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Abstract 

 For the basic logit models, the response Y takes the value 1 with the success 

probability P1, and the value 0 with the failure probability (1-P1).  Problems arise with 

several proposed statistics for assessing the fit of the models and often be questioned 

which one of them is more preferable. In this article, 1,000 computer simulation 

experiments in each condition of the probabilities of Y=1( 1P ), the calculated parameters 

and X’s distributions, were generated to evaluate the performance of  various statistics, 

all of which were used for assessing the goodness-of-fit of the logit models. Ten statistics 

were computed for each combination of base rate levels and model conditions:  the 

likelihood ratio statistics G M ,  the indexes of predictive efficiency which consist of Pλ , 

Pτ  and Pφ , the coefficients of determination or R 2 analogs which consist of  R2
C (the 

contingency  coefficient R2 ), R2
L (the  log  likelihood  ratio R2 ), R2

M  (the  geometric  

mean  squared  improvement  per  observation R2 ),  R2
N  (the adjusted geometric  mean  

squared  improvement  R2 ),  and R2
O (the  ordinary  least  squares R2 ). The correlation 

coefficients for determining their magnitude (absolute values) of the measures of 
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independence from the base rate levels, the percentages of correct classification of the 

model (%correct) and the type II error rates, corresponding to the percentages of power 

of the tests (%accept) were also computed.  

The research results show  that,  for  hypothesis  testing  goodness-of-fit  of  

models,  both  of  the %correct and the %accept all are satisfied. The average 

of %correct, when X is Exponential is around 77% and when X’s are Bernoulli and 

multinomial distributed, they are approximately equal to 99%. Similarly for the average 

of %accept which are all approximately equal to 95%.  For X~ Exponential, the R2
C, R2

M,  

and R2
O are preferable and for X~ Bernoulli  R2

C, R2
M, R2

O  are still preferable but R2
o  

outperforms.  For (X1, X2)~ Multinomial, the results are similar but slightly superior to 

those of X~ Bernoulli. The indexes of predictive efficiency of the multinomial case, when 

the success probability P 1  is high, suggest that the Pλ , Pτ statistics may be used as 

the alternatives of the R2
C, R2

M and R2
O. Some recommendations are made for logit 

models with the exponential explanatory variable, the statistics R2
C, R2

M, R2
O, Pλ  and 

Pφ  probably be interesting to use. However, when P1 is closed to 0.5 the %correct is 

low and the range is high. Therefore, further studies in more details for the exponential 

explanatory variable together with the increased sample sizes would be recommended. 

For the logit models with Bernoulli and multinomial explanatory variables are much 

improved. Then, the statistics R2
C, R2

M, R2
O, Pλ  and Pτ  are probably appropriate, 

especially the R2
O statistic.  

___________________________ 

Keywords: base rate levels, Bayes’ theorem, indexes of predictive efficiency, likelihood 

ratio statistic, logit models. 

 

1.  Introduction 

Dichotomous logit models for one or more than one explanatory variables have 

become the standard method of analysis for explaining the relationship between 
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explanatory variables and a dichotomous response variable [5]. For multinomial or 

polytomous response, the logit models are also exist to handle the cases of response with 

more categories and can be called as many other names; such as, the cumulative logit 

models, the cumulative odds ratios [3]. In the usual case of the dichotomous logit model, it 

is now commonly used procedure in many disciplines; for example, in health-sciences 

research, particularly in medical sciences, engineering settings, and is becoming 

increasingly popular in the behavioral and social sciences. It is also an important endpoint 

in quality control and quality testing [11]. In this model the basic random variable Y is 

dichotomous response data taking the value 1 with the success probability P1, and the 

value 0 with the failure probability (1-P1). The relationship between the response 

probability value Pj and the explanatory variable value xj of the same individual is from the 

logit transformed function (1). 
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,   i =1,…, k, j = 1,…, n.                 (1) 

where )( jxP = P(Y=1|X=x) = E(Y=1|X=x) denote the expected probability value of Y 

given x, and ijx  = (x0j, x1j,…, xkj) denote the j th  setting of values of k explanatory 

variables, i = 1,…, k,  j = 1,…, n, for which jx 0 = 1, k is a constant, n is the sample size, 

iβ , i = 1,…, k are the model parameters, and y j = )( jxP + e j , whereas e is an 

random error which has a distribution with mean zero and variance equals to )x(P [1-

)x(P ]. 

 The values {y j , j =1,…, n} is assumed to follow a Bernoulli (P1) or a binomial (1, 

P1) distribution, so that  y j =1 represents a success and y j = 0 represents a failure.  The 

model in (1) is typically used with continuous explanatory variables and is often called as 

the logistic regression model; however, it is also appropriate when X’s are categorical 

variables [13] and is usually called logit models, especially either when it is used with 

only categorical predictors or multinomial responses [1].  Since statistical methods and 
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techniques for categorical data analyses have undergone development in the past 25 

years, and several statistics for assessing and evaluating the goodness-of-fit of logit 

models have been proposed. It is probably concluded that there are two basic 

approaches to evaluating the association between the explanatory variables and the 

response variable in the logit model analysis. One approach discussed by Ryan, 1997 

[12], Hosmer and Lemshow, 1989 [5], and Menard, 1995 [8] is to compare predicted and 

observed discrete values of the response variable, using the prediction table. Such 

measures are called indexes of predictive efficiency. Another approach is to use 

coefficients of determination, or R
2

analogs for logit models that compare the discrete 

observed values of the response with the continuous predicted values of the response 

(probabilities) [8]. As illustrated by DeMaris,1992 [4], Ryan 1997 [12] and Menard, 2000 

[9], R
2

and its analogs are not necessarily consistent with measures of predictive 

efficiency. Moreover, base rate should also be considered when selecting an index of 

predictive efficiency, whereas the base rate refers to the relative frequency of occurrence 

or the ratio of successes to failures of events being studied in the population of interest. 

However, most measures of predictive accuracy are highly sensitive to changes in base 

rate [14]. Thus, for evaluating an logit model, no claim is made that any statistic is the 

best for the use of  R
2

analogs and the indices of predictive efficiency.  Only that the 

results illustrated the possible concerns in using some specific measures. Therefore, it 

probably be necessary and interesting to research the methodological development of 

assessing the logit model in more details. Both in the different logit models and their 

goodness-of-fit tests, and also investigating of the performance of R
2

analogs and 

indexes of predictive efficiency with their uses concerning to both the base rate issue 

and the inference tests for the overall model fit.  

The objective of this article is to asses the adequacy-of-fit of logit models under 

the dichotomous response classified by its probability levels and the exponential, 

Bernoulli, and multinomial distributed explanatory variables. The different logit models 
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used in this simulation studies depend on fixed conditions and various explanatory 

variables through the model parameters calculated using Bayes’ theorem. 

 

2. Methodology 

Three separated sets of simulation studies were used to generate data in which 

the dichotomous outcome may depend on each of three different distributed explanatory 

variables. Three distributions of the explanatory variables consist of Exponential (λ ,
2λ ), 

Bernoulli (P), and multinomial ( 1π , 2π , 3π , 4π ). For the three simulation study sets, 

each of which four levels of the probability of Y = 1 ( 1P ), 0.05, 0.20, 0.35, and 0.50 were 

taken to simulate data in each set.  

The first set of simulation studies was carried out with a dichotomous response 

and one exponential distributed covariate. In this set, four simulation studies were 

performed accordingly to the levels of the probability of Y = 1 ( 1P ). Each of which was 

independently repeated 1,000 replicate data sets. 

A second set of simulation study was performed with a dichotomous response 

and each of three different Bernoulli distributed explanatory covariates, namely Bernoulli 

(0.10), Bernoulli (0.30), and Bernoulli (0.50). Thus, according to each combination of the 

three distributions and four levels of the probability of Y = 1 ( 1P ) altogether, twelve 

simulation studies, were then performed in this set, with independently repeated 1,000 

experiments in each simulation study. 

The third set of the simulation studies was generated with a dichotomous 

response and each of multiple explanatory variables which are in the forms of 

multinomial distributed explanatory variables, namely Multinomial (0.25,0.25,0.25,0.25), 

Multinomial (0.65,0.08,0.25,0.02), and Multinomial (0.10,0.35,0.45,0.10). Therefore, 

twelve simulation studies were then performed accordingly to each combination of 

different distributions and different levels of 1P  . Each of which was independently 

repeated 1,000 experiments. Detailed descriptions of the simulation and analyses are 
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given for the first set of studies. Other descriptions, applied with the appropriate 

modification for the second and third sets of simulation studies, all of which are 

presented in section 2.1-2.2, respectively. 

 

2.1 Simulation 

The logit model was used as the form of model (1). The success probability of y 

= 1, or P(xj) is a function of explanatory variable values x j , j = 1,…, n. Data were 

simulated for the first set of simulation studies as an exponential distributed variable. In 

this first set, the parameters 0β and 1β were obtained using the Bayes’ theorem 

approach, with the probability density function given by  

f
λ

(x)   =  
λ
1 λ

x

e
−

,   λ  >  0,   x > 0 

from which it readily follows that 0β = log( 1221 / λλ PP ), P1 and λ = 1λ , corresponding 

to the probability of Y = 1, P2 and λ = 2λ , corresponding to the probability of Y = 0, and 

1β = (
2

1
λ

-
1

1
λ

) which was set equal to log2. Taking 1λ = 2, we obtained 
1

2

λ
λ

= 0.419. 

The explanatory variable values were then generated from the selected distributions, 

X 1 ∼Exp(2, 4), corresponding to the probability of Y=1and X 2 ∼ Exp(0.838,0.702), 

corresponding to the probability of Y = 0, respectively. Thus, we combined both X 1 and 

X 2 based on P1 to obtain a data set of   200   individuals. 

 To simulate 1,000 sets of the outcome y j , with 200 individuals for each set, a 

pseudorandom realization, u j , of a uniform (0,1) variable was then regenerated and 

compared with )( jxP .  If  )( jxP >  u j , then y j  was set =  1, otherwise y j was set = 0,  

whereas  )( jxP  is the probability of Y=1 for the jth  individual, j = 1,…, n  which were 

based on the calculated p(x j ) values from the model (1). Then the proportion of cases 

for which y =1 or the base rate, is computed from each set of data of each logit model. 

The values of X’s and the corresponding parameters which were determined for each 

probability of P1, 0.05, 0.20, 0.35, and 0.50 and for each of the X’s distribution conditions 
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remain the same in 1,000  simulation.   The sample size is n= 200 individuals for each of 

Y and X’s. Each condition is performed for 1,000 independent data sets. Therefore, in this 

first set of study, the exponential distribution, there are all together four computer 

simulation studies. All details including the parameters and the explanatory variable 

distributions used in the simulation studies are summarized in Table 1. 

 

Table 1. Parameter ( 0β )  for Simulation Studies.  

Distributions 
Of  X’s 

Simulation No. (P 1 ) 
No.1  
(0.05) 

No.2  
(0.20) 

No. 3 
(0.35) 

No. 4 
(0.50) 

Exponential
*

 
 

-1.2337 
 

-0.5808 
 

-0.2593 
 

0.0000 

Bernoulli
*

 
 

-3.2910 
 

-1.7328 
 

-0.9656 
 

-0.3465 

Multinomial
*

 
 

-3.6375 
 

-2.0794 
 

-1.3121 
 

-0.6931 

∗  Exponential distributions:  X1∼Exp(2,4) for P 1 ,  X 2 ∼Exp(0.838,0.702) for  P 2 . 

∗  Bernoulli distributions:  Bernoulli (0.10),  Bernoulli (0.30), and  Bernoulli (0.45).  

∗Multinomial distributions: Multinomial (0.25,0.25,0.25,0.25), Multinomial 

(0.65,0.08,0.25,0.02),  and  Multinomial (0.10,0.35,0.45,0.10) . 
 

 In the second set of simulation studies, the distributions of the explanatory 

variables considered consist of Ber(0.10), Ber(0.30), and Ber(0.45). In each distribution, 

the logit model is of the form log[ )x(P /(1- )x(P ] = 0β  and  log[ )x(P /(1- )x(P ] = 

1β X, for x = 0 and x = 1, respectively. Thus, from which it follows that 0β = log 

[ )x(P /(1- )x(P ]- 0.5log2, corresponding to taking 1β = log2. Once the data sets were 

generated from a selected distribution, each of which, according to the probability of Y= 

1 levels or the conditions under the given parameters in Table1,  the outcomes based on 

model (1) would then be computed similarly as those performed in the first set of 

simulation studies. Therefore, in the second set, it consists of twelve computer simulation  

studies, each with 1,000 data sets. 
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 For the third set of simulation studies, the joint distribution of (X1, X2) is 

assumed to be multinomial with probabilities 1π , 2π , 3π , and 4π , corresponding to the 

(x1, x2) values of (0, 0), (0, 1), (1,0), and (1,1), respectively. Similarly to the second set of 

simulation studies, using 1β = 2β = log2 would then be leading to 0β = log [ )x(P /(1-

)x(P ]- log2. Following all the next steps as performed in the previous simulations, the 

explanatory variables (X1, X2) data were then generated, and the corresponding 

outcomes were also obtained from model (1). In this last set, it consists of twelve 

computer simulation studies, each with 1,000 data sets. 

In conclusion, for each combination of the probability of Y= 1 levels and 

distribution conditions together with the model parameters shown in Table1, 4,000 

replicated data sets were independently generated for the first set, 12,000 replicated 

data sets for the second set, and also 12,000 data sets for the third set, by the computer 

simulations. In each replicated data set, each variable in the model (1) was simulated 

using 200 sample individuals. 

 

2.2 Statistical Analyses 

Several statistics were computed for each combination of probability of Y 

=1( )1P  levels and model conditions,  the likelihood ratio statistics G M , R 2  analogs, 

indexes of predictive efficiency ,and the type II error rates, all of which were used for 

assessing goodness-of-fit of the models. All the calculated coefficients of determination 

(R2 analogs) are the followings: R2
C (the contingency  coefficient R2; Aldrich and Nelson, 

1984 [2]), R2
L (the  log  likelihood  ratio R2; McFadden,1974 [7]; Menard,1995 [8]), R2

M 

(the  geometric  mean  squared  improvement  per  observation R2; Maddala,1983 [6]; 

Ryan,1997 [12]), R2
N (the adjusted geometric  mean  squared  improvement  R2; 

Nagelkerke,1991 [10]; Ryan,1997 [12]), and R2
O (the  ordinary  least  squares R2). And 

also, the computed indexes of predictive efficiency consist of Pλ , Pτ  and Pφ  (Menard, 

1995 [8]). Then the correlation coefficients were calculated for determining whether their 
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magnitudes of the measures are independent of the base rate levels. In addition, 

the %correct of predictive efficiency and the %accept of the power of the tests (shown in 

Table 2). The average and range were consequently recorded.  All the statistics were 

computed using the following formulae:- 

GM      = -2 [ln(LO)-ln(LM)] ( the model chi-square statistic) …………….(2) 

R2
C     =  ( )nG

G

M

M

+
     …………….(3) 

R2
L     =   

)ln(
)]ln()[ln(

O

MO

L
LL −
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
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−
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L
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   ……….…….(4)                                              
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fEn
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1 ,    …………….(10) 

 P 1   =   A parameter of probability of success in this simulation    ….….….....(11) 

 

              Base rate   =  The proportion of cases for which y =1 from the models …...(12) 

%correct   =  The average percentage correct classified  of model (1)  

                        from 1,000  data  set             .......................(13) 
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 %accept   =   The average percentage of the power of the tests 

          from 1,000  data  sets                        ...........................(14) 
 

whereas  n is the total sample size, LO is the likelihood function for the model containing 

only the intercept, LM is the likelihood function for the model containing all of the 

predictors, ( )xP̂  is  the predicted value of the dependent variable Y, obtained from the 

model, y  is the observed value of the dependent variable Y, Y is the mean of Y, nmode 

is the observed number of failures in the model category of the dependent variable, 

ijf is the number of cases observed as having discrete value i and predicted as having 

discrete value j, iif is the number of cases for which the predicted value is equal to the 

observed value, if  is the number of cases observed as having discrete value i (i.e., the 

row sum ∑ j ijf )(  where the rows represent observed values and the columns 

represent predicted values), )( ijfE = ( )( )][ nff
j iji ij /∑∑  is the expected cell 

frequency for any cell, and ∑ )( iifE  is the expected number of correctly classified 

cases), calculated as the product of the row sum ∑ i and the column sum ∑ j , 

divided by the total sample size. All tests of adequacy of logit models were performed 

under the null hypothesis H0 :  β = 0  using the model chi-square statistics, GM and the 

computer works were programmed using the Minitab macro language and run by macros 

in MINITAB Release 11 for WindowsTM  for all simulation studies. 

 

3. Research Results 

The results of the dichotomous response depend on each of three different 

distributed explanatory variables which were classified to three sets of simulations, the 

Exponential ( λ ,
2λ ), the Bernoulli (P), and the Multinomial ( 1π , 2π , 3π , 4π ).  Each 

condition 1,000 replicated data sets were carried out under each of four probability of  

Y =1 levels, 0.05, 0.20, 0.35, and 0.50. 
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The first set of simulation studies, four simulation studies were performed under 

a dichotomous response and the Exponential (λ ,
2λ ) explanatory variable.  It is found 

that the average percentages and the range of the %correct are equal 76.4727 % and 

43.8891, respectively and the average percentages and the range of the power of the 

tests, corresponding to the %accept are equal 94.525% and 0.70, respectively (Table 2 

Exponential). For investigating the correlation coefficients to determining whether their 

magnitude correlation of R2 analogs and the predictive efficiency of Pλ , Pτ  and Pφ  

are independent of the base rate levels. The lower the magnitude (absolute values) of 

correlation coefficients, the better the adequate of fit of the statistics. It is found in most 

situation that R2
C, R2

M, R2
O are preferable than the others, especially when P 1 (the 

probability of  Y=1) is low and that the statistics R2
C, R2

M , are better than the R2
O. When 

P 1 is high all the three statistics R2
M, R2

C, R2
O give approximately the same performance. 

For the Indexes of Predictive Efficiency : Pλ , Pτ  and Pφ ,  it is found that  the Pλ and  

the Pφ  outperform  the Pτ  (Table 3). 

The second set of simulation study was performed with a dichotomous 

response and each of three different Bernoulli distributed explanatory variables, namely 

Bernoulli (0.10), Bernoulli (0.30), and Bernoulli (0.50). The results of the %correct and 

the power of the test, corresponding to the %accept give the better results than those of 

the first set. The average percentages and the range of the %correct are approximately 

equal 99% and 0.4672, respectively and also those of the %accept are approximately 

equal 94.43% and 1.30, respectively (Table 2 Bernoulli). In assessing the correlation 

coefficients, it is found that R2
O, R2

M, R2
C are still preferable but when P 1  is low the 

statistic R2
O is better than the R2

M and the R2
C statistics. When P 1  is high all the three 

R2
C, R2

M, R2
O give approximately the same performance. However for the Indexes of 

Predictive Efficiency : the Pλ  and the Pτ  outperform  the Pφ   (Table 4). 

 



                                                                           

 

Table 2.  The Average of Percentages of Correct Classification (%correct) and The Average of Percentages of the Powers of the tests 

(%accept) Classified by the probabilities of Y= 1 (P 1 ) and the X’s Distributions. 
 

Distributions 

 

 

Statistics 

Probability 

of   Y= 1 

X ~ 

Exponential 

X  ~ 

Ber(0.1) 

X  ~ 

Ber(0.3) 

X  ~ 

Ber(0.45) 

(X1, X2) 

~ Multinomial  

(0.25, 0.25, 

0.25, 0.25) 

(X1, X2) 

~  Multinomial   

(0.65, 0.08, 

0.25, 0.02) 

(X1, X2) 

~ Multinomial 

(0.10, 0.35, 

0.45, 0.10) 

% Correct P
1

=0.05 95.1925 99.2820 99.2005 99.2535 98.4915 98.7050 98.5025 

% Correct P
1

=0.20 87.6315 99.8265 99.4010 99.4570 99.4385 98.7390 99.3560 

% Correct P
1

= 0.35 71.7635 99.8875 99.4870 99.5350 99.4885 99.0010 99.4790 

% Correct P
1

= 0.50 51.3034 99.8845 99.6990 99.5510 99.5150 99.1840 99.4930 

Average  76.4727 99.7201 99.4468 99.4491 99.23338 98.9072 99.2076 

Range  43.8891 0.6055 0.4985 0.2975 1.0235 0.4790 0.9905 

% Accept P
1

=0.05 94.90 93..70 94.70 94.70 94.40 95.40 95.10 

% Accept P
1

=0.20 94.70 93.20 95.80 94.30 93.20 97.00 95.30 

% Accept P
1

= 0.35 94.20 92.60 94.80 95.00 95.20 94.80 95.00 

% Accept P
1

= 0.50 94.30 93.80 94.70 95.90 93.80 94.60 95.00 

Average  94.525 93.325 95 94.975 94.15 95.45 95.1 

Range  0.70 1.20 1.10 1.60 2.00 2.40 0.30 
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Table 3. Coefficients of Correlation between 2R  Analogs and Base rates, Indexes of  

predictive efficiency and Base rates, Classified by the probabilities of  Y= 1 (P
1
)  under 

X ~Exponential .  

 
X ~Exponential P

1
=0.05 P

1
=0.20 P

1
= 0.35 P

1
= 0.50 

2

0R  -0.037 0.031 -0.027 0.024 

2

LR  -0.122 -0.192 -0.085 0.024 

2

MR  -0.002 0.048 -0.033 0.023 

2

NR  -0.085 -0.159 -0061 0.024 

2

NR  -0.002 0.048 -0.034 0.024 

Pλ  -0.021 0.017 0.054 0.445 

Pτ  -0.985 -0.905 -0.992 -0.790 

Pφ  -0.025 0.018 0.050 0.221 

 
              The last set of the simulation studies was generated with a dichotomous 

response and each of multiple explanatory variables, which are in the forms of multinomial 

distributed explanatory variables, namely Multinomial(0.25,0.25,0.25,0.25), Multinomial 

(0.65,0.08,0.25,0.02), and Multinomial(0.10,0.35,0.45,0.10), it is found that the average 

percentages and the range of the %correct are approximately equal 99% and 0.8310, 

respectively. The power of the test, corresponding to the %accept provides the 

approximately the same results as those of the second set and the average percentages 

and the range are approximately equal  94.90% and 1.5666, respectively (Table 2 

Multinomial). In evaluating the correlation coefficients, it is found that statistics  R2
C, R2

M, 

R2
O are still preferable and all of them R2

C, R2
M, R2

O   give approximately close 

performance, except for the R2
O  that has a little prominent performance than others. 

However, for all the indexes of predictive efficiency, their results are more better than 

those of the first set and both  Pλ  and Pτ  outperform  the Pφ  (Table 5). 
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Table 4. Coefficients of Correlation between  2R  Analogs and Base rates, Indexes of  

predictive efficiency  and  Base rates,  Classified by the probabilities of  Y= 1 (P
1
) under 

X ~ Bernoulli (P), P=0.1, 0.3, 0.45.  
 
 

X ~ Bernoulli (0.1) 
P

1
 = 0.05 P

1
 = 0.20 P

1
= 0.35 P

1
= 0.50 

2

0R  -0.009 0.002 -0.033 -0.036 

2

LR  -0.200 -0.190 -0.155 -0.201 

2

MR  -0.032 -0.026 0.005 -0.035 

2

NR  -0.156 -0.148 -0.112 -0.158 

2

NR  -0.033 -0.027 0.004 -0.035 

Pλ  -0.310 -0.297 -0.210 -0.161 

Pτ  -0.398 -0.219 -0.216 -0.142 

Pφ  -0.421 -0.316 -0.199 -0.159 

 
X ~ Bernoulli (0.3) 

P
1
=0.05 P

1
=0.20 P

1
=0.35 P

1
=0.50 

2

0R  -0.032 -0.009 -0.060 -0.044 

2

LR  -0.103 -0.038 -0.097 -0.031 

2

MR  -0.025 0.014 -0.049 0.017 

2

NR  -0.072 -0.013 -0.074 -0.008 

2

NR  -0.025 0.014 -0.049 0.017 

Pλ  0.156 -0.221 -0.309 -0.159 

Pτ  -0.112 -0.352 -0.344 -0.143 

Pφ  -0.126 -0.617 -0.630 -0.156 

 
X ~ Bernoulli (0.45) 

P
1
=0.05 P

1
=0.20 P

1
=0.35 P

1
=0.50 

2

0R  -0.059 0.015 0.023 -0.048 

2

LR  -0.083 -0.036 0.048 -0.003 

2

MR  -0.026 -0.026 0.059 0.008 

2

NR  -0.058 -0.031 0.054 0.003 

2

NR  -0.026 -0.026 0.059 0.008 

Pλ  0.214 0.110 -0.047 -0.101 

Pτ  0.062 -0.088 -0.223 -0.272 

Pφ  0.051 -0.094 -0.533 -0.502 
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Table 5.   Coefficients of Correlation between  2R  Analogs and Base rates, Indexes of  

predictive efficiency  and  Base rates,  Classified by the probabilities of Y=1 (P
1
) under 

(X1, X2)~Multinomial (0.25, 0.25, 0.25, 0.25) (X1, X2)~Multinomial (0.65, 0.25, 0.08, 0.02) 

and (X1, X2)~Multinomial (0.10, 0.35, 0.45, 0.10). 

 

(X1, X2) ~ Multinomial 

(0.25,0.25,0.25,0.25) 

P
1
= 0.05 P

1
  = 0.20 P

1
 = 0.35 P

1
 = 0.50 

2

0R  -0.048 -0.052 0.004 -0.015 
2

LR  -0.103 -0.102 -0.091 -0.074 

2

MR  -0.011 -0.018 -0.006 0.013 
2

NR  -0.062 -0.065 -0.054 -0.035 

2

NR  -0.010 -0.018 -0.005 0.013 

Pλ  0.213 -0.350 -0.202 -0.198 

Pτ  -0.070 -0.226 -0.183 -0.168 

Pφ  -0.152 -0.428 -0.212 -0.190 

 

 (X1, X2)  ~ Multinomial 

(0.65,0.25,0.08,0.02) 

P
1
 = 0.05 P

1
 = 0.20 P

1
= 0.35 P

1
 = 0.50 

2

0R  0.011 -0.012 0.016 -0.003 

2

LR  -0.050 -0.106 -0.040 -0.040 

2

MR  -0.003 -0.055 0.011 0.006 
2

NR  -0.027 -0.081 -0.014 -0.017 

2

NR  -0.003 -0.056 0.011 0.006 

Pλ  0.177 0.125 -0.222 -0.287 

Pτ  -0.014 -0.203 -0.234 -0.191 

Pφ  -0.056 -0.233 -0.534 -0.548 
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(X1, X2) ~ Multinomial  

(0.10,0.35,0.45,0.10) 

   P
1
= 0.05 P

1
 = 0.20 P

1
= 0.35 P

1
= 0.50 

2

0R  -0.014 0.014 0.021 0.049 
2

LR  -0.122 -0.130 -0.048 -0.104 

2

MR  -0.045 -0.046 0.043 -0.013 
2

NR  -0.088 -0.093 -0.007 -0.064 

2

NR  -0.044 -0.046 0.044 -0.012 

Pλ  0.208 -0.429 -0.176 -0.0169 

Pτ  -0.022 -0.283 -0.149 -0.143 

Pφ  -0.129 -0.563 -0.186 -0.168 

 

4. Conclusion 

This research is performed to assessing the adequacy of fit of logit models, 

using likelihood ratio statistic or GM, R
2

analogs, indexes of predictive efficiency, and to 

determining the magnitude values of the correlation coefficients between R
2

analogs, 

indices of predictive efficiency and the base rate levels and also to evaluating the 

performance of the inferential tests. The logit models depend on the explanatory 

variables which corresponding to the relationship between the dichotomous response 

variable and the explanatory variables, namely Exponential, Bernoulli, and Multinomial 

distributed variables through the model parameters calculated using Bayes’ theorem. 

Each condition for n=200 is repeated for 1,000 simulations, corresponding to the random 

Y. It is shown that the %correct of model prediction and the %accept corresponding to 

the percentage of the power of the tests are all probably satisfied. The average %correct, 

when X’s is exponential distributed, is approximately equal 77% (Table 2). The average 

%correct, for both when X’s are Bernoulli and multinomial distributed, are closed 

together and are approximately equal to 99%. Meanwhile, all of these results are also 

consistent with the results among the average of %accept when X’s are exponential, 
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Bernoulli, and multinomial of which they are approximately equal to 94.52%, 94.43%, 

and  94.90%, respectively. 

  The results from the  coefficients of correlation between 2R  analogs and  base 

rate levels of exponential distributed X’s, show that the R2
C, R2

M, and R2
O statistics are 

most useful in term of smaller values of their correlation coefficients with the base rate 

levels. When P 1  is low, R2
M  is preferable. However, when P 1  is moderate to high, these 

three statistics give similar results (Table 3).  For  X’s are Bernoulli and multinomial, it is 

found that when P 1  is low, R2
O is preferable; otherwise, the correlation of coefficients are 

approximately the same and most values are tend to be more independent than those 

from the exponential distribution (Tables 4-5).  The results of the correlation coefficients 

between the indexes of predictive efficiency and base rate levels of exponential 

distribution, show that the statistics Pλ  and Pφ  have better performance than the Pτ  

statistic does. However, when X’s are Bernoulli and multinomial the statistics Pλ  and 

Pτ  dominate the statistic Pφ . Thus, in general conclusion for the Bernoulli and 

multinomial distributions, they give lower magnitude of correlation coefficients than those 

of the exponential distribution. Therefore, we prefer using Pλ  and Pτ  to Pφ . 

 

5. Recommendations 

From the results of this research it is found that for the logit model with 

dichotomous response and exponential explanatory variable, the statistics R2
C, R2

M, R2
O, 

Pλ  and Pφ   probably be interesting to use; however, when P 1 is closed to 0.5 

the %correct is low and the range is high. Thus further studies for more details in the 

exponential explanatory distribution together with the increased sample sizes would be 

recommended. The logit models with dichotomous response and Bernoulli and 

multinomial exponential explanatory variables are much improved, the statistics R2
C, 

R2
M, R2

O, Pλ  and Pτ  probably be appropriated.  The average of %correct, for both 

when X’s are Bernoulli and multinomial distributed, are approximately equal to 99% with 
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only low range. Similarly for the average %accepted which are also approximately equal 

to   94%.  Therefore, the R2
o statistics outperforms the others and is also recommended. 
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