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Abstract 

 The coefficient of variations (CV) of each individual estimate and for all possible 

combinations of the estimates are used to see which parameters should be random in a 

nonlinear mixed effects model. From the difference of exponentials model simulations, 

when only one parameter is random, the sample CV of the corresponding estimate will 

be the highest rank and its mean is close to the population CV.  When more than two 

correlated random effects are considered, the corresponding sample CV of the individual 

estimate equally shares the highest and the mean of each individual CV estimate and 

their combinations are close to the population CV. An example on isolated perfused 

porcine skin flaps data is also presented and the multivariate coefficient of variation was 

applied to indicate which parameter appears to be random.  The optimum solution 

agrees with other model selection criteria, e.g., AICC, AIC, or BIC. 
___________________________ 
Keywords: compartment model, difference of exponentials model, fixed parameter 

approach, multivariate coefficient of variation, nonlinear mixed effects model 

 

1.  Introduction 

A nonlinear mixed effects model is often used to model repeated-measures 

response data. In these types of studies, one is usually interested in estimating the 
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underlying population response curve. Since individuals are randomly sampled from the 

population as a whole, so the parameters could be considered as random effects.  

  Budsaba and Smith [2] proposed an approximate F test statistics from the fixed 

parameter approach to test whether random effects are needed. From the difference of 

exponentials model simulations, the test offers a good power. 

   To choose which parameters should be random in a nonlinear mixed effects 

model, Pinheiro et al. [5] start with all parameters as mixed effects and then examine the 

eigenvalues of the estimated variance-covariance matrix. If one, or more, are close to 

zero, then the associated eigenvector(s) would then give an estimate of the linear 

combination of the parameters that could be considered as fixed.  

  The strategy we suggest here for determining the random effects in a non linear 

mixed effects model is to use the sample coefficient of variation of each individual 

estimate (CV(θ̂  )) and CV for all possible combinations of the estimates. CV for more 

than one estimator will be defined later and denoted by CV )ˆ,,ˆ( 1 kθθ  .  For example, 

if a model has 3 parameters, A , b , and d , we calculate CV( Â ), CV( b̂ ), CV( d̂  ), 

CV( bA ˆ,ˆ  ), CV( dA ˆ,ˆ ), CV( db ˆ,ˆ ), and CV( dbA ˆ,ˆ,ˆ ).  We expect that CV( Â ) will have 

the highest value when A is the only random parameter in the model. When two or more 

random parameters are in the model, we want to investigate the performance of those 

CVs under certain conditions. , e.g., CV( Â ),CV( b̂ ), and CV( bA ˆ,ˆ  ) will have the 

highest value when both A and b are random. 

 The motivation of using the sample CV of an estimator to detect the 

corresponding random parameter after the significance of the approximate F test can be 

considered as follows: 

 Suppose in a single factor balanced ANOVA model II, ijiijy εµ += .Where 

iµ    are independent ),( 2
. µσµN , ijε are independent ),0( 2

. σN , iµ and ijε  are 

independent random variables, i = 1,.., k groups and j = 1,..,n replications. 

 From this model, .iY  is an estimator of the random parameter iµ . Since 

.. )( µ=iYE  and 
n

YV i

2
2

. )( σσ µ +=  . Hence, the population CV( .iY ) is defined by: 
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CV( .iY ) =
µ

σσ µ
2/1

2
2 )(

n
+

, and can be estimated by the sample CV( .iY ) which is defined 

by: CV( .iY )= 
..

1

2/12
... )]1/()([

Y

kYY
k

i
i∑

=

−−
.  Hence the usual F statistics can be stated 

in term of the sample CV( .iY ) as follow:  F = )]()([ .
22

.. iYCVYn /MS(Within Group). 

We can see that the larger value of sample )( .
2

iYCV , the larger value of F. If the null 

hypothesis is false, the noncentral parameter [4] of F is:  

    2

2
.1 ..)(
σ

µµφ −∑
= = i

k
in               (1)        

 The term 2
.1 ..)( µµ −∑ = i

k
i   in (1) can be estimated by by ( 2

.. )Y (k–

1) 2CV ( .iY ), and then the larger value of 2CV ( .iY ), the larger value of φ . Hence the 

sample CV of the estimator of a random parameter can be used as an index to 

determine whether the parameter is random after the significance of an F test.  

 

2. Multivariate Coefficient of Variation 

Some CV-like methods for k samples have been reported in the literature. 

These include the arithmetic mean of standard deviation over the grand mean, the CV 

based on variation within samples, and the CV based on variation among samples [6]. 

 Chow and Tse [3] investigated estimators for the common CV for balanced k 

sample in bioavailability/bioequivalence studies. The arithmetic mean of CV, the pooled 

CV as in Worley et al. [7], the least square regression function of iS  and iY , the 

moment estimator under one-way random effects model, etc, were compared 

asymptotically. 

 For the multivariate case, the literature is lacking. We use the univariate CV as 

an expansion to the multivariate variables. The proposed multivariate coefficient of 

variation is defined as: 

   2
1

}),,1(1)},,1({),,1(1{),,1(
−−= T

kkYYCovkkkYY µµµµυ   
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For example:  

 2
1

})2μ,1μ((1})2,1({)2,1(
2
1{)2,1(

−−= TYYCoYY υµµυ  

               2
1

}1)}({2){()(
−−= YVarY µυ    µσ=  

 The sample coefficient of variation for k random variables ),,1( kYY   is then 

given by: 

 2
1

}),,1(1)},,1(ˆ{),,1(1{),,1(
−−= T

kYYkYYovCkYY
kkYYCV   

 For example; 

 2
1

})2,1(1)}2,1(ˆ{)2,1(
2
1{)2,1(

−−= TYYYYovCYYYYCV  

      CV(Y )  2
1

}1)}(ˆ{2){(
−−= YarVY  YS=       

                    

3.  Simulation Study 

To see the performance of the proposed sample CV, the multivariate sample 

CV is calculated. The simulation is based on the model: 

 ijijiijiiij )}tdexp()tb{exp(Ay ε+−−−= ,  23,...,1j;8,...,1i ==          (2)                                       

where iA  is normal with mean 1.5. ib  and id  are normal with mean 0.0065 and 0.044 

respectively.  The random effects are positively or negatively highly correlated. The 

independent normal random variables ijε  have mean zero and four choices of variance, 

i.e. 0V  = 5.50287 ×  10-6, 10 ×  0V , 100 ×  0V , and 1000 ×  0V . These error terms are 

also independent of the random effects. The model and its parameters including the 

approximate value of the error terms variance were generated  based on a porcine skin 

flaps experiment. With these scenarios and several choices of the coefficients of 

variation (CV) of the random effects across individuals, 1,000 Monte Carlo replications 

were realized at time (tij) = {0, 5, 10, 15, 30, 45, 60, 75, 90, 105, 120, 150, 180, 210, 240, 

270, 300, 330, 360, 390, 420, 450, 480}.  

  The model (2) we propose for the flux rate profile of the porcine flaps 

experiment is the difference of exponentials model [1]. This model is a compartment 

model. Compartment models are commonly used in pharmacokinetics, where the 
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exchange of materials in biological systems is studied. A system is divided into 

compartments, and it is assumed that the rates of flow of drugs between compartments 

follow first order kinetics, so that the rate of transfer to a receiving compartment is 

proportional to the concentration in the supplying compartment. The transfer coefficients, 

which are assumed constant with respect to time, are called rate constants. 

The reciprocal of a rate constant is called a time constant. Our model has two 

constant rates (b and d). We also assume that d ≥  b. Since d is greater than b, this 

model can be considered as a two compartment model with a faster absorption constant 

rate than elimination constant rate. A is mathematically explained as a function of b, d, 

and an initial unobservable quantity of the supplying compartment. This model allows the 

response to be zero at time zero. 

At each replication of 1,000 Monte Carlo runs, sample CV of all subsets of the 

estimates were obtained and ranked by ascending order. We investigated the sample 

CV of these estimates when all parameters are fixed, and for all possible combinations of 

correlated random effects (one, two, or three random parameters) with Pearson’s 

correlation coefficient ( ρ ) between any relevant pair of random parameters is .90 or  

-.90. Three choices of  υ , the population CV of each random effects across individuals, 

i.e. .01, .05, and .10 were studied.  These CV values (.01, .05 and .10) were chosen 

according to the pilot porcine skin flaps experiment. 

 Table 1. shows the result when all parameters are fixed.  CV )ˆ(d  is about 90% 

of the time in the highest rank for all choices of the error variance except for the error 

variance 01000 V× , that is about 85%. This means that when all parameters are fixed, 

CV )ˆ(d  is more likely to have the highest value.  

 Presence of correlated random effects are considered in Tables 2, 3, 4, and 5.  

Each table presents result of simulations for several values of υ  (the population CV of 

each random effect) and when one, two, or all three of the effects are random with the 

error variance of 0V  = 5.50287 × 10-6, 010 V× , 0100 V× , and 01000 V×  respectively. 
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Table 1. The proportion of times that the sample CV of the estimator(s) has the highest 

value when all parameters are fixed and Var( ijε ) =  5.50287 × 10-6  = 0V . 

 

 
0V  10 × 0V  100 × 0V  1000 × 0V  

CV( Â ) 
.011 .012 .017 .075 

CV( b̂ ) .086 .087 .086 .080 

CV( d̂ ) .903 .901 .897 .845 

CV( bA ˆ,ˆ ) .000 .000 .000 .000 

CV( dA ˆ,ˆ ) .000 .000 .000 .000 

CV( db ˆ,ˆ ) .000 .000 .000 .000 

CV( dbA ˆ,ˆ,ˆ ) .000 .000 .000 .000 

  

 At 0V (Table 2), when only one parameter is random, we observe that at least 

98%  of the time the corresponding CV will be the highest. When the error variance is 

increased from 10 times to 1000 times V0 in Tables 3-5, we observe that to attain the 

highest rank most of the times, the population CV (υ) of the random parameter should 

increase correspondingly.  

When only two positively correlated parameters are present at 0V (Table 2), we 

observe that the CV of the corresponding estimators have the highest rank most of the 

time when ρ  = .90.  For example, when A and b are positively correlated, CV )b̂,Â(   is 

the highest about 84 %, 85 %, and  84 % of the time, respectively, when υ  = .01, .05, 

and .10. When ρ  = -.90, we observe that CV of the estimator corresponding with each 

individual random parameter has the highest rank most of the time. For example, when A 

and b are negatively correlated, CV( Â ) and CV( b̂ ) has the highest, respectively, about 

51 % and 49 % of the time for all values of υ . 
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Table 2. The proportion of times that the sample CV of  the estimator(s) has the highest 

value at different population CV (υ) and Var( ijε ) =  5.50287 × 10-6  = 0V . 

Random 

Effect(s) 

 90.−=ρ  90.=ρ  

υ = .01 υ = .05 υ = .10 υ = .01 υ = .05 υ = .10 
A 

CV( Â ) 
.981 1.00 1.00 .981 1.00 1.00 

b CV( b̂ ) .980 1.00 1.00 .980 1.00 1.00 

d CV( d̂ ) .996 1.00 1.00 .996 1.00 1.00 

A,b 
CV( Â ) 

.509 .508 .513 .070 .075 .078 

 CV( b̂ ) .484 .492 .487 .073 .074 .078 

 CV( bA ˆ,ˆ ) .004 .000 .000 .841 .851 .844 

A,d 
CV( Â ) 

.429 .515 .520 .117 .084 .080 

 CV( d̂ ) .569 .485 .480 .180 .076 .075 

 CV( dA ˆ,ˆ ) .000 .000 .000 .703 .840 .845 

b,d CV( b̂ ) .431 .516 .518 .099 .080 .079 

 CV( d̂ ) .567 .484 .482 .179 .075 .076 

 CV( db ˆ,ˆ ) .000 .000 .000 .722 .845 .845 

A,b,d 
CV( Â ) 

   .017 .010 .009 

 CV( b̂ )    .008 .011 .010 

 CV( d̂ )    .075 .013 .010 

 CV( bA ˆ,ˆ )    .216 .121 .123 

 CV( dA ˆ,ˆ )    .089 .129 .124 

 CV( db ˆ,ˆ )    .094 .102 .098 

 CV( dbA ˆ,ˆ,ˆ )    .501 .614 .626 

 

Similar results with the bivariate positively correlated effects were obtained 

when all parameters are positively correlated at the error variance level 0V  (Table 2), 

CV( dbA ˆ,ˆ,ˆ ) is the highest 50 % , 61 % , and 63 % of the time, respectively, when υ  

= .01, .05, and .10.  
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When the error variance is increased to 010 V×  (Table 3), similar results to the 

case when the error variance equals 0V  were obtained.  For positively correlated 

parameters, the sample CV of the corresponding estimators is the highest most of the 

time when υ  is only .01. This is not true for this particular υ  (.01) if parameter d is also 

random variable, as well as either  A, b or (A,b) are random.  We observe that the 

sample CV of the corresponding estimators will be highest most of the time when υ  

is .05 or .10. For example, CV( dA ˆ,ˆ ) is the highest 79 % and 82 % of the time, 

respectively, when υ  is .05 and .10. CV( db ˆ,ˆ ) is the highest 79 % and 83 % of the time, 

respectively, when υ  is .05 and .10. CV( dbA ˆ,ˆ,ˆ ) is the highest 56 % and 61 % of the 

time, respectively, when υ  is .05 and .10. 

For the negatively correlated parameters with the error variance equals 

010 V× (Table 3), the sample CV of the estimator corresponding with each individual 

random parameter has the highest rank most of the time when υ  = .05 and υ  = .10 

only. For example, when A and b are negatively correlated, CV( Â ) and CV( b̂ ) has the 

highest, respectively, about 50-51 % and 49-50 % of the time for υ  = .05 and .10.  

If we increases the error variance to be 0100 V×  (Table 4) the corresponding 

sample CV of estimator(s) will be the highest most of the time when the population CV is 

also increased. For example, when A and b are positively correlated, CV( bA ˆ,ˆ ) is the 

highest most of the time when υ  = .05 and .10. When (A,d), (b,d), or (A,b,d) are 

positively correlated, respectively, CV( dA ˆ,ˆ ),CV( db ˆ,ˆ ), and CV( dbA ˆ,ˆ,ˆ ) will be the 

highest most of the time when υ  = .10. This is also true when the error variance is 

01000 V×  (Table 5), for only A and b are random parameters with υ  = .10 but it is not 

true with this particular υ  (.10) when (A,d), (b,d) or (A,b,d) are random parameters. 
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Table 3. The proportion of times that the sample CV of  the estimator(s) has the highest 

value at different population CV (υ) and Var( ijε ) =  10 × 0V . 

Random 
Effect(s) 

 90.−=ρ  90.=ρ  

υ = .01 υ = .05 υ = .10 υ = .01 υ = .05 υ = .10 
A 

CV( Â ) 
.460 1.00 1.00 .460 1.00 1.00 

 
CV( d̂ ) 

.504 .000 .000 .504 .000 .000 

b 
CV( b̂ ) 

.476 .999 1.00 .476 .999 1.00 

 
CV( d̂ ) 

.521 .001 .000 .521 .001 .000 

d 
CV( d̂ ) 

.953 1.00 1.00 .953 1.00 1.00 

A,b 
CV( Â ) 

.271 .506 .499 .034 .076 .079 

 
CV( b̂ ) 

.296 .491 .501 .050 .074 .076 

 
CV( d̂ ) 

.302 .001 .000 .238 .000 .000 

 
CV( bA ˆ,ˆ ) 

.123 .002 .000 .665 .848 .845 

A,d 
CV( Â ) 

.107 .472 .508 .175 .090 .088 

 
CV( d̂ ) 

.713 .528 .492 .598 .125 .089 

 
CV( bA ˆ,ˆ ) 

.164 .000 .000 .120 .000 .000 

 
CV( dA ˆ,ˆ ) 

.000 .000 .000 .104 .785 .823 

b,d 
CV( b̂ ) 

.165 .484 .512 .171 .090 .087 

 
CV( d̂ ) 

.709 .516 .488 .580 .120 .085 

 
CV( db ˆ,ˆ ) 

.001 .000 .000 .152 .790 .828 

A,b,d 
CV( Â ) 

   .026 .009 .011 

 
CV( b̂ ) 

   .016 .007 .008 

 
CV( d̂ ) 

   .394 .035 .015 

 
CV( bA ˆ,ˆ ) 

   .465 .183 .127 

 
CV( dA ˆ,ˆ ) 

   .007 .102 .120 

 
CV( db ˆ,ˆ ) 

   .027 .101 .112 

 
CV( dbA ˆ,ˆ,ˆ ) 

   .065 .563 .607 
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Table 4. The proportion of times that the sample CV of the estimator(s) has the highest 

value at different population CV (υ) and Var( ijε ) =  100 × 0V . 

Random 
Effect(s) 

 90.−=ρ  90.=ρ  
υ = .01 υ = .05 υ = .10 υ = .01 υ = .05 υ = .10 

A 
CV( Â ) 

.065 .763 .978 .065 .763 .978 

 CV( b̂ ) .074 .014 .000 .074 .014 .000 

 CV( d̂ ) .861 .223 .022 .861 .223 .022 

b CV( b̂ ) .132 .753 .978 .132 .753 .978 

 CV( d̂ ) .857 .246 .022 .857 .246 .022 

d CV( d̂ ) .895 .970 .997 .895 .970 .997 

A,b 
CV( Â ) 

.023 .415 .495 .006 .059 .070 

 CV( b̂ ) .047 .432 .497 .035 .063 .067 

 CV( d̂ ) .632 .099 .004 .577 .080 .005 

 CV( bA ˆ,ˆ ) .293 .047 .004 .379 .780 .846 

A,d 
CV( Â ) 

.006 .238 .418 .024 .188 .110 

 CV( d̂ ) .676 .693 .580 .644 .442 .198 

 CV( bA ˆ,ˆ ) .291 .056 .002 .308 .026 .000 

 CV( dA ˆ,ˆ ) .000 .000 .000 .000 .343 .692 

b,d CV( b̂ ) .036 .278 .441 .046 .171 .107 

 CV( d̂ ) .660 .673 .557 .640 .426 .184 

 CV( bA ˆ,ˆ ) .302 .041 .002 .307 .020 .000 

 CV( db ˆ,ˆ ) .001 .002 .000 .006 .383 .709 

A,b,d 
CV( Â ) 

   .005 .025 .015 

 CV( b̂ )    .025 .009 .009 

 CV( d̂ )    .592 .237 .069 

 CV( bA ˆ,ˆ )    .372 .374 .225 

 CV( dA ˆ,ˆ )    .000 .032 .090 

 CV( db ˆ,ˆ )    .005 .058 .099 

 CV( dbA ˆ,ˆ,ˆ )    .001 .265 .493 
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Table 5. The proportion of times that the sample CV of  the estimator(s) has the highest 

value at different population CV (υ) and Var( ijε ) =  1000 × 0V . 

Random 
Effect(s) 

 90.−=ρ  90.=ρ  
υ = .01 υ = .05 υ = .10 υ = .01 υ = .05 υ = .10 

A 
CV( Â ) 

.081 .199 .473 .081 .199 .473 

 CV( b̂ ) .079 .053 .030 .079 .053 .030 

 CV( d̂ ) .840 .748 .497 .840 .748 .497 

b CV( b̂ ) .088 .188 .451 .088 .188 .451 

 CV( d̂ ) .840 .746 .504 .840 .746 .504 

d CV( d̂ ) .840 .867 .910 .840 .867 .910 

A,b 
CV( Â ) 

.034 .089 .268 .031 .048 .070 

 CV( b̂ ) .030 .087 .253 .026 .035 .040 

 CV( d̂ ) .619 .519 .290 .630 .482 .256 

 CV( bA ˆ,ˆ ) .314 .299 .180 .311 .431 .616 

A,d 
CV( Â ) 

.030 .064 .165 .033 .104 .205 

 CV( d̂ ) .639 .653 .656 .633 .630 .576 

 CV( bA ˆ,ˆ ) .303 .261 .166 .306 .249 .128 

 CV( dA ˆ,ˆ ) .000 .000 .000 .000 .007 .090 

b,d CV( b̂ ) .028 .051 .154 .026 .065 .137 

 CV( d̂ ) .630 .610 .576 .635 .635 .568 

 CV( bA ˆ,ˆ ) .308 .308 .237 .303 .267 .138 

 CV( db ˆ,ˆ ) .001 .000 .001 .004 .020 .150 

A,b,d 
CV( Â ) 

   .035 .055 .054 

 CV( b̂ )    .025 .021 .019 

 CV( d̂ )    .631 .532 .387 

 CV( bA ˆ,ˆ )    .306 .380 .437 

 CV( dA ˆ,ˆ )    .000 .000 .009 

 CV( db ˆ,ˆ )    .003 .006 .030 

 CV( dbA ˆ,ˆ,ˆ )    .000 .006 .064 
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When A and b are negatively correlated at the error variance 0100 V×  (Table 

4), CV( Â ) and CV( b̂ ) is the highest most of the time (about 42 - 43 % for both CV( Â ) 

and CV( b̂ ) when υ  = .05 and about 50 % for both CV( Â ) and CV( b̂ )  when υ  = .10. 

At the error variance 0100 V× , if parameter d is also random variable as well 

as either A or b. We observe that when (A,d) or (b,d) are negatively correlated, 

respectively, CV( Â ), CV( d̂ )  and  CV( b̂ ), CV( d̂ )  will be in the highest rank most of 

the time when υ  = .10 (Table 4). We cannot observe this pattern when the error 

variance is 01000 V×  (Table 5). 

 Figures 1-3  show the means of the sample CV of the estimator(s) at the error 

variance 0V  when the population CV of each correlated effect is, respectively, .01, .05, 

and .10. In each figure, means of CV of the estimator(s) when all parameters are fixed is 

shown at the upper left corner. With this 0V  = 5.50287 × 10-6, the means of CV of the 

estimator(s) under fixed effects are all within the dashed septagon for all values of the 

population CV (.01, .05, and .10) then we can see the pattern of the sample CV of the 

estimator(s) clearly. The performance of CV of the estimator(s) when the random effects 

are highly positively correlated ( ρ  = .90) is different from when the random effects are 

highly negatively correlated ( ρ  = -.90). For example, when A and b are positively 

correlated, the mean of CV( bA ˆ,ˆ ), CV( Â ), and CV( b̂ ) are highest. The mean of 

CV( bA ˆ,ˆ ) is the highest while the mean of CV( Â ) and CV( b̂ ) are close to the 

population CV. If A and b are negatively correlated, only the mean of CV( Â ) and CV( b̂ ) 

are highest and close to the population CV. 

   At the error variance 010 V× , the means of CV of the estimator(s) under fixed 

effects are all within the dashed septagon when the population CV = .05 and .10, then 

we can see the same pattern as for the case when the error variance is 0V  for the 

population CV = .05 and .10 only. 
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Figure 1:  Mean of the sample CV of the estimator(s) when all parameters are fixed and 

when two or more correlated effects are considered, each with the  

population CV = .01 and Var( ijε ) = 5.50287×10-6 
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Figure 2.  Mean of the sample CV of the estimator(s) when all parameters are fixed and 

when two or more correlated effects are considered, each with the population CV = .05 

and Var( ijε ) = 5.50287×10-6 
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Figure 3.  Mean of the sample CV of the estimator(s) when all parameters are fixed  

and when two or more correlated effects are considered, each with the  

population CV = .10 and Var( ijε ) = 5.50287×10-6 

 

A,b,d Fixed at V0

0

0.1

CV(A)

CV(b)

CV(d)

CV(A,b)CV(A,d)

CV(b,d)

CV(A,b,d)

A,b (CV = .10, Rho = .90)

0

0.1

CV(A)

CV(b)

CV(d)

CV(A,b)CV(A,d)

CV(b,d)

CV(A,b,d)

A,d (CV = .10, Rho = .90)

0

0.1

CV(A)

CV(b)

CV(d)

CV(A,b)CV(A,d)

CV(b,d)

CV(A,b,d)

b,d (CV = .10, Rho = .90)

0

0.1

CV(A)

CV(b)

CV(d)

CV(A,b)CV(A,d)

CV(b,d)

CV(A,b,d)

A, b, d (CV = .10, Rho = .90) 

0

0.1

CV(A)

CV(b)

CV(d)

CV(A,b)CV(A,d)

CV(b,d)

CV(A,b,d)

A,b (CV = .10, Rho = -.90)

0

0.1

CV(A)

CV(b)

CV(d)

CV(A,b)CV(A,d)

CV(b,d)

CV(A,b,d)

A,d (CV = .10, Rho = -.90)

0

0.1

CV(A)

CV(b)

CV(d)

CV(A,b)CV(A,d)

CV(b,d)

CV(A,b,d)

b,d (CV = .10, Rho = -.90)

0

0.1

CV(A)

CV(b)

CV(d)

CV(A,b)CV(A,d)

CV(b,d)

CV(A,b,d)



78                                                                            Thailand Statistician, 2006; 4:63-83 

 Similar results were obtained when the error variance is 0100 V× . The mean 

of CV of the corresponding estimator(s) is highest and close to the population CV when 

the population CV is .05 and .10. It is also clearer when the population CV = .10 than the 

population CV = .05 but when the error variance is 01000 V× , we cannot see this 

pattern anymore since under fixed effects model, all means of CV of estimator(s) are not 

inside the dash septagon. 

 

4. An Example 

  We applied the method we propose to the methyl salicylate data (MS).  

400 2cm/gµ  of MSC14 −  in ethanol were topically applied to 8 isolated perfused 

porcine skin flaps and experiments terminated at 8 hrs. Perfusate was collected over 

time (5,10,20,30,45,60,75,90,105,120 minutes and then every 30 minutes until 

termination of the experiment). Perfusate flux profiles were fitted to an exponential 

difference model,  

   ijijiijiiij tdtbAy ε+−−−= ))exp()(exp( . 

 We performed the test statistic from 5 flaps for the final analysis since three 

flaps are outliers.  Prior to analysis, time was converted to hours and percent of dose 

was multiplied by 100. 

 The individual estimates are shown in Table 6. 

 

Table 6.  Parameter estimates for each flap of 8 hr. MS data. 

Flap Â b̂  d̂  

1 

2 

3 

4 

5 

1.0516 

1.6230 

1.7346 

1.7642 

1.7109 

0.3007 

0.3397 

0.4414 

0.3076 

0.2978 

3.6095 

3.2220 

10.1435 

5.6908 

9.4859 

 
 

 The approximate F test statistic is 18.419 with p-value close to 0 since 

)100,12,95(.F = 1.850.  The result suggests that a random effects model is needed for 

these data under model assumptions. 
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  Model selection to see which pararmeter should be considered random by 

using the multivariate coefficient of variation is presented in Table 7.  

 

Table 7.  Sample multivariate CV of the estimates from 8 hr MS data. 

Estimate(s) CV 

Â  
0.1892 

b̂  0.1792 

d̂  0.5034 

Â , b̂  
0.2133 

Â , d̂  
0.2606 

b̂ , d̂  0.2505 

Â , b̂ , d̂  
0.2384 

 

 The sample CV( d̂ ) is highest (0.5034), follow by CV( dA ˆ,ˆ ) and CV( db ˆ,ˆ ) 

(0.2606 and 0.2505 respectively). We might suggest the model with only d  random, or 

the model with d and one other parameter.  For example, the model with A  and 

d random, or the model with b and d random, compared to the model with all 

parameters random.  The fixed parameter approach then will be used to form an 

approximate F test for model selection. 

 The full model here is the model with all parameters random. The reduced 

model I is the model with only d  random, the other reduced model II and III are the 

models with Â  and d̂ random, and the model with b̂ and d̂  random. The test statistics 

(TS), critical values of the F random variable, and p-values are shown in Table 8. 

 The results in Table 8 indicate that the model with A  and d random and the 

model with b and d random are not different from the model with all parameters random.  

Based on the sample multivariate CV and the p-values from the test, we then conclude 

that the model with b and d random is appropriate for this data. 
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Table 8. Test statistics (TS), F and p-value for testing the full model and the reduced 

model for 8 hr MS data. 

Reduced Model TS F p-value 

I ( d random) 5.80 2.03 ≈ .0000 

II ( A , d random) 1.86 2.46 .1229 

III ( b , d random) 1.68 2.46 .1612 

 

 
Table 9. Order of AICC, AIC and BIC for all combination of random term in the model for 

8 MS data. 

Random AICC AIC BIC 

b,d -108.0 -109.1 -111.8 

A,d -107.4 -108.4 -111.2 

d -92.0 -92.5 -94.5 

A,b -87.9 -89.0 -91.7 

A -82.9 -83.5 -85.4 

A,b,d -41.2 -43.4 -47.3 

b -40.2 -40.8 -42.7 

None -26.5 -26.8 -28.4 

 

Table 10. Parameter estimates of the model with b and d random from 8hr MS data. 

Parameter Estimate SE p-value 

α  1.6978 0.0613 .0001 

β  0.3673 0.0355 .0019 

δ  6.1918 1.5811 .0296 

2
εσ  0.0157 0.0022 .0054 

2
bσ  0.0044 0.0034 .2780 

2
dσ  11.1502 7.7217 .2445 

bdσ  -0.0854 0.1179 .5209 
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Akaike’s Information Criterion (AIC), a finite-sample corrected version of 

AIC(AICC), and Schwarz’s Bayesian Information Criterion (BIC) were examined for this 

data set.  The order of AICC, AIC, and BIC from smallest to largest for all combinations 

of random term in the model obtained from PROC NLMIXED of SAS are shown in Table 

9. 

 The multivariate coefficient of variation criteria do agree with AICC, AIC, or BIC 

for the best model selection as expected.  The final model is  

  ijijiijiiij tdtbAy ε+−−−= ))exp()(exp( ,   

    where α=iA , *
ii bb += β , and *

ii dd += δ .  Note that ,,βα and δ  

denote fixed effects parameters, *
ib  and *

id denote random effects parameters with an 

unknown covariance matrix.  By assuming that the conditional model for the data and the 

joint distribution of *
ib  and *

id are normal, the maximum likelihood estimates of the 

parameters were obtained from PROC NLMIXED with Newton-Raphson Ridge 

optimization technique and integral approximations by adaptive Gaussian quadrature.  

Results are shown in Table 10. 

  From Table 10, there is no evidence to argue that both 2ˆbσ  and 2ˆ dσ  are 

marginally significant even though a model with b and d random is the most appropriate.  

There does not appear to be a significant covariance between them also, as seen by the 

estimate of bdσ .  The final profile fitting is shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Final profile fitting from estimates of PROC NLMIXED for 8 hr MS data. 
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5. Conclusion and Discussion 

  Multivariate coefficient of variation for each individual estimate and for all 

combinations of estimates were used to determine which effects have a random 

component after the significance of the approximate F test statistics. From the difference 

of exponentials model simulations, when all parameters are fixed and the sample CV is 

calculated, CV( d̂ ) is likely to have the highest value.  The characteristics of the 

estimates summarized here, can be seen clearly when the error variance is small 

enough.  If the error variance is increased, to attain the same characteristic, the 

population CV of random parameters should be increased also. 

When only one parameter is random, the sample CV of the corresponding 

estimate will be the highest rank most of the time.  When more than two positively 

correlated random effects are considered, the CV of the corresponding estimators have 

the highest rank most of the time. However, when two negatively correlated random 

effects are considered, the CV of the estimator corresponding with each individual 

random parameter has the highest rank most of the time. 

  With only one random effect, the mean of the sample CV of the corresponding 

estimate is highest and close to the population CV. The performance of CV of the 

estimator(s) when the random effects are highly positively correlated is different from 

when the random effects are highly negatively correlated.  

  An example for the difference of exponentials model is given, and the fixed 

parameter approach test statistic then be used to test whether random effects are 

needed.  The multivariate sample coefficient of variation is applied to indicate which 

parameter appears to be random then the fixed parameter approach is performed to pick 

up the appropriate model.  The optimum solution agrees with other model selection 

criteria, e.g., AICC, AIC, or BIC.  More simulation studies should be conducted to see the 

performance of the multivariate coefficient of variation we proposed here when random 

effects are independent and/or non-normally distributed. 
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