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Abstract

The coefficient of variations (CV) of each individual estimate and for all possible
combinations of the estimates are used to see which parameters should be random in a
nonlinear mixed effects model. From the difference of exponentials model simulations,
when only one parameter is random, the sample CV of the corresponding estimate will
be the highest rank and its mean is close to the population CV. When more than two
correlated random effects are considered, the corresponding sample CV of the individual
estimate equally shares the highest and the mean of each individual CV estimate and
their combinations are close to the population CV. An example on isolated perfused
porcine skin flaps data is also presented and the multivariate coefficient of variation was
applied to indicate which parameter appears to be random. The optimum solution

agrees with other model selection criteria, e.g., AICC, AIC, or BIC.

Keywords: compartment model, difference of exponentials model, fixed parameter

approach, multivariate coefficient of variation, nonlinear mixed effects model

1. Introduction
A nonlinear mixed effects model is often used to model repeated-measures

response data. In these types of studies, one is usually interested in estimating the
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underlying population response curve. Since individuals are randomly sampled from the
population as a whole, so the parameters could be considered as random effects.

Budsaba and Smith [2] proposed an approximate F test statistics from the fixed
parameter approach to test whether random effects are needed. From the difference of
exponentials model simulations, the test offers a good power.

To choose which parameters should be random in a nonlinear mixed effects
model, Pinheiro et al. [5] start with all parameters as mixed effects and then examine the
eigenvalues of the estimated variance-covariance matrix. If one, or more, are close to
zero, then the associated eigenvector(s) would then give an estimate of the linear
combination of the parameters that could be considered as fixed.

The strategy we suggest here for determining the random effects in a non linear

mixed effects model is to use the sample coefficient of variation of each individual
estimate (CV(# )) and CV for all possible combinations of the estimates. CV for more

than one estimator will be defined later and denoted by CV (91, ceey 9k ) For example,

if a model has 3 parameters, A, b, and d , we calculate cV(A), cv(b), cv(d ),

cV(Ab ), cv(A d), cv(b,d), and cv(A,b,d). We expect that CV( A) will have
the highest value when A is the only random parameter in the model. When two or more
random parameters are in the model, we want to investigate the performance of those
CVs under certain conditions. , e.g., CV( A),cv(b), and cv( A,b ) will have the

highest value when both A and b are random.
The motivation of using the sample CV of an estimator to detect the
corresponding random parameter after the significance of the approximate F test can be

considered as follows:

Suppose in a single factor balanced ANOVA model II, Y;; = f; + &;; Where

M;  are independent N(,L{,Gi) , &; are independent N(0,5°%), u and &; are

independent random variables, i = 1,.., k groups and j = 1,..,n replications.

From this model, Y, is an estimator of the random parameter £, . Since

_ 2 _
E(Y,)=u and V(Y_il):o-j +O-T . Hence, the population CV(Y; ) is defined by:
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cv(Y;) =_ " n”  andcan be estimated by the sample cV(Y; ) which is defined
7
k p— p—
D (Y, =Y ) I(k-D)]"°
by: CV(Y_i_ )= =1 . Hence the usual F statistics can be stated

i
in term of the sample CV(Y_i.) as follow: F :[n(Y__)2 Ccv 2(Y_i. )] MSWithin Group).

We can see that the larger value of sample CV 2(Y_I) the larger value of F. If the null

hypothesis is false, the noncentral parameter [4] of F is:

k _ 2
¢ =n zi—l(lu(;z /U) )

The term Zik:l(yi_—,u..)z in (1) can be estimated by by (Y__)2 (k-

1)CV Z(Y_il), and then the larger value of CV Z(Y_i.), the larger value of ¢@. Hence the

sample CV of the estimator of a random parameter can be used as an index to

determine whether the parameter is random after the significance of an F test.

2. Multivariate Coefficient of Variation
Some CV-like methods for k samples have been reported in the literature.
These include the arithmetic mean of standard deviation over the grand mean, the CV
based on variation within samples, and the CV based on variation among samples [6].
Chow and Tse [3] investigated estimators for the common CV for balanced k

sample in bioavailability/bioequivalence studies. The arithmetic mean of CV, the pooled
CV as in Worley et al. [7], the least square regression function of Si and Y_I the

moment estimator under one-way random effects model, etc, were compared
asymptotically.

For the multivariate case, the literature is lacking. We use the univariate CV as
an expansion to the multivariate variables. The proposed multivariate coefficient of
variation is defined as:

1

U(Yl,...,Yk):{%(,ul,...,,uk){COV(Yl,...,Yk)}_l(,ul,...,uk)T} 2
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For example:

21
DYLYp) = 5 (1, iy HOOUM Y )t H (g )T} 2

1
oY) = {(u)H{var(V)y 1} 2 = o/u

The sample coefficient of variation for k random variables (Yl""’Yk) is then

given by:

N[

cv (Yl,...,Yk):{%ﬁl,...,Vk){éov(Yl,...,Yk)}_l(\fl,...,\?k)T}_

For example;

=

OV (Y, Yy) = {5 (. T){Cou(Y, V)1 L, V) T} 2
1
ov(Y) ={2Var(¥?} 2 =s)¥

3. Simulation Study
To see the performance of the proposed sample CV, the multivariate sample

CV is calculated. The simulation is based on the model:

Yy = Afexp(-bit; )—exp(=dit; )+ ¢, i=1..8 j=1,...23 (2
WhereA. is normal with mean 1.5. b, and d, are normal with mean 0.0065 and 0.044
respectively. The random effects are positively or negatively highly correlated. The

independent normal random variables é‘ij have mean zero and four choices of variance,

i.e. V, =5.50287 X 10 10 X V,. 100 X V,, and 1000 X V. These error terms are

also independent of the random effects. The model and its parameters including the
approximate value of the error terms variance were generated based on a porcine skin
flaps experiment. With these scenarios and several choices of the coefficients of
variation (CV) of the random effects across individuals, 1,000 Monte Carlo replications
were realized at time (t;) = {0, 5, 10, 15, 30, 45, 60, 75, 90, 105, 120, 150, 180, 210, 240,
270, 300, 330, 360, 390, 420, 450, 480}.

The model (2) we propose for the flux rate profile of the porcine flaps
experiment is the difference of exponentials model [1]. This model is a compartment

model. Compartment models are commonly used in pharmacokinetics, where the
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exchange of materials in biological systems is studied. A system is divided into
compartments, and it is assumed that the rates of flow of drugs between compartments
follow first order kinetics, so that the rate of transfer to a receiving compartment is
proportional to the concentration in the supplying compartment. The transfer coefficients,
which are assumed constant with respect to time, are called rate constants.

The reciprocal of a rate constant is called a time constant. Our model has two
constant rates (b and d). We also assume that d > b. Since d is greater than b, this
model can be considered as a two compartment model with a faster absorption constant
rate than elimination constant rate. A is mathematically explained as a function of b, d,
and an initial unobservable quantity of the supplying compartment. This model allows the
response to be zero at time zero.

At each replication of 1,000 Monte Carlo runs, sample CV of all subsets of the
estimates were obtained and ranked by ascending order. We investigated the sample
CV of these estimates when all parameters are fixed, and for all possible combinations of
correlated random effects (one, two, or three random parameters) with Pearson’s

correlation coefficient ( 0 ) between any relevant pair of random parameters is .90 or
-.90. Three choices of U, the population CV of each random effects across individuals,
i.e. .01, .05, and .10 were studied. These CV values (.01, .05 and .10) were chosen
according to the pilot porcine skin flaps experiment.

Table 1. shows the result when all parameters are fixed. CV ((i) is about 90%
of the time in the highest rank for all choices of the error variance except for the error

variance 1000 ><V0 , that is about 85%. This means that when all parameters are fixed,

cV (d) is more likely to have the highest value.

Presence of correlated random effects are considered in Tables 2, 3, 4, and 5.
Each table presents result of simulations for several values of U (the population CV of

each random effect) and when one, two, or all three of the effects are random with the

error variance of V, = 5.50287 x 10°°, 10xV,, 100xV,, and 1000xV, respectively.
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Table 1. The proportion of times that the sample CV of the estimator(s) has the highest

value when all parameters are fixed and Var( Ejj )= 5.50287 x 10-6 = Vo .

V, 10 XV, 100 XV, 1000 XV
v A) 011 012 017 .075
ov( b ) .086 .087 .086 .080
ov( d ) .903 .901 897 845
ov( 2\,6) .000 .000 .000 .000
ov( A, a) .000 .000 .000 .000
ov( 6, d ) .000 .000 .000 .000
ov( A, 6, a) .000 .000 .000 .000

At Vo (Table 2), when only one parameter is random, we observe that at least

98% of the time the corresponding CV will be the highest. When the error variance is
increased from 10 times to 1000 times Vj in Tables 3-5, we observe that to attain the
highest rank most of the times, the population CV (v) of the random parameter should

increase correspondingly.

When only two positively correlated parameters are present at V0 (Table 2), we
observe that the CV of the corresponding estimators have the highest rank most of the
time when o =.90. For example, when A and b are positively correlated, CV (A,B) is

the highest about 84 %, 85 %, and 84 % of the time, respectively, when U = .01, .05,

and .10. When p = -.90, we observe that CV of the estimator corresponding with each

individual random parameter has the highest rank most of the time. For example, when A

and b are negatively correlated, CV( A) and CV( b ) has the highest, respectively, about

51 % and 49 % of the time for all values of U .



Kamon Budsaba

69

Table 2. The proportion of times that the sample CV of the estimator(s) has the highest

value at different population CV (v) and Var( Ejj ) = 5.50287 x 10° = V0 .

Random p=-.90 p=.90
Effect(s) b=0l] V=05 ] b=10 | v=.01 | V=05 | v=.10

A ~ 981 1.00 1.00 981 1.00 1.00
cv(A)

b v(b) 1980 1.00 1.00 1980 1.00 1.00

d ovid) 1996 1.00 1.00 1996 1.00 1.00

A.b ~ 509 508 513 070 075 078
cv(A)

v(b) 484 492 487 073 074 078

V(AD) 1004 1000 1000 841 851 844

Ad ~ 429 515 520 117 084 1080
cv(A)

vid) 569 485 480 180 076 075

V(A d) 1000 1000 1000 703 840 845

b.d cvb) 431 516 518 1099 1080 079

ovid) 567 484 482 179 075 076

ovb.d) 1000 ) 1000 722 845 845

Ab.d = 017 010 1009
cv(A)

cv(b) 1008 011 010

vid) 075 013 010

V(AD) 216 121 123

V(A d) 1089 129 124

vb.d) 1094 102 1098

V(AD d) 501 614 626

Similar results with the bivariate positively correlated effects were obtained

when all parameters are positively correlated at the error variance level V0 (Table 2),

CcV(A,b,d) is the highest 50 % , 61 % , and 63 % of the time, respectively, when U

=.01, .05, and .10.
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When the error variance is increased to 10 xVO (Table 3), similar results to the

case when the error variance equals V0 were obtained. For positively correlated

parameters, the sample CV of the corresponding estimators is the highest most of the
time when U is only .01. This is not true for this particular U (.01) if parameter d is also
random variable, as well as either A, b or (A,b) are random. We observe that the

sample CV of the corresponding estimators will be highest most of the time when U

is .05 or .10. For example, CV( A,d ) is the highest 79 % and 82 % of the time,
respectively, when U is .05 and .10. CV(b, d ) is the highest 79 % and 83 % of the time,

respectively, when v is .05 and .10. CV( A, b, d ) is the highest 56 % and 61 % of the

time, respectively, when U is .05 and .10.

For the negatively correlated parameters with the error variance equals
10 ><V0 (Table 3), the sample CV of the estimator corresponding with each individual
random parameter has the highest rank most of the time when U = .05 and U = .10
only. For example, when A and b are negatively correlated, CV( A) and CV( 6) has the
highest, respectively, about 50-51 % and 49-50 % of the time for U = .05 and .10.

If we increases the error variance to be 100 ><VO (Table 4) the corresponding
sample CV of estimator(s) will be the highest most of the time when the population CV is
also increased. For example, when A and b are positively correlated, CV( A,B) is the
highest most of the time when U = .05 and .10. When (A,d), (b,d), or (A,b,d) are
positively correlated, respectively, CV( A,&),CV( 6,&), and CV( A, 6,&) will be the
highest most of the time when U = .10. This is also true when the error variance is
1000 ><VO (Table 5), for only A and b are random parameters with U = .10 but it is not

true with this particular U (.10) when (A,d), (b,d) or (A,b,d) are random parameters.
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Table 3. The proportion of times that the sample CV of the estimator(s) has the highest

value at different population CV (v) and Var( Ejj )= 10 x V0 .

Random _ —
Effect(s) p=-90 p=-90
v=.01 v =.05 v=.10 v=.01 v =.05 v=.10
A ~ 460 1.00 1.00 460 1.00 1.00
cv(A)
- 504 .000 .000 504 .000 .000
cv(d)
b ~ 476 999 1.00 476 999 1.00
cv(b)
- 521 .001 .000 521 .001 .000
cv(d)
d ~ 953 1.00 1.00 953 1.00 1.00
cv(d)
Ab ~ 271 506 499 034 076 079
cv(A)
~ 296 491 501 .050 074 076
cv(b)
- 302 .001 .000 238 .000 .000
cv(d)
A~ 123 002 .000 665 848 845
cv(Ab)
Ad ~ 107 472 508 175 1090 088
cv(A)
- 713 528 492 598 125 089
cv(d)
A~ 164 .000 .000 120 .000 .000
cv(Ab)
A A .000 .000 .000 104 785 823
cv(Ad)
bd ~ 165 484 512 171 1090 087
cv(b)
- 709 516 488 580 120 085
cv(d)
~ 001 .000 .000 152 790 828
cv(b,d)
Ab,d ~ 026 1009 011
cv(A)
~ 016 .007 .008
cv(b)
~ 394 035 015
cv(d)
A~ 465 183 127
cv(ADb)
A .007 102 120
cv(A d)
~ A 027 101 112
cv(b,d)
A ~oa .065 563 607
cv(A,b,d)
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Table 4. The proportion of times that the sample CV of the estimator(s) has the highest

value at different population CV (v) and Var( &jj )= 100 x V0 .

Random p=-90 p =.90
Effect(s
) v=.01 v=.05 v=.10 v=.01 v=.05 v=.10

A Iy .065 763 .978 .065 .763 978
cv(A)

oVv( b ) .074 .014 .000 .074 .014 .000

ov( d ) .861 223 .022 .861 223 .022

b oVv( b ) 132 753 .978 132 .753 978

ov( d ) .857 .246 .022 .857 .246 .022

d oVv( d ) .895 970 .997 .895 .970 997

Ab A .023 415 495 .006 .059 .070
CV(A)

cv( b ) .047 432 497 .035 .063 .067

ov( d ) .632 .099 .004 577 .080 .005

cv( A, b) 293 .047 .004 379 .780 .846

Ad A .006 .238 418 .024 .188 110
cv(A)

ov( d ) .676 .693 .580 .644 442 .198

cv( A, b) 291 .056 .002 .308 .026 .000

cv( A, d ) .000 .000 .000 .000 .343 .692

b,d ov( b ) .036 278 441 .046 71 107

oVv( d ) .660 673 .557 .640 426 .184

ov( A, b) .302 .041 .002 307 .020 .000

oVv( b, d ) .001 .002 .000 .006 .383 .709

Ab,d N .005 .025 .015
cv(A)

cv( b ) .025 .009 .009

ov( d ) 592 237 .069

oVv( A, b) 372 374 225

ov( A, d ) .000 .032 .090

cv( b, d ) .005 .058 .099

NN .001 .265 493

cv(ADb,d)
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Table 5. The proportion of times that the sample CV of the estimator(s) has the highest

value at different population CV (v) and Var( Ejj ) = 1000 x Vo .

Random p=-90 p=.90
Effect(s
() v=.01 v=.05 v=.10 v=.01 v=.05 v=.10

A ~ .081 .199 473 .081 .199 473
cv(A)

cv( b ) .079 .053 .030 .079 .053 .030

cv( d ) .840 748 497 .840 748 497

b ov( b ) .088 .188 451 .088 .188 451

cv( d ) .840 746 504 .840 746 504

d ov( d ) .840 .867 910 .840 .867 910

Ab ~ .034 .089 .268 .031 .048 .070
cv(A)

ov( b ) .030 .087 253 .026 .035 .040

cv( d ) .619 519 .290 .630 482 .256

cv( A,b) 314 .299 .180 311 431 .616

A,d ~ .030 .064 .165 .033 104 .205
cv(A)

cv( d ) .639 .653 .656 .633 .630 576

ov( A,b) .303 261 .166 .306 249 128

cv( A, d ) .000 .000 .000 .000 .007 .090

b,d cv( b ) .028 .051 154 .026 .065 137

ov( d ) .630 610 576 .635 .635 .568

cv( A,b) .308 .308 237 .303 267 .138

ov( b, d ) .001 .000 .001 .004 .020 .150

A,b,d ~ .035 .055 .054
cv(A)

ov( b ) .025 021 .019

cv( d ) .631 532 .387

cv( A,b) .306 .380 437

cv( A, d ) .000 .000 .009

ov( b, d ) .003 .006 .030

cv( A, b, d ) .000 .006 .064
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When A and b are negatively correlated at the error variance 100 ><VO (Table

4), cv( Ay and cv(D ) is the highest most of the time (about 42 - 43 % for both CV( A)

and CV( 6 ) when U = .05 and about 50 % for both CV/( A) and CV( 6 ) when U =.10.

At the error variance 100 %V, if parameter d is also random variable as well
as either A or b. We observe that when (A,d) or (b,d) are negatively correlated,
respectively, CV/( A), CV( Ci) and CV( 6 ), CV( &) will be in the highest rank most of
the time when U = .10 (Table 4). We cannot observe this pattern when the error
variance is 1000 xV, (Table 5).

Figures 1-3 show the means of the sample CV of the estimator(s) at the error
variance Vo when the population CV of each correlated effect is, respectively, .01, .05,
and .10. In each figure, means of CV of the estimator(s) when all parameters are fixed is
shown at the upper left corner. With this Vo = 5.50287 x 10°, the means of CV of the

estimator(s) under fixed effects are all within the dashed septagon for all values of the
population CV (.01, .05, and .10) then we can see the pattern of the sample CV of the
estimator(s) clearly. The performance of CV of the estimator(s) when the random effects
are highly positively correlated ( 0 = .90) is different from when the random effects are

highly negatively correlated ( 0 = -.90). For example, when A and b are positively
correlated, the mean of CV( A,b), CV(A), and CV(b ) are highest. The mean of
CV( A,b) is the highest while the mean of CV( A) and CV( b ) are close to the

population CV. If A and b are negatively correlated, only the mean of CV/( A) and CV( b )

are highest and close to the population CV.

At the error variance 10 ><V0 , the means of CV of the estimator(s) under fixed
effects are all within the dashed septagon when the population CV = .05 and .10, then
we can see the same pattern as for the case when the error variance is V0 for the

population CV =.05 and .10 only.
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A,b,d Fixed at VO

cv(a)

CV(Ab,d) CV(b)

CV(b,d) CVv(d)

CV(A.d) CV(Ab)
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cV(A)

CV(Ab.d) cV(b)
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CV(b,d) Cv(d)

CV(A,d) CV(A,b)

q

A,b (CV = .01, Rho =-.90)

cv(A)

CV(A,b,d) CV(b)

CV(b,d) cv(d)

CV(Ad) CV(Ab)

Ad (CV = .01, Rho = -.90)

cv(A)

CV(Ab,d)

V(b,d)

CV(A,d) CV(A,b)

cV(b)

cv(d)

A, b, d (CV =.01, Rho =.90)

cv(a)

cv(b)

cv(d)

CV(A,d) CV(A,b)

CV(Ab,d)

lcV(b.d)

b.d (CV = .01, Rho = -.90)

cVv(b)

cv(d)

cv(Ad) CV(Ab)

A.d (CV = .01, Rho = .90)

cv(a)

CV(A,b,d) CV(b)

CV(b,d)

cV(A.d) CV(Ab)

o

cv@) *

(A.b,d)

(b.d)

b,d (CV =.01, Rho =.90)

cv(A)

cv(b)

cv(d)

CV(A.d)

CV(A,b)

Figure 1: Mean of the sample CV of the estimator(s) when all parameters are fixed and

when two or more

correlated

effects are

population CV =.01 and Var(&;) = 5.50287%10°

considered,

each with the
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Ab (CV = .05, Rho = .90)

cv(A)

CV(A,b,d) 0.05 CV(b)

cv(b,d) cv(d)

CV(A,d) CV(A.,b)

CV(A,

CV(b.d)

A,d (CV = .05, Rho =.90)

cV(A)

b,d) 0.05 CV(b)

cv(d)

CV(A,d) CV(Ab)

A, b, d (CV =.05, Rho =.90)
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CV(Ab.d) cv(b)

cV(b.d) cv(d)

CV(A,d) CV(A,b)

b,d (CV = .05, Rho =.90)
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CV(Ab.d) 0.05 CV(b)

cV(b.d) cv(d)

cV(Ad) CV(Ab)
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CV(Ad) CV(A,b)

Figure 2. Mean of the sample CV of the estimator(s) when all parameters are fixed and

when two or more correlated effects are considered, each with the population CV = .05

and Var(&;) = 5.50287%10°
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A,b.,d Fixed at VO A, b, d (CV =.10, Rho = .90)
CV(A) CV(A)
CV(A,b,d) 0.1 CV(b) CVAb.d) Vo)
CVb.d) cvid) cV(b.d) cv()
CV(A,d) CV(A,b) cviAd) CV(Ab)
A,b (CV = .10, Rho =.90) A,d (CV = .10, Rho = .90) b,d (CV = .10, Rho =.90)
cv(A) cv(a) cva)
CV(A,b,d) 0.1 CV(b) CV(A,b,d) 0.1 cv(q CV(Ab.d) 0.1 cV(b)
cVib.d) cvy |evo.d CV(b.d) cv(d)
cviad) cviAD) CV(A.d) CV(A,b) cv(ad) CV(Ab)
A,b (CV = .10, Rho =-.90) A,d (CV = .10, Rho =-.90) b,d (CV =.10, Rho =-.90)
CV(A) CV(A) CV(A)
QaV(A,b,d) CV(b) CV(Ab.d) o1 CV(b) CV(Ab,d) 0.1 cv(b)
>V(b,d) cv(d) |CV(b.d) V@) ey, d) cv(d)
CV(Ad) CV(Ab) CVAd) CViAb) CV(Ad) cv(Ab)

Figure 3. Mean of the sample CV of the estimator(s) when all parameters are fixed

and when two or

more correlated effects are considered,

population CV = .10 and Var( &) = 5.50287%10°

each with

the
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Similar results were obtained when the error variance is 100 ><VO. The mean

of CV of the corresponding estimator(s) is highest and close to the population CV when
the population CV is .05 and .10. It is also clearer when the population CV = .10 than the

population CV = .05 but when the error variance is 1000 xV, we cannot see this

pattern anymore since under fixed effects model, all means of CV of estimator(s) are not

inside the dash septagon.

4. An Example
We applied the method we propose to the methyl salicylate data (MS).

400 ,ug/C/‘ﬂZ of C— MS in ethanol were topically applied to 8 isolated perfused

porcine skin flaps and experiments terminated at 8 hrs. Perfusate was collected over
time (5,10,20,30,45,60,75,90,105,120 minutes and then every 30 minutes until
termination of the experiment). Perfusate flux profiles were fitted to an exponential

difference model,
Vi = A (exp(-bit;) —exp(-dit;)) + &;-
We performed the test statistic from 5 flaps for the final analysis since three
flaps are outliers. Prior to analysis, time was converted to hours and percent of dose

was multiplied by 100.
The individual estimates are shown in Table 6.

Table 6. Parameter estimates for each flap of 8 hr. MS data.

Flap :4 27 E/
1 1.0516 0.3007 3.6095
2 1.6230 0.3397 3.2220
3 1.7346 0.4414 10.1435
4 1.7642 0.3076 5.6908
5 1.7109 0.2978 9.4859

The approximate F test statistic is 18.419 with p-value close to 0 since
F

(95,12,100)= 1.850. The result suggests that a random effects model is needed for

these data under model assumptions.
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Model selection to see which pararmeter should be considered random by

using the multivariate coefficient of variation is presented in Table 7.

Table 7. Sample multivariate CV of the estimates from 8 hr MS data.

Estimate(s) cv

A 0.1892

6 0.1792

d‘ 0.5034
AB 0.2133
Ad‘ 0.2606

6 , d‘ 0.2505
AB& 0.2384

The sample CcVv(d ) is highest (0.5034), follow by CV(A,d ) and cv(b,d)
(0.2606 and 0.2505 respectively). We might suggest the model with only d random, or

the model with d and one other parameter. For example, the model with A and

d random, or the model with b and d random, compared to the model with all
parameters random. The fixed parameter approach then will be used to form an

approximate F test for model selection.
The full model here is the model with all parameters random. The reduced

model | is the model with only d random, the other reduced model Il and Ill are the

models with A and d random, and the model with b and d random. The test statistics
(TS), critical values of the F random variable, and p-values are shown in Table 8.
The results in Table 8 indicate that the model with A and d random and the

model with b and d random are not different from the model with all parameters random.

Based on the sample multivariate CV and the p-values from the test, we then conclude

that the model with b and d random is appropriate for this data.
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Table 8. Test statistics (TS), F and p-value for testing the full model and the reduced

model for 8 hr MS data.

Reduced Model TS F p-value
I (d random) 5.80 2.03 ~.0000
i (A, d random) 1.86 2.46 1229
(b, d random) 1.68 2.46 1612

Table 9. Order of AICC, AIC and BIC for all combination of random term in the model for

8 MS data.
Random AlCC AIC BIC

b,d -108.0 -109.1 -111.8
Ad -107.4 -108.4 -111.2
d -92.0 -92.5 -94.5
Ab -87.9 -89.0 -91.7
A -82.9 -83.5 -85.4
Ab.d -41.2 -43.4 -47.3
b -40.2 -40.8 -42.7
None -26.5 -26.8 -28.4

Table 10. Parameter estimates of the model with b and d random from 8hr MS data.

Parameter Estimate SE p-value

a 1.6978 0.0613 .0001

Jij 0.3673 0.0355 .0019

o 6.1918 1.5811 .0296

o2 0.0157 0.0022 .0054
&

2 0.0044 0.0034 .2780
Oy

2 11.1502 7.7217 .2445
Oy

-0.0854 0.1179 .5209
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Akaike’s Information Criterion (AIC), a finite-sample corrected version of
AIC(AICC), and Schwarz’'s Bayesian Information Criterion (BIC) were examined for this
data set. The order of AICC, AIC, and BIC from smallest to largest for all combinations
of random term in the model obtained from PROC NLMIXED of SAS are shown in Table
9.

The multivariate coefficient of variation criteria do agree with AICC, AIC, or BIC

for the best model selection as expected. The final model is
Yi = A(exp(=bit;) —exp(-d;t;)) + &; ,
where A =a, b =ﬁ+bi*, and d, =5+di*. Note that &, 5, and O

denote fixed effects parameters, bi* and di* denote random effects parameters with an
unknown covariance matrix. By assuming that the conditional model for the data and the
joint distribution of bi* and di*are normal, the maximum likelihood estimates of the

parameters were obtained from PROC NLMIXED with Newton-Raphson Ridge
optimization technique and integral approximations by adaptive Gaussian quadrature.

Results are shown in Table 10.

From Table 10, there is no evidence to argue that both 5‘5 and 55 are
marginally significant even though a model with b and d random is the most appropriate.
There does not appear to be a significant covariance between them also, as seen by the

estimate of o, . The final profile fitting is shown in Figure 4.

‘Final Profile Fitting for 8 hr MS Data‘

1.6 4

1.4 4

1.2 4

0.8 -

100 % Dose

0.6

0.4

Time (hrs)

[——From Proc NLMIXED —x—Mean of Ind. Estimates |

Figure 4. Final profile fitting from estimates of PROC NLMIXED for 8 hr MS data.
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5. Conclusion and Discussion

Multivariate coefficient of variation for each individual estimate and for all
combinations of estimates were used to determine which effects have a random
component after the significance of the approximate F test statistics. From the difference

of exponentials model simulations, when all parameters are fixed and the sample CV is

calculated, CV(&) is likely to have the highest value. The characteristics of the
estimates summarized here, can be seen clearly when the error variance is small
enough. If the error variance is increased, to attain the same characteristic, the
population CV of random parameters should be increased also.

When only one parameter is random, the sample CV of the corresponding
estimate will be the highest rank most of the time. When more than two positively
correlated random effects are considered, the CV of the corresponding estimators have
the highest rank most of the time. However, when two negatively correlated random
effects are considered, the CV of the estimator corresponding with each individual
random parameter has the highest rank most of the time.

With only one random effect, the mean of the sample CV of the corresponding
estimate is highest and close to the population CV. The performance of CV of the
estimator(s) when the random effects are highly positively correlated is different from
when the random effects are highly negatively correlated.

An example for the difference of exponentials model is given, and the fixed
parameter approach test statistic then be used to test whether random effects are
needed. The multivariate sample coefficient of variation is applied to indicate which
parameter appears to be random then the fixed parameter approach is performed to pick
up the appropriate model. The optimum solution agrees with other model selection
criteria, e.g., AICC, AIC, or BIC. More simulation studies should be conducted to see the
performance of the multivariate coefficient of variation we proposed here when random

effects are independent and/or non-normally distributed.

References

[1] Bates, D. M. & Watts, D. G. Nonlinear Regression Analysis and Its
Applications. Wiley, New York, 1988.

[2] Budsaba, K. & Smith, C. E. Testing the Need for a Random Effects Models
in a Two Compartment Model. Thammasat Journal of Science and Technology, 9;
2004: 1-10.



CV(Ab.d)

Kamon Budsaba 83

3] Chow, S., & Tse, S. A Related Problem in Bioavailability/Bioequiva-
lence Studies- Estimation of the Intrasubject Variability with a Common
CV. Biometrical Journal- Journal of Mathematical Methods in Biosciences,
32; 1990: 597-607.

[4] Kuehl, R. O. Design of Experiments: Statistical Principles of Research
Design and Analysis., 2000, 2" ed., Duxbury., Pacific Grove, 666 p.

[5] Pinheiro, J.c., & Bates, D.M. Model Building in Nonlinear Mixed Effects
Models, Proceedings of the Biopharmaceutical Section of the American
Statistical Association, 1994, 1-8.

[6] Rohlf, F. J., Gilmartin, A. J., & Hart, G. The Kluge-Kerfoot Phenomenon- A
Statistical Artifact. Evolution, 37; 1983: 180-202.

[71 Worley, J. W., Morrell, J. A., Duewer, D. L., & Peterfreund, L. A. Alternate
Indexes of Variation for the Analysis of Experimental Data. Analytical

Chemistry, 56; 1984: 462-466.



	Thailand Statistician
	July 2006; 4: 63-83
	http://statassoc.or.th

