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Abstract 

This paper investigates one-step-ahead prediction intervals for normal and non-

normal variables. We propose studentized bootstrap and bootstrap percentile-t methods 

to construct one-step-ahead prediction intervals for normal and non-normal variables 

compared to a standard method. A minimum coverage probability 1- α  and their 

expected lengths are used to select a preferable prediction interval. Monte Carlo 

simulation results show that not only does the bootstrap percentile-t give a better 

coverage probability but also give a shorter expected length. 

___________________________ 
Keywords: bootstrap, coverage probability, expected length. 

 

1. Introduction 

Our aim in this paper is to construct one-step-ahead prediction intervals for 

normal and non-normal variables. They are compared by a minimum coverage 

probability 1- α and an expected length. A one-step-ahead prediction interval for normal 

variable using a standard method can be found in e.g., Bikel and Doksum [1], Niwitpong 

[5] and Devore [2]. Niwitpong also proved that the coverage probability of a one-step-

ahead prediction interval for a normal variable is close to 0.95 and is not dependent on 

the parameter values ),( 2σµ . However, for one-step-ahead prediction intervals for non-

normal variables, there has not been much research in this area. In this paper, we  

propose to use bootstrap techniques (Efron and Tibshirani [3]); studentized bootstrap 
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and bootstrap percentile-t. They are presented in section 2. The simulation and 

numerical results are presented in section 3. The conclusion is presented in section 4. 

 

2. A one-step-ahead prediction interval for 1+nX  

Let 1 2, ,..., nX X X  are independent identically distributed as ),( 2σµN . Our aim 

is to construct a one-step-ahead prediction interval for 1+nX . Three methods are 

considered: 

2.1 Standard method 

2.2 Studentized bootstrap  

2.3 Bootstrap percentile-t. 

For the case where 1+nX  is also normally distributed with mean µ and variance 2σ , 

their coverage probabilities are very closed to 1- α  for all values of the ),( 2σµ  

(Niwitpong [5]). For 1+nX  which is non-normally distributed, we propose to construct a 

one-step-ahead prediction interval for 1+nX  using methods 2.2  and 2.3. Descriptions of 

these methods are as follows. 

 

2.1 Prediction interval for 1+= nXθ  by the standard method 

Bikel and Doksum [1] and Devore [2] explained the standard method for 

constructing a one-step-ahead prediction interval for 1+nX , which is also assumed to be 

normally distributed with mean µ and variance 2σ . A class of prediction unbiased 

predictor for 1
ˆ ˆ

nY X +=  is X  and the resulting prediction error is 1+− nXX . The expected 

value of the prediction error is  

0)()()( 11 =−=−=− ++ µµnn XEXEXXE . 

Since 1+nX  is independent of 1 2, ,..., nX X X  and therefore independent of X , the variance 

of the prediction error is therefore  







 +=+=+=− ++ nn

XVarXVarXXVar nn
11)()()( 22

2

11 σσσ
.  

Moreover, the prediction error is a linear combination of independent normally distributed 

random variables, we therefore have ( )21
1 ]1[,0~ σ+− −
+ nNXX n  .Thus 
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has a standard normal distribution and is independent of 22)1( σsnV −= , which has 

a 2
1−nχ  distribution. Devore has described that replacing σ by the sample standard 

deviation s (of nXXX ,,, 21  ) results in  

n
s

XX

n
V
ZT n

11
1

1

+

−
=

−

= +  ~ t distribution with n - 1 df. 

Writing the acceptance for T region for 2 sided alternative test, then manipulating this 

formula as )//()( nSXT µ−=  is manipulated for a confidence interval for µ , gives 

a one-step-ahead prediction interval for 1+nX  gives the following result 

 

1 1
1 ,( 1) 1 ,( 1)2 2

1 , 1
n n

X t s n X t s nα α
− −

− − − −

 
 
  

− ⋅ + + ⋅ + …………………………….(1)   

 

2.2 Prediction interval for 1+= nXθ  by the studentized bootstrap method 

Let 1+= nXθ  is used to assign an approximate prediction interval to parameter 

θ  of interest. Suppose that we are in the one-sample situation where the data are 

obtained by random sampling from an unknown distribution F, 

),,( 2,1 nxxxxF =→  , 1
ˆ ˆ

nXθ +=  is an estimator of θ and )ˆ(θse  is the standard error 

of θ̂ . Under most circumstances it turns out that as the sample size n grows large, the 

distribution of θ̂  becomes more and more normal, with mean near θ  and variance 2ês , 

written as )ˆ,(~ˆ 2esN θθ  or equivalently 
ˆ

~ (0,1)
ˆ

Z N
se

θ θ−
= . 

Let 
2

Zα donotes the 
2

100 α
⋅ th percentile point of the standard normal 

distribution. 

The )%1(100 α−⋅  one-step-ahead prediction interval for 1+= nXθ  is  
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(1 ) (1 )2 2

ˆ ˆˆ ˆ,Z se Z seα αθ θ
− −

 
 
  
− ⋅ + ⋅ ………………………………………..(2) 

 

Efron and Tibshirani [3, p.47] described the bootstrap algorithm for estimating standard 

errors, ˆse ,  by drawing many independent bootstrap samples, evaluating the 

corresponding bootstrap replications and estimating the standard error of estimate of θ̂  

by the empirical standard deviation of the replications. The result is called the bootstrap 

estimate of standard error, denoted by ˆse  , where B  is the number of bootstrap samples 

used. The following steps are used to compute ˆse ; 

2.2.1 Select B independent bootstrap samples Bxxx *2*1* ,,,   , each 

consisting of n data values drawn with replacement from X . 

2.2.2  Evaluate the bootstrap estimate corresponding to each bootstrap sample, 

     )()(ˆ ** bxsb =θ  .,,2,1 Bb =  

2.2.3 Estimate the standard error )ˆ(θse  by the sample standard deviation of 

the B replications; 
1/ 2

2* *

1

ˆ ˆ( ) ( )
ˆ

1

B

b
b

se
B

θ θ
=

  − ⋅   =  − 
  

∑
, 
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B

b
B

b
∑
==⋅ 1

*

*
)(ˆ

)(ˆ
θ

θ . 

 

2.3 Prediction interval for 1+= nXθ  by bootstrap percentile-t method 

Let 1+= nXθ  is used to assign an approximate prediction interval to parameter 

θ  of interest. Suppose that we are in the one-sample situation where the data are 

obtained by random sampling from an unknown distribution F, 

),,( 2,1 nxxxxF =→  , 1
ˆ ˆ

nXθ += is an estimator of θ and )ˆ(θse  is the standard error 

of θ̂ . 

2.3.1   Let the prediction error in each bootstrap is bb
n

b xxe **
1

* −= + , 

Bb ,,2,1 =  
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               2.3.2   Compute 
ês

et
b*

b* =  and let 
2
αt indicate 

2
100 α

⋅ th percentile point of 

the t-distribution. 
2.3.3  The prediction interval )%1(100 α−⋅  for 1+= nXθ  is  
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2

1( αα θθ ……………………………(3)   

 

where ˆse  is computed from section 2.2.   

 

3. Simulation and Numerical Results 

In this section, the coverage probabilities for prediction intervals 1-3 are 

computed using Monte Carlo simulation. A minimum coverage probability 1- α  and their 

expected lengths are used to select a preferable prediction interval. The prediction level 

is 95% and four distributions were used following Kakizawa [4] namely 

 

3.1 the standard normal distribution 

3.2 the contaminated normal distribution with density is  







−×+






−× 2

2/1
2

2/1 20
1exp

)20(
17.0

2
1exp

)2(
13.0 xx

ππ
 

3.3 the t distribution with degree of freedom n-1 

3.4 the exponential distribution with 1=λ . 

 

We study four sample sizes 30, 50, 100 and 250. For each sample size and distribution, 

M=10,000 simulation runs were used to evaluate the bootstrap replication corresponding 

to each bootstrap sample B=1,000 bootstrap replications were conducted. Numerical  

results are presented in Tables 1 and 2. 
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Table 1.  The estimated coverage probabilities for each method of constructing a one-

step-ahead prediction interval for 1+nX . 

Distribution 
Sample 

size 

Standard Method Studentized Bootstrap    Bootstrap Percentile -t 

Lo
we

r t
ai

le
d 

(2
.5

%
) 

Co
ve

ra
ge

 (9
5%

) 

Up
pe

r t
ai

le
d 

(2
.5

%
) 

Lo
we

r t
ai

le
d 

(2
.5

%
) 

Co
ve

ra
ge

 (9
5%

) 

Up
pe

r t
ai

le
d 

(2
.5

%
) 

Lo
we

r t
ai

le
d 

(2
.5

%
) 

Co
ve

ra
ge

 (9
5%

) 

U
pp

er
 ta

ile
d 

(2
.5

%
) 

Normal 

 

30 

50 

100 

250 

 

0.0246 

0.0247 

0.0250 

0.0250 

 

0.9503 

0.9505 

0.9500 

0.9500 

 

0.0251 

0.0248 

0.0250 

0.0250 

 

0.0357 

0.0306 

0.0288 

0.0257 

 

0.9285 

0.9378 

0.9429 

0.9485 

 

0.0358 

0.0316 

0.0283 

0.0258 

 

0.0024 

0.0017 

0.0011 

0.0010 

 

0.9954 

0.9967 

0.9979 

0.9980 

 

0.0022 

0.0016 

0.0010 

0.0010 

Contaminated 

Normal 

 

30 

50 

100 

250 

 

8.5-e05 

3.9-e05 

1.7-e05 

9.3-e06 

 

0.9998 

0.9999 

0.9999 

0.9999 

 

8.1-e05 

4.1-e05 

1.7-e05 

9.3-e06 

 

0.0342 

0.0300 

0.0283 

0.0268 

 

0.9293 

0.9359 

0.9407 

0.9469 

 

0.0365 

0.0341 

0.0310 

0.0263 

 

0.0021 

0.0022 

0.0028 

0.0018 

 

0.9957 

0.9957 

0.9958 

0.9960 

 

0.0022 

0.0021 

0.0024 

0.0022 

t 

 

30 

50 

100 

250 

 

0.0259 

0.0257 

0.0254 

0.0251 

 

0.9480 

0.9486 

0.9493 

0.9497 

 

0.0261 

0.0257 

0.0253 

0.0252 

 

0.0370 

0.0335 

0.0260 

0.0252 

 

0.9260 

0.9337 

0.9446 

0.9487 

 

0.0370 

0.0328 

0.0294 

0.0261 

 

0.0038 

0.0016 

0.0012 

0.0010 

 

0.9931 

0.9965 

0.9970 

0.9977 

 

0.0031 

0.0019 

0.0018 

0.0013 

Exponential  

 

30 

50 

100 

250 

 

0 

0 

0 

0 

 

 

0.9414 

0.9444 

0.9456 

0.9473 

 

0.0586 

0.0556 

0.0544 

0.0527 

 

0.0012 

0.0001 

0 

0 

 

 

0.9274 

0.9341 

0.9405 

0.9463 

 

0.0714 

0.0658 

0.0595 

0.0537 

 

0.0384 

0.0355 

0.0333 

0.0311 

 

 

0.9606 

0.9636 

0.9659 

0.9683 

 

0.0010 

0.0009 

0.0008 

0.0006 
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Table 2. The estimated expected lengths of a one-step-ahead prediction interval 

for 1+nX . 

Distribution 
Sample 

size 
Standard Studentized Bootstrap   Bootstrap Percentile -t 

Normal 

 

30 

50 

100 

250 

 

4.1185 

4.0454 

3.9771 

3.9438 

 

3.8484 

3.8799 

3.8997 

3.9115 

 

1.8272 

1.7341 

1.6692 

1.6142 

Contaminated 

Normal 

 

30 

50 

100 

250 

 

9.2141 

9.0245 

8.8897 

8.8085 

 

8.6123 

8.6616 

8.7077 

8.7418 

 

4.1135 

3.9278 

3.7662 

3.5076 

t 

 

30 

50 

100 

250 

 

4.2640 

4.1187 

4.0169 

3.9571 

 

 

3.9776 

3.9555 

3.937 

3.9276 

 

 

1.8894 

1.7639 

1.6724 

1.6228 

 

Exponential  

 

30 

50 

100 

250 

 

4.0361 

3.9993 

3.9426 

3.9343 

 

3.7040 

3.8021 

3.8564 

3.8863 

 

1.8318 

1.6855 

1.5804 

1.5201 

 

 
4. Conclusion 

From the results in section 3, we can draw the following conclusions.  

4.1 One-step-ahead prediction intervals for 1+nX  when using the standard method 

and bootstrap percentile-t have minimum coverage probabilities of 0.95 when samples 

are from the normal and contaminated normal distributions. 

4.2 Only the one-step-ahead prediction interval for 1+nX  when using the bootstrap 

percentile-t method has a minimum coverage probability of 0.95 when samples are from 

the t and exponential distributions.  
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4.3 Most bootstrap percentile-t intervals have coverage probabilities more than 

standard method and when the sample size is large, coverage probability is large. 

4.4 In this case study, bootstrap methods have expected lengths less than the 

standard method and when the sample size increase, the expected length decrease.  
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