediction table. Such
measures are called indexes of predictive efficiency. Another approach is to use
coefficients of determination, or R2 analogs for logit models that compare the discrete
observed values of the response with the continuous predicted values of the response
(probabilities) [8]. As illustrated by DeMaris,1992 [4], Ryan 1997 [12] and Menard, 2000
[9], R 2 and its analogs are not necessarily consistent with measures of predictive
efficiency. Moreover, base rate should also be considered when selecting an index of
predictive efficiency, whereas the base rate refers to the relative frequency of occurrence
or the ratio of successes to failures of events being studied in the population of interest.
However, most measures of predictive accuracy are highly sensitive to changes in base
rate [14]. Thus, for evaluating an logit model, no claim is made that any statistic is the
best for the use of R2 analogs and the indices of predictive efficiency. Only that the
results illustrated the possible concerns in using some specific measures. Therefore, it
probably be necessary and interesting to research the methodological development of
assessing the logit model in more details. Both in the different logit models and their
goodness-of-fit tests, and also investigating of the performance of R2 analogs and
indexes of predictive efficiency with their uses concerning to both the base rate issue
and the inference tests for the overall model fit.

The objective of this article is to asses the adequacy-of-fit of logit models under
the dichotomous response classified by its probability levels and the exponential,

Bernoulli, and multinomial distributed explanatory variables. The different logit models
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used in this simulation studies depend on fixed conditions and various explanatory

variables through the model parameters calculated using Bayes’ theorem.

2. Methodology

Three separated sets of simulation studies were used to generate data in which
the dichotomous outcome may depend on each of three different distributed explanatory
variables. Three distributions of the explanatory variables consist of Exponential (4 ,/12 ),
Bernoulli (P), and multinomial (72'1,772/[3,”4 ). For the three simulation study sets,
each of which four levels of the probability of Y = 1 (Pl), 0.05, 0.20, 0.35, and 0.50 were
taken to simulate data in each set.

The first set of simulation studies was carried out with a dichotomous response
and one exponential distributed covariate. In this set, four simulation studies were
performed accordingly to the levels of the probability of Y = 1 (P1)- Each of which was
independently repeated 1,000 replicate data sets.

A second set of simulation study was performed with a dichotomous response
and each of three different Bernoulli distributed explanatory covariates, namely Bernoulli
(0.10), Bernoulli (0.30), and Bernoulli (0.50). Thus, according to each combination of the
three distributions and four levels of the probability of Y = 1 (Pl) altogether, twelve
simulation studies, were then performed in this set, with independently repeated 1,000
experiments in each simulation study.

The third set of the simulation studies was generated with a dichotomous
response and each of multiple explanatory variables which are in the forms of
multinomial distributed explanatory variables, namely Multinomial (0.25,0.25,0.25,0.25),
Multinomial (0.65,0.08,0.25,0.02), and Multinomial (0.10,0.35,0.45,0.10). Therefore,
twelve simulation studies were then performed accordingly to each combination of

different distributions and different levels of Pl . Each of which was independently

repeated 1,000 experiments. Detailed descriptions of the simulation and analyses are



48 Thailand Statistician, 2006; 4:43-61

given for the first set of studies. Other descriptions, applied with the appropriate
modification for the second and third sets of simulation studies, all of which are

presented in section 2.1-2.2, respectively.

2.1 Simulation

The logit model was used as the form of model (1). The success probability of y
= 1, or P(x) is a function of explanatory variable values X, j =1,..., n. Data were
simulated for the first set of simulation studies as an exponential distributed variable. In
this first set, the parameters ,6’0 and ,B1 were obtained using the Bayes’ theorem
approach, with the probability density function given by

=
f (x) = %é’i , A>0, x>0
from which it readily follows that £, = log(P,4, / P,4,), P1 and A =], , corresponding
to the probability of Y = 1, P, and A= /12, corresponding to the probability of Y = 0, and
ﬂl = (i-i) which was set equal to log2. Taking ilz 2, we obtained ﬁz 0.419.
The explsnatory variable values were then generated from the selected distributions,
X, ~Exp(2, 4), corresponding to the probability of Y=1and X, ~ Exp(0.838,0.702),
corresponding to the probability of Y = 0, respectively. Thus, we combined both X, and
X, based on P; to obtain a data set of 200 individuals.

To simulate 1,000 sets of the outcome y i with 200 individuals for each set, a
pseudorandom realization, u ., of a uniform (0,1) variable was then regenerated and
compared with P(x;) . If P(x;)> u;, theny; wasset= 1, otherwisey ; was set =0,
whereas P(xj) is the probability of Y=1 for the jth individual, j = 1,..., n which were
based on the calculated p(x j) values from the model (1). Then the proportion of cases
for which y =1 or the base rate, is computed from each set of data of each logit model.
The values of X's and the corresponding parameters which were determined for each

probability of P4, 0.05, 0.20, 0.35, and 0.50 and for each of the X's distribution conditions
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remain the same in 1,000 simulation. The sample size is n= 200 individuals for each of
Y and X’s. Each condition is performed for 1,000 independent data sets. Therefore, in this
first set of study, the exponential distribution, there are all together four computer
simulation studies. All details including the parameters and the explanatory variable

distributions used in the simulation studies are summarized in Table 1.

Table 1. Parameter (ﬂo) for Simulation Studies.

Distributions Simulation No. (P ;)
Of X's No.1 No.2 No. 3 No. 4
(0.05) (0.20) (0.35) (0.50)

*

Exponential -1.2337 -0.5808 -0.2593 0.0000

*

Bernoulli -3.2910 -1.7328 -0.9656 -0.3465
*

Multinomial -3.6375 -2.0794 -1.3121 -0.6931

* Exponential distributions: X, ~Exp(2,4) for P, X, ~Exp(0.838,0.702) for P, .
* Bernoulli distributions: Bernoulli (0.10), Bernoulli (0.30), and Bernoulli (0.45).
*Multinomial distributions: Multinomial (0.25,0.25,0.25,0.25), Multinomial

(0.65,0.08,0.25,0.02), and Multinomial (0.10,0.35,0.45,0.10) .

In the second set of simulation studies, the distributions of the explanatory

variables considered consist of Ber(0.10), Ber(0.30), and Ber(0.45). In each distribution,
the logit model is of the form log[ P(X) /(1-P(X)1 = S, and log[P(X)/(1-P(X)] =

P X, for x = 0 and x = 1, respectively. Thus, from which it follows that /3, = log

[P(X) /(1- P(X) - 0.5l0g2, corresponding to taking /3, = log2. Once the data sets were

generated from a selected distribution, each of which, according to the probability of Y=
1 levels or the conditions under the given parameters in Tablel, the outcomes based on
model (1) would then be computed similarly as those performed in the first set of
simulation studies. Therefore, in the second set, it consists of twelve computer simulation

studies, each with 1,000 data sets.
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For the third set of simulation studies, the joint distribution of (X1, Xy) is

assumed to be multinomial with probabilities T Ty TTq,s and Ve corresponding to the
(x1, x2) values of (0, 0), (0, 1), (1,0), and (1,1), respectively. Similarly to the second set of
simulation studies, using ﬁlz ,Bz = log2 would then be leading to ﬁo = log [P(X) /(1-

P(X) ]- log2. Following all the next steps as performed in the previous simulations, the

explanatory variables (X;, X;) data were then generated, and the corresponding
outcomes were also obtained from model (1). In this last set, it consists of twelve
computer simulation studies, each with 1,000 data sets.

In conclusion, for each combination of the probability of Y= 1 levels and
distribution conditions together with the model parameters shown in Tablel, 4,000
replicated data sets were independently generated for the first set, 12,000 replicated
data sets for the second set, and also 12,000 data sets for the third set, by the computer
simulations. In each replicated data set, each variable in the model (1) was simulated

using 200 sample individuals.

2.2 Statistical Analyses

Several statistics were computed for each combination of probability of Y
=1( Pl) levels and model conditions, the likelihood ratio statistics G ,,, R2 analogs,
indexes of predictive efficiency ,and the type Il error rates, all of which were used for
assessing goodness-of-fit of the models. All the calculated coefficients of determination
(R2 analogs) are the followings: R’c (the contingency coefficient R?: Aldrich and Nelson,
1984 [2]), R?. (the log likelihood ratio R% McFadden,1974 [7]; Menard,1995 [8]), R%u
(the geometric mean squared improvement per observation R?% Maddala, 1983 [6];
Ryan,1997 [12]), R’ (the adjusted geometric mean squared improvement R%
Nagelkerke,1991 [10]; Ryan,1997 [12]), and R% (the ordinary least squares Rz). And

also, the computed indexes of predictive efficiency consist of /1P , Tp and ¢P (Menard,

1995 [8]). Then the correlation coefficients were calculated for determining whether their
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magnitudes of the measures are independent of the base rate levels. In addition,
the %correct of predictive efficiency and the %accept of the power of the tests (shown in
Table 2). The average and range were consequently recorded. All the statistics were

computed using the following formulae:-

Gu  =-2[In(Lo)-In(Lm)] (the model chi-square statistic) — ................ 2
2 GM
Rec = ————— (3)
Gy +n)
g, = Ibo) ZIn)l g pInt) ) @
In(Lo) In(L,)
2
R’ = 1—{"—0}” ................. ()
LM
L2
1_(O)n:|
LM
R = T e (6)
~ 2
R% = 1 Z(y—P(_xZ) ................. @
(Z(y—Y))
n-> f,
Ap = 1- Z ................. (8)

P, = A parameter of probability of success in this simulation ................ (11)

Base rate = The proportion of cases for which y =1 from the models ...... (12)
%correct = The average percentage correct classified of model (1)

from 1,000 data set L (13)
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%accept = The average percentage of the power of the tests
from 1,000 data sets (14)
whereas n is the total sample size, Lo is the likelihood function for the model containing
only the intercept, Ly is the likelihood function for the model containing all of the
predictors, F3(X) is the predicted value of the dependent variable Y, obtained from the
model, Y is the observed value of the dependent variable Y, Y_is the mean of Y, Nmode

is the observed number of failures in the model category of the dependent variable,

fij is the number of cases observed as having discrete value i and predicted as having
discrete value j, fii is the number of cases for which the predicted value is equal to the
observed value, fi is the number of cases observed as having discrete value i (i.e., the

row sum Zj(fij) where the rows represent observed values and the columns

represent predicted values), E(f;) = [(Z. f; lg jfij )J/n is the expected cell

frequency for any cell, and E(f.) is the expected number of correctly classified
1l

cases), calculated as the product of the row sum Zi and the column sum z i

divided by the total sample size. All tests of adequacy of logit models were performed
under the null hypothesis Hp : B = 0 using the model chi-square statistics, Gy and the

computer works were programmed using the Minitab macro language and run by macros

in MINITAB Release 11 for Windows ™ for all simulation studies.

3. Research Results

The results of the dichotomous response depend on each of three different
distributed explanatory variables which were classified to three sets of simulations, the
Exponential (/1,/12 ), the Bernoulli (P), and the Multinomial (7[1,72-2,7[3,”4 ). Each
condition 1,000 replicated data sets were carried out under each of four probability of

Y =1 levels, 0.05, 0.20, 0.35, and 0.50.
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The first set of simulation studies, four simulation studies were performed under
a dichotomous response and the Exponential (/1,/12) explanatory variable. It is found
that the average percentages and the range of the %correct are equal 76.4727 % and
43.8891, respectively and the average percentages and the range of the power of the
tests, corresponding to the %accept are equal 94.525% and 0.70, respectively (Table 2
Exponential). For investigating the correlation coefficients to determining whether their
magnitude correlation of R? analogs and the predictive efficiency of /1P, T, and ¢P
are independent of the base rate levels. The lower the magnitude (absolute values) of
correlation coefficients, the better the adequate of fit of the statistics. It is found in most
situation that R%, R%, R% are preferable than the others, especially when P, (the
probability of Y=1) is low and that the statistics RZC, RZM , are better than the Rzo. When
P, is high all the three statistics R’w, R%, R% give approximately the same performance.
For the Indexes of Predictive Efficiency : A,, 7, and @, itis found that the A, and
the @ outperform the 7, (Table 3).

The second set of simulation study was performed with a dichotomous
response and each of three different Bernoulli distributed explanatory variables, namely
Bernoulli (0.10), Bernoulli (0.30), and Bernoulli (0.50). The results of the %correct and
the power of the test, corresponding to the %accept give the better results than those of
the first set. The average percentages and the range of the %correct are approximately
equal 99% and 0.4672, respectively and also those of the %accept are approximately
equal 94.43% and 1.30, respectively (Table 2 Bernoulli). In assessing the correlation
coefficients, it is found that Rzo, RZM, R2C are still preferable but when P, is low the
statistic R% is better than the R’y and the R% statistics. When P, is high all the three
R%, R%w, R% give approximately the same performance. However for the Indexes of

Predictive Efficiency : the /1P and the 7, outperform the ¢P (Table 4).



Table 2. The Average of Percentages of Correct Classification (%correct) and The Average of Percentages of the Powers of the tests

(Y%accept) Classified by the probabilities of Y= 1 (P ') and the X’s Distributions.

Distributions (X, X)) (X, X,) X, X)
Probability X~ X ~ X ~ X ~ ~ Multinomial ~ Multinomial ~ Multinomial
of Y=1 Exponential Ber(0.1) Ber(0.3) Ber(0.45) (0.25, 0.25, (0.65, 0.08, (0.10, 0.35,
Statistics 0.25, 0.25) 0.25, 0.02) 0.45, 0.10)
% Correct =] 1 =0.05 95.1925 99.2820 99.2005 99.2535 98.4915 98.7050 98.5025
% Correct P . =0.20 87.6315 99.8265 99.4010 99.4570 99.4385 98.7390 99.3560
% Correct =] = 0.35 71.7635 99.8875 99.4870 99.5350 99.4885 99.0010 99.4790
% Correct P = 0.50 51.3034 99.8845 99.6990 99.5510 99.5150 99.1840 99.4930
Average 76.4727 99.7201 99.4468 99.4491 99.23338 98.9072 99.2076
Range 43.8891 0.6055 0.4985 0.2975 1.0235 0.4790 0.9905
% Accept P =005 94.90 93..70 94.70 94.70 94.40 95.40 95.10
% Accept P =0.20 94.70 93.20 95.80 94.30 93.20 97.00 95.30
% Accept P =0.35 94.20 92.60 94.80 95.00 95.20 94.80 95.00
% Accept P =050 94.30 93.80 94.70 95.90 93.80 94.60 95.00
Average 94.525 93.325 95 94.975 94.15 95.45 95.1
Range 0.70 1.20 1.10 1.60 2.00 2.40 0.30
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Table 3. Coefficients of Correlation between R? Analogs and Base rates, Indexes of

predictive efficiency and Base rates, Classified by the probabilities of Y= 1 (P ) under

X ~Exponential .
X ~Exponential P =0.05 P =020 P =035 P =0.50
IS -0.037 0.031 -0.027 0.024
R -0.122 -0.192 -0.085 0.024
7 -0.002 0.048 -0.033 0.023
R -0.085 -0.159 -0061 0.024
7 -0.002 0.048 -0.034 0.024
ﬂ -0.021 0.017 0.054 0.445
T, -0.985 -0.905 -0.992 -0.790
& -0.025 0.018 0.050 0.221

The last set of the simulation studies was generated with a dichotomous
response and each of multiple explanatory variables, which are in the forms of multinomial
distributed explanatory variables, namely Multinomial(0.25,0.25,0.25,0.25), Multinomial
(0.65,0.08,0.25,0.02), and Multinomial(0.10,0.35,0.45,0.10), it is found that the average
percentages and the range of the %correct are approximately equal 99% and 0.8310,
respectively. The power of the test, corresponding to the %accept provides the
approximately the same results as those of the second set and the average percentages
and the range are approximately equal 94.90% and 1.5666, respectively (Table 2
Multinomial). In evaluating the correlation coefficients, it is found that statistics ch, RZM,
Rzo are still preferable and all of them RZC, RZM, Rzo give approximately close
performance, except for the R% that has a little prominent performance than others.
However, for all the indexes of predictive efficiency, their results are more better than

those of the first set and both /1P and 7, outperform the ¢P (Table 5).
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Table 4. Coefficients of Correlation between R2 Analogs and Base rates, Indexes of

predictive efficiency and Base rates, Classified by the probabilities of Y=1 (P ) under

X ~ Bernoulli (P), P=0.1, 0.3, 0.45.

_ P, =0.05 P, =020 P, =0.35 P, =0.50
X ~ Bernoulli (0.1)
Rﬂz -0.009 0.002 -0.033 -0.036
Rz -0.200 -0.190 -0.155 -0.201
R; -0.032 -0.026 0.005 -0.035
R; -0.156 -0.148 -0.112 -0.158
R; -0.033 -0.027 0.004 -0.035
ﬂP -0.310 -0.297 -0.210 -0.161
T, -0.398 -0.219 -0.216 -0.142
¢P -0.421 -0.316 -0.199 -0.159
. P, =0.05 P =0.20 P =0.35 P =0.50
X ~ Bernoulli (0.3)
R; -0.032 -0.009 -0.060 -0.044
Rz -0.103 -0.038 -0.097 -0.031
R; -0.025 0.014 -0.049 0.017
Rir -0.072 -0.013 -0.074 -0.008
R -0.025 0.014 -0.049 0.017
}; 0.156 -0.221 -0.309 -0.159
T, -0.112 -0.352 -0.344 -0.143
¢P -0.126 -0.617 -0.630 -0.156
% ~ Bernoulli (0.45) P, =0.05 P, =0.20 P, =0.35 P, =0.50
Rﬂz -0.059 0.015 0.023 -0.048
Ri -0.083 -0.036 0.048 -0.003
R; -0.026 -0.026 0.059 0.008
Rir -0.058 -0.031 0.054 0.003
R; -0.026 -0.026 0.059 0.008
2’1: 0.214 0.110 -0.047 -0.101
T, 0.062 -0.088 -0.223 -0.272
s 0.051 -0.094 -0.533 -0.502
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Table 5. Coefficients of Correlation between R? Analogs and Base rates, Indexes of

predictive efficiency and Base rates, Classified by the probabilities of Y=1 (P ) under

(X1, X2)~Multinomial (0.25, 0.25, 0.25, 0.25) (X1, Xz)~Multinomial (0.65, 0.25, 0.08, 0.02)

and (X1, Xz)~Multinomial (0.10, 0.35, 0.45, 0.10).

(X1, X2) ~ Multinomial | P =0.05 P,=020 P =035 P =050
(0.25,0.25,0.25,0.25)
R -0.048 -0.052 0.004 -0.015
R -0.103 -0.102 -0.091 -0.074
R, -0.011 -0.018 -0.006 0.013
R -0.062 -0.065 -0.054 -0.035
R -0.010 -0.018 -0.005 0.013
A, 0.213 -0.350 -0.202 -0.198
T, -0.070 -0.226 -0.183 -0.168
&s -0.152 -0.428 -0.212 -0.190
(X1, X2) ~Multinomial | P =0.05 P, =0.20 P =035 P, =050
(0.65,0.25,0.08,0.02)
R 0.011 -0.012 0.016 -0.003
R -0.050 -0.106 -0.040 -0.040
R, -0.003 -0.055 0.011 0.006
R -0.027 -0.081 -0.014 -0.017
R -0.003 -0.056 0.011 0.006
A, 0.177 0.125 -0.222 -0.287
T, -0.014 -0.203 -0.234 -0.191
&s -0.056 -0.233 -0.534 -0.548
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(X1, X2) ~ Multinomial P =005 P, =020 P =035 P =050

(0.10,0.35,0.45,0.10)
R -0.014 0.014 0.021 0.049
R -0.122 -0.130 -0.048 -0.104
R -0.045 -0.046 0.043 -0.013
R -0.088 -0.093 -0.007 -0.064
R -0.044 -0.046 0.044 -0.012
A, 0.208 -0.429 -0.176 -0.0169
T, -0.022 -0.283 -0.149 -0.143
P -0.129 -0.563 -0.186 -0.168

4. Conclusion

This research is performed to assessing the adequacy of fit of logit models,
using likelihood ratio statistic or GM, R ? analogs, indexes of predictive efficiency, and to
determining the magnitude values of the correlation coefficients between R2 analogs,
indices of predictive efficiency and the base rate levels and also to evaluating the
performance of the inferential tests. The logit models depend on the explanatory
variables which corresponding to the relationship between the dichotomous response
variable and the explanatory variables, namely Exponential, Bernoulli, and Multinomial
distributed variables through the model parameters calculated using Bayes’ theorem.
Each condition for n=200 is repeated for 1,000 simulations, corresponding to the random
Y. It is shown that the %correct of model prediction and the %accept corresponding to
the percentage of the power of the tests are all probably satisfied. The average %correct,
when X’s is exponential distributed, is approximately equal 77% (Table 2). The average
%correct, for both when X's are Bernoulli and multinomial distributed, are closed
together and are approximately equal to 99%. Meanwhile, all of these results are also

consistent with the results among the average of %accept when X's are exponential,
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Bernoulli, and multinomial of which they are approximately equal to 94.52%, 94.43%,
and 94.90%, respectively.

The results from the coefficients of correlation between R? analogs and base
rate levels of exponential distributed X’s, show that the RZC, RZM, and Rzo statistics are
most useful in term of smaller values of their correlation coefficients with the base rate
levels. When P is low, Ry is preferable. However, when P is moderate to high, these
three statistics give similar results (Table 3). For X's are Bernoulli and multinomial, it is
found that when P, is low, Rzo is preferable; otherwise, the correlation of coefficients are
approximately the same and most values are tend to be more independent than those
from the exponential distribution (Tables 4-5). The results of the correlation coefficients
between the indexes of predictive efficiency and base rate levels of exponential
distribution, show that the statistics ;LP and ¢P have better performance than the 7,
statistic does. However, when X’s are Bernoulli and multinomial the statistics lp and
T, dominate the statistic ¢, . Thus, in general conclusion for the Bernoulli and
multinomial distributions, they give lower magnitude of correlation coefficients than those

of the exponential distribution. Therefore, we prefer using /1P and 7, to ¢P.

5. Recommendations

From the results of this research it is found that for the logit model with
dichotomous response and exponential explanatory variable, the statistics RZC, RZM, Rzo,
/1P and ¢P probably be interesting to use; however, when P, is closed to 0.5
the %correct is low and the range is high. Thus further studies for more details in the
exponential explanatory distribution together with the increased sample sizes would be
recommended. The logit models with dichotomous response and Bernoulli and
multinomial exponential explanatory variables are much improved, the statistics R’
R, R%, /IP and 7, probably be appropriated. The average of %correct, for both

when X's are Bernoulli and multinomial distributed, are approximately equal to 99% with
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only low range. Similarly for the average %accepted which are also approximately equal

to 94%. Therefore, the R20 statistics outperforms the others and is also recommended.

Acknowledgements
This research was partially supported by the Institute of Research and
Development of Silpakorn University. We would also like to thank the Editor and the

referees for their helpful comments.

References

[1] Agresti, A. Categorical Data Analysis. New York: Wiley, 2002.

[2] Aldrich, J. H., and F. D. Nelson. Linear Probability Logit and Probit Models. Beverly
Hills: Sage, 1984.

[3] Cole S.R., P.D. Allison, and C.V. Ananth . Estimation of Cumulative Odds Ratios.
Copyright Elsevier Inc. 2003. AEP, 14(3), 2004: 172-178.

[4] DeMaris, A. Logit Modelling. Practical Applications, Newbury Park, CA: Sage, 1992.

[5] Hosmer, D.W. and S. Lemeshow. Applied Logistic Regression. New York: Wiley,

1989.

[6] Maddala, G. S. Limited-Dependent and Qualitative Variables in Econometrics. n.p.:
Cambridge University Press, 1983.

[7] McFadden, D. The Measurement of Urban Travel Demand. Journal of Public
Economics 3, 1974: 303-328.

[8] Menard, S. Applied Logistic Regression Analysis. A Sage University Papers series,
CA: Sage, 1995.

[9] Menard, S. Coefficients of Determination for Multiple Logistic Regression Analysis.

The American Statistician 54, 2000:17-24.



Veeranun Pongsapukdee 61

[10] Nagelkerke, N. J. D. A Note on a General Definition of the Coefficient of
Determination. Biometrika 78, 1991: 691-692.

[11] Piegorsch, W. W. Introduction to Binary Response Regression and Associated
Trend Analysis. Journal of Quality Technology, 30(3), 1998:269-281.

[12] Ryan, T. P. Modern Regression Methods. New York : Wiley, 1997.

[13] Simonoff, J. S. Logistic Regression, Categorical Predictors, and Goodness-of-Fit: It
Depends on Who You Ask. The American Statistician, February, 52(1), 1998: 10-14.

[14] Soderstrom, I., and D., Leitner. The Effects of Base Rate, Selection Ratio, Sample
Size, and Reliability of Predictors on Predictive Efficiency Indices Associated with
Logistic Regression Models. Paper Presented at the Annual Meeting of the Mid-

Western Educational Research Association. Chicago, October 1997: 1-20.



	Thailand Statistician
	July 2006; 4: 43-61
	http://statassoc.or.th
	[10] Nagelkerke, N. J. D. A Note on a General Definition of the Coefficient of  Determination. Biometrika 78, 1991: 691-692.
	[14] Soderstrom, I., and D., Leitner. The Effects of Base Rate, Selection Ratio, Sample Size, and Reliability of Predictors on Predictive Efficiency Indices Associated with Logistic Regression Models. Paper Presented at the Annual Meeting of the Mid-W...

	No. 4
	Exponential

