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Abstract

This paper investigates one-step-ahead prediction intervals for normal and non-
normal variables. We propose studentized bootstrap and bootstrap percentile-t methods
to construct one-step-ahead prediction intervals for normal and non-normal variables
compared to a standard method. A minimum coverage probability 1- & and their
expected lengths are used to select a preferable prediction interval. Monte Carlo
simulation results show that not only does the bootstrap percentile-t give a better

coverage probability but also give a shorter expected length.
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1. Introduction

Our aim in this paper is to construct one-step-ahead prediction intervals for
normal and non-normal variables. They are compared by a minimum coverage
probability 1- & and an expected length. A one-step-ahead prediction interval for normal
variable using a standard method can be found in e.g., Bikel and Doksum [1], Niwitpong
[5] and Devore [2]. Niwitpong also proved that the coverage probability of a one-step-

ahead prediction interval for a normal variable is close to 0.95 and is not dependent on
the parameter values (z, 0'2) . However, for one-step-ahead prediction intervals for non-

normal variables, there has not been much research in this area. In this paper, we

propose to use bootstrap techniques (Efron and Tibshirani [3]); studentized bootstrap
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and bootstrap percentile-t. They are presented in section 2. The simulation and

numerical results are presented in section 3. The conclusion is presented in section 4.

2. A one-step-ahead prediction interval for Xn+l

Let X, X,,.., X, are independent identically distributed as N(,u,a?'). Our aim

is to construct a one-step-ahead prediction interval for X Three methods are

n+l -
considered:

2.1 Standard method

2.2 Studentized bootstrap

2.3 Bootstrap percentile-t.

For the case where X, is also normally distributed with mean x and variance o,

their coverage probabilities are very closed to 1- & for all values of the (,u,crz)
(Niwitpong [5]). For X ,; which is non-normally distributed, we propose to construct a

one-step-ahead prediction interval for X ., using methods 2.2 and 2.3. Descriptions of

these methods are as follows.

2.1 Prediction interval for @ = X ,; by the standard method
Bikel and Doksum [1] and Devore [2] explained the standard method for

constructing a one-step-ahead prediction interval for X which is also assumed to be

n+l°
normally distributed with mean 4 and variance o?. A class of prediction unbiased

predictor for Y =X, , is X and the resulting prediction error is X — X ns1 - The expected

n+l

value of the prediction error is

E(X_Xnﬂ) = E(X)_E(Xnﬂ) =pu—u=0.

X, and therefore independent of )? the variance

210y

Since X,,; is independent of X,, X
of the prediction error is therefore
2
N2 N2 o 2 2 1
Var(X - X,,;)=Var(X)+Var(X,,)=—+0" =0 [1+—j.
n n

Moreover, the prediction error is a linear combination of independent normally distributed

random variables, we therefore have X — X, ~ N (0,[n‘1 +1]0'2) .Thus
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L (X=X0) =0

0'2(1+1j
n

has a standard normal distribution and is independent of V = (n —1)52/0'2 , which has
a er—l distribution. Devore has described that replacing o by the sample standard
deviation s (of X, X,,..., X)) results in

Z X — X
T= = "1 _ ¢t distribution with n - 1 df.

\/V s\/1+1
n-1 n

Writing the acceptance for T region for 2 sided alternative test, then manipulating this

formulaas T = (X — u) /(S /\/ﬁ) is manipulated for a confidence interval for 4, gives

a one-step-ahead prediction interval for X ,; gives the following result

2.2 Prediction interval for @ = X,,; by the studentized bootstrap method
Letd = X, is used to assign an approximate prediction interval to parameter

6 of interest. Suppose that we are in the one-sample situation where the data are

obtained by  random sampling  from an unknown distribution F,

F—X=(X X;,...,X,) , 6=X,, is an estimator of & and se() is the standard error

of €. Under most circumstances it turns out that as the sample size n grows large, the

distribution of & becomes more and more normal, with mean near & and variance Séz,

-6
sé

written as 6 ~ N @, Séz) or equivalently z = ~N(0,2) .

(04
Let z, donotes the 100-3 th percentile point of the standard normal
2

distribution.

The 100 (1 - )% one-step-ahead prediction interval for @ = X, is
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Efron and Tibshirani [3, p.47] described the bootstrap algorithm for estimating standard
errors, s¢ , by drawing many independent bootstrap samples, evaluating the

corresponding bootstrap replications and estimating the standard error of estimate of é
by the empirical standard deviation of the replications. The result is called the bootstrap
estimate of standard error, denoted by sé , where B is the number of bootstrap samples
used. The following steps are used to compute sé;

2.2.1 Select B independent bootstrap samples X*l, X2 ,...,X*B , each
consisting of n data values drawn with replacement from X .

2.2.2 Evaluate the bootstrap estimate corresponding to each bootstrap sample,

0" (b)=s(x®) b=12,...,B.

2.2.3 Estimate the standard error se(é) by the sample standard deviation of

the B replications;

B . R 2 172
Y[6'0)-60]

b=
B-1

N

s€=

M Mo

where 0 ()=22t —.

6" (b)
B

2.3 Prediction interval for @ = X ,; by bootstrap percentile-t method
Letd = X, is used to assign an approximate prediction interval to parameter

@ of interest. Suppose that we are in the one-sample situation where the data are

obtained by  random sampling  from an unknown  distribution F,

is an estimator of € andse(d) is the standard error

n+l

F—X=(X Xg,...,X,) , =X

of .

*h —*h

231 Let the prediction error in each bootstrap is e® =Xpu — X

b=12,...,B
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*p
* € (24
2.3.2 Compute t™® == and let t, indicate 100 - — th percentile point of
se 5 2
the t-distribution.

2.3.3 The prediction interval 100- (1— )% for 8 = X, is

O—t" B, O+t S| 3
(1—%) (1—%) ®)

where sé is computed from section 2.2.

3. Simulation and Numerical Results

In this section, the coverage probabilities for prediction intervals 1-3 are
computed using Monte Carlo simulation. A minimum coverage probability 1- & and their
expected lengths are used to select a preferable prediction interval. The prediction level

is 95% and four distributions were used following Kakizawa [4] namely

3.1 the standard normal distribution

3.2 the contaminated normal distribution with density is

0.3X16Xp[—1 X2)+0,7xlexp(_l ij
(2m)"? 2 (207)"/2 20

3.3 the t distribution with degree of freedom n-1

3.4 the exponential distribution with 4 =1.

We study four sample sizes 30, 50, 100 and 250. For each sample size and distribution,
M=10,000 simulation runs were used to evaluate the bootstrap replication corresponding
to each bootstrap sample B=1,000 bootstrap replications were conducted. Numerical
results are presented in Tables 1 and 2.
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Table 1. The estimated coverage probabilities for each method of constructing a one-

step-ahead prediction interval for X ;.

Standard Method Studentized Bootstrap Bootstrap Percentile -t

Sample z < 9 ]
Distribution B % 3 3 % 3 3 % 3 _
size kel 9 > g < RO > EEEECH R o ol N
. 0 > . 0 = 0 > o [t} . [t} > . e}
¢ o S 2 o 2 o o 2 d]s o o 2 o
=~ 9] o =~ =~ ] oy =~ =~ [ ~

S 2 = S 2 =) S 2 S

Q Q Q ]

(8] (8] (]
30 0.0246 0.9503 0.0251 0.0357 0.9285 0.0358 0.0024 0.9954 0.0022
Normal 50 0.0247 0.9505 0.0248 0.0306 0.9378 0.0316 0.0017 0.9967 0.0016
100 0.0250 0.9500 0.0250 0.0288 0.9429 0.0283 0.0011 0.9979 0.0010
250 0.0250 0.9500 0.0250 0.0257 0.9485 0.0258 0.0010 0.9980 0.0010
30 8.5-e05 0.9998 8.1-e05 0.0342 0.9293 0.0365 0.0021 0.9957 0.0022
Contaminated
50 3.9-e05 0.9999 4.1-e05 0.0300 0.9359 0.0341 0.0022 0.9957 0.0021
Normal
100 1.7-e05 0.9999 1.7-e05 0.0283 0.9407 0.0310 0.0028 0.9958 0.0024
250 9.3-e06 0.9999 9.3-e06 0.0268 0.9469 0.0263 0.0018 0.9960 0.0022
30 0.0259 0.9480 0.0261 0.0370 0.9260 0.0370 0.0038 0.9931 0.0031
t 50 0.0257 0.9486 0.0257 0.0335 0.9337 0.0328 0.0016 0.9965 0.0019
100 0.0254 0.9493 0.0253 0.0260 0.9446 0.0294 0.0012 0.9970 0.0018
250 0.0251 0.9497 0.0252 0.0252 0.9487 0.0261 0.0010 0.9977 0.0013
30 0 0.9414 0.0586 0.0012 0.9274 0.0714 0.0384 0.9606 0.0010
50 0 0.9444 0.0556 0.0001 0.9341 0.0658 0.0355 0.9636 0.0009
Exponential

100 0 0.9456 0.0544 0 0.9405 0.0595 0.0333 0.9659 0.0008
250 0 0.9473 0.0527 0 0.9463 0.0537 0.0311 0.9683 0.0006
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Table 2. The estimated expected lengths of a one-step-ahead prediction interval

for X, ,1-
o Sample ) )
Distribution ) Standard Studentized Bootstrap Bootstrap Percentile -t
size
30 4.1185 3.8484 1.8272
Normal 50 4.0454 3.8799 1.7341
100 3.9771 3.8997 1.6692
250 3.9438 3.9115 1.6142
30 9.2141 8.6123 4.1135
Contaminated
50 9.0245 8.6616 3.9278
Normal
100 8.8897 8.7077 3.7662
250 8.8085 8.7418 3.5076
30 4.2640 3.9776 1.8894
‘ 50 4.1187 3.9555 1.7639
100 4.0169 3.937 1.6724
250 3.9571 3.9276 1.6228
30 4.0361 3.7040 1.8318
Exponential 50 3.9993 3.8021 1.6855
100 3.9426 3.8564 1.5804
250 3.9343 3.8863 1.5201

4. Conclusion

From the results in section 3, we can draw the following conclusions.

4.1 One-step-ahead prediction intervals for X ., when using the standard method

and bootstrap percentile-t have minimum coverage probabilities of 0.95 when samples

are from the normal and contaminated normal distributions.

4.2 Only the one-step-ahead prediction interval for X ,; when using the bootstrap

percentile-t method has a minimum coverage probability of 0.95 when samples are from

the t and exponential distributions.
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4.3 Most bootstrap percentile-t intervals have coverage probabilities more than
standard method and when the sample size is large, coverage probability is large.
4.4 In this case study, bootstrap methods have expected lengths less than the

standard method and when the sample size increase, the expected length decrease.
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