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Abstract 

A new prediction interval for an unknown mean first-order autoregressive process 

(AR(1)) using combined predictors from a stationary process and a non stationary process 

is investigated in this paper. The coverage probabilities of a new prediction interval and a 

standard prediction interval are also derived to be functionally independent of the 

population mean   and the variance of the innovation process. Monte Carlo simulation 

shows that a new prediction interval has a desired minimum coverage probability 1 ,α−  

which is better than a standard prediction interval for all the autoregressive parameter 

values used and for all sample sizes considered in this paper.  
 

___________________________ 
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1. Introduction 

Sanchez [5] proposed a combined predictors to forecast the h-steps-ahead 

forecast for an AR(1) process near the non-stationary AR(1) process. Combined 

predictors consist of a predictor from a stationary AR(1) process and another predictor 
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from a non- stationary AR(1) process. Sanchez compared these combined predictors with 

the differenced stationary predictor, a pretest differenced stationary predictor, a fractional 

differenced stationary predictor and classical combined predictors. Sanchez assessed 

these combined predictors using the prediction mean square error (PMSE). A combined 

predictors is superior to others predictors when the autoregressive parameter of this 

process approaches one. In other words, this predictor produces a smaller PMSE than 

others. Niwitpong [3] proposed a new prediction interval for an AR(1) process using 

combined predictors of Sanchez [5]. He found that a new prediction interval has a 

minimum coverage probability 0.95 which is better than a standard prediction interval. 

Our aim in this paper is to construct a one-step-ahead prediction interval based 

on the combined predictors for an unknown mean AR(1) process of Sanchez [5]. As in 

Niwitpong [3], we have derived coverage probabilities of this new prediction interval and a 

standard prediction interval. The coverage probabilities of these two prediction intervals 

are shown to be functionally independent of the mean process and the variance of the 

innovation process. This important result allows us to set the mean process equals zero 

and the error variance of this process at equals one and this result is valid for all possible 

parameter values of the mean and the error variance of this process. This leads to a great 

reduction in computational effort. We have assessed these two prediction intervals based 

on a minimum coverage probability 1 .α−  In other words, we have compared these two 

prediction interval using a minimum coverage probability of  1 α−  as a criterion, see e.g., 

Casella and Berger [1].   

Section 2 describes the method to construct prediction intervals for an unknown 

mean AR(1) process based on a standard method and the combined predictors method. 

Section 3 gives the idea to compute the coverage probabilities of both prediction intervals. 

Section 4 presents Monte Carlo simulation results of the coverage probabilities of these 

two prediction intervals. The conclusion is in Section 5. 
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2. Prediction Intervals for an unknown mean AR(1) process 

Suppose { tY } is a non-zero mean AR(1) process satisfying 

 

1-     ( ) ,t t tY Y eµ ρ µ−= − +           ………………………………….. (1) 

where µ  is a population mean, ρ  is an autoregressive parameter, 

( )1 ,1−∈ρ , },...,3,2,1{ Tt ∈  and te  are unobservable independent errors having 

zero mean and finite variance. 

The ordinary least squares (OLS) estimator of ρ  is denoted ρ̂  and is given by 
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Also an unbiased estimator of  µ  is  ˆ .Yµ =  For a stationary process, for 

known µ  and ρ ,   the optimal predictor of  1+TY   is   ( )TYρ µ− . Replacing the 

unknownµ  and ρ  by the  estimators µ̂  and ρ̂  , we obtain the predictor   ˆ ˆ( )TYρ µ− . 

For a non stationary process; ,1=ρ  the optimal predictor of  1+TY  is   TY .  These two 

predictors are unbiased forecasts, see e.g. Sanchez [5].  Following Sanchez [5], Phillips 

[4], and Diebold [2], we now construct the linear combination of two one-step-ahead 

forecasts which achieves a lower PMSE. The combined predictors can be expressed as 

 

1 0 1 1 1( ) (1 ) ( )c
T T T TY Y Y eµ β β µ β ρ µ+ +− = + − + − − + …………………(3) 

 

where 0, ,µ ρ β and 1β  are the unknown parameters, 2
1 ~ (0, )Te N σ+  and is 

independent of 1 2, ,..., Te e e . 

Sanchez [5] further pointed out that as ρ  approaches one, (3) reduces to  

 

1 1(1 )( (1 ) )c
T T T TY Y Y eβ β µ ρ ρ+ += + − − + +  …………………………(4) 
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 where 
2 2

3 2

2(1 ) (1 )
(1 ) 2(1 )(1 )T

ρ ρβ
ρ ρ ρ

− +
=

− + − +
 . 

 

The estimated combined predictor is obtained by replacing  ( , , )µ ρ β  with 

ˆˆˆ( , , )µ ρ β  . Then 

 

1
ˆ ˆˆ ˆ ˆˆ(1 )( (1 ) )c

T T TY Y Yβ β µ ρ ρ+ = + − − +              ……………………………(5) 

 

  where 
2 2

3 2

ˆ ˆ2(1 ) (1 )ˆ
ˆ ˆ ˆ(1 ) 2(1 )(1 )T

ρ ρβ
ρ ρ ρ

− +
=

− + − +
. 

 

Now we  propose a one-step-ahead prediction interval for 1
c

TY +  using model (4). 

From (4), it is straightforward to show that 

  

       1 1 (1 )( (1 ) )c
T T T Te Y Y Yβ β µ ρ ρ+ += − − − − + and 1 ~ (0,1)Te N

σ
+ . 

 

Thus 1 1

1
02

(1 )( (1 ) )c
T T T Te Y Y YZ α

β β µ ρ ρ
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+ +
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− − − − +
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where    2 2
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1 ( (1 )( (1 ) )) .
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Y Y Y
T

σ β β µ ρ ρ− −
=

= − − − − +∑  

 

Using  1

1
02

(1 )( (1 ) )c
T T TY Y YZ α

β β µ ρ ρ
σ

+

−

− − − − +
=  as a pivotal quantity. 

The (1 - α )100% prediction interval for 1
c

TY +  is therefore 

 

0 01 1
2 2

(1 )( (1 ) ) , (1 )( (1 ) )T T T TY Y Z Y Y Zα αβ β µ ρ ρ σ β β µ ρ ρ σ
− −

 
+ − − + − + − − + + 

 
...(6) 

 

where  
2

1 α
−

Z   is a th)
2

1( α
−  quantile of the standard normal distribution. 

Replacing the unknown parameters 0( , , , )µ ρ β σ  in (6) by estimators ( 0
ˆˆˆ ˆ, , ,µ ρ β σ ). 

The approximate (1 - α )100% prediction interval for 1
c

TY +  is  
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 0 0 01 1
2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ(1 )( (1 ) ) , (1 )( (1 ) )T T T TPI Y Y Z Y Y Zα αβ β µ ρ ρ σ β β µ ρ ρ σ
− −
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= + − − + − + − − + + 
 

 … (7) 

 

  where    2 2
0 1 1

2
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2
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Y Y Y
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=
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− ∑  

 

Similarly, from (1), the one-step-ahead prediction interval for   1+TY  is 

 

1 11 1
2 2

( ) , ( )T TY Z Y Zα αρ µ σ ρ µ σ
− −

 
− − − + 

 
       ……………………….(8) 

 

where  

2 2
1 1

2

1 ( ( ))
T

t t
t

y Y
T

σ µ ρ µ−
=

= − − −∑ . 

 

Replacing the unknown 1( , , )µ ρ σ  in (8) by the estimators ( 1ˆˆ ˆ, , )µ ρ σ .  The 

approximate (1 - α )100% prediction interval for 1+TY  is therefore 

 

1 1 11 1
2 2

ˆ ˆˆ ˆ ˆ ˆ( ) , ( )T TPI Y Z Y Zα αρ µ σ ρ µ σ
− −

 
= − − − + 
 

     …………………..(9) 

 

 where 2 2
1 1

2

1 ˆˆ ˆ ˆ( ( ))
2

T

t t
t

y Y
T

σ µ ρ µ−
=

= − − −
− ∑ . We call a prediction interval 

1PI  as a standard prediction interval for 1+TY . 

 

3. The Coverage Probabilities of Prediction Intervals  

 

The unconditional coverage probability for  1
c

TY + of  0PI  in (7)  is 

0 1 01 1
2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ(1 )( (1 ) ) (1 )( (1 ) )c
T T T T TP Y Y Z Y Y Y Zα αβ β µ ρ ρ σ β β µ ρ ρ σ+

− −

 
+ − − + − ≤ ≤ + − − + + 

 
 

1 0 1 1 01 1
2 2

ˆ ˆˆ ˆ(1 )( (1 ) )T T T T TP Y k Z Y Y e Y k Zα αβ σ β β µ ρ ρ β σ+
− −

 
= + − ≤ + − − + + ≤ + + 

 
 

 

1
ˆ ˆ ˆˆ( (1 )( (1 ) ))Twhen k Yβ µ ρ ρ= − − +  
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1 0 1 1 01 1
2 2

ˆ ˆˆ ˆ( (1 ) )( )T T T TP Y k Z Y e Y k Zα αβ σ µ β β ρ µ β σ+
− −

 
= + − ≤ + + − − + ≤ + + 

 
 

 

2 0 1 21 1
2 2

ˆ ˆ ˆ ˆˆ ˆˆ ˆ( (1 ) )( ) ( (1 ) )( ) ( (1 ) )( )T T T TP Y k Z Y e Y k Zα αβ β ρ µ σ µ β β ρ µ β β ρ µ σ+
− −

 
= + − − + − ≤ + + − − + ≤ + − − + + 

 
                                                                                                      

 

2
ˆ ˆ ˆˆ ˆ( ( (1 ) )( ))when k µ β β ρ µ µ= − + − −  
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σ
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X
T T T

µ µ σµ µ
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− −−
= = = =∑ ∑ ∑

and 

(.)Φ  is a cumulative standard Normal distribution. 

 Observe from (1) that 

ttt XX ηρ += −1  

where  
σ

η t
t

e
=  so that { tη } is a sequence of independent and identically 

distributed  

N(0,1) random variables. Therefore ( TXXX ,....,2,1 )  has a probability 

distribution that does not depend on 2( , )µ σ , i.e. it is a function of ρ only. Also, 
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are functions of  ( TXXX ,....,2,1 ). 

 

From the previous section, β̂   is a function of ρ̂ .  Therefore the coverage 

probability of   0PI  is functionally independent of 2( , )µ σ , i.e. it is a function of ρ only.  

 

Similarly, from (9), the coverage probability of   1PI  is therefore 
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                                                                                                                      (11) 
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It is also straightforward to see that 
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Therefore, the coverage probability of   1PI  is functionally independent 

of 2( , )µ σ , i.e. it is a function of ρ only. 

 

4. Monte Carlo Simulation 

In this section, the coverage probabilities of  0PI  and 1PI  are compared using 

Monte Carlo simulation. Naturally, we prefer a prediction interval which has a large 

coverage probability. In this paper, we also prefer a prediction interval which has a 

desired minimum coverage probability 1 α− . 

Suppose the indicator 1( )
jPI nI X +  defined by 1( ) 1

jPI nI X + =  if 

1n jX PI+ ∈ ( 0,1j = ) and 0 otherwise. We suppose that each Monte Carlo simulation 

consists of M independent runs. 

Let the observed values of 3 1
ˆ ˆ ˆ ˆ, , , , , ,t X XX X k β ρ σ σ  be denoted by 

( ) ( ) ( ) ( ) ( ) ( ) ( )
3 1

ˆ ˆ ˆ ˆ, , , , , ,k k k k k k k
t X Xx x k β ρ σ σ  for the k th run. Thus, from (10) and (11), we have  
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and 
11 1 1Pr( ) ( ( ))n PI nX PI E I X+ +∈ =  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 11 11 2 2

ˆ ˆ ˆ ˆˆ ˆ((1 ) ( ) ) ((1 ) ( ) ) .
M

k k k k k k k k
T X T X

k
x x Z x x Zα αρ ρ ρ σ ρ ρ ρ σ

− −=

 
≈ Φ − + − + −Φ − + − − 

 
∑

  

We chose ρ  = 0.1, 0.3, 0.6, 0.8, 0.9, 0.95, 0.97 and 0.99, T = 30, 50, 100 and 

200, 0.01,0.05,α = and 0.10, 0,1, 5µ = and 2 1, 5,σ = 10. Here, we emphasize 

ρ  approaches one since our predictor is a linear combination of predictors from a 

stationary process and a non stationary process. All simulations were performed using 

programs written in S-PLUS with M =1000.  

The estimated coverage probabilities for a prediction interval 0PI  and a 

prediction interval 1PI  are reported in Tables 1-4. As can be seen from these tables, the 

new prediction interval, 0PI , has a minimum (estimated) coverage probability 1 ,α−  for 

all sample sizes and  values of ρ   considered here. The standard prediction interval 1PI , 

however, does not have a minimum coverage probability 1 ,α−  for any sample sizes  

and values of ρ  considered here. Therefore the new prediction interval  0PI  is 

preferable to the prediction interval 1PI .  

 

Table1. The estimate coverage probabilities of a prediction interval  1PI  compared to a 

prediction interval 0PI    for M = 1000, 0.01, 0, 1.α µ σ= = =  

 T = 30 T = 50 T =100 T =200 

ρ  
0PI  1PI  0PI  1PI  0PI  1PI  0PI  1PI  

0.990 0.9941 0.9884 0.9944 0.9890 0.9949 0.9896 0.9948 0.9896 

0.970 0.9925 0.9859 0.9937 0.9870 0.9944 0.9888 0.9947 0.9893 

0.950 0.9934 0.9857 0.9932 0.9867 0.9945 0.9887 0.9948 0.9895 

0.900 0.9927 0.9847 0.9934 0.9863 0.9946 0.9886 0.9947 0.9894 

0.800 0.9919 0.9822 0.9935 0.9865 0.9943 0.9882 0.9947 0.9892 

0.600 0.9923 0.9831 0.9935 0.9859 0.9942 0.9881 0.9946 0.9891 

0.300 0.9922 0.9828 0.9934 0.9855 0.9941 0.9878 0.9947 0.9892 

0.100 0.9924 0.9836 0.9933 0.9859 0.9943 0.9884 0.9948 0.9894 
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Table 2. The estimate coverage probabilities of a prediction interval 1PI   compared to a 

prediction interval   0PI  for M = 1000, 0.05, 0, 1.α µ σ= = =  

 

 T = 30 T = 50 T =100 T =200 

ρ  
0PI  1PI  0PI  1PI  0PI  1PI  0PI  1PI  

0.990 0.9744 0.9504 0.9748 0.9521 0.9758 0.9486 0.9746 0.9489 

0.970 0.9709 0.9450 0.9726 0.9451 0.9735 0.9477 0.9748 0.9490 

0.950 0.9667 0.9355 0.9718 0.9433 0.9736 0.9471 0.9742 0.9485 

0.900 0.9764 0.9479 0.9717 0.9431 0.9730 0.9455 0.9743 0.9484 

0.800 0.9739 0.9411 0.9718 0.9423 0.9726 0.9445 0.9744 0.9485 

0.600 0.9671 0.9321 0.9727 0.9435 0.9733 0.9454 0.9742 0.9486 

0.300 0.9679 0.9349 0.9726 0.9425 0.9734 0.9458 0.9742 0.9483 

0.100 0.9669 0.9316 0.9725 0.9424 0.9735 0.9461 0.9744 0.9484 
 
 
Table 3. The estimate coverage probabilities of a prediction interval 1PI   compared to a 

prediction interval  0PI   for M = 1000, 0.1, 0, 1.α µ σ= = =  

 

 T = 30 T = 50 T =100 T =200 

ρ  
0PI  1PI  0PI  1PI  0PI  1PI  0PI  1PI  

0.990 0.9529 0.9067 0.9515 0.9033 0.9496 0.8973 0.9494 0.8983 

0.970 0.9476 0.8935 0.9467 0.8937 0.9482 0.8960 0.9492 0.8985 

0.950 0.9453 0.8901 0.9478 0.8935 0.9491 0.8952 0.9500 0.8988 

0.900 0.9476 0.8893 0.9473 0.8924 0.9484 0.8950 0.9495 0.8982 

0.800 0.9455 0.8865 0.9455 0.8903 0.9488 0.8958 0.9490 0.8976 

0.600 0.9463 0.8834 0.9471 0.8911 0.9486 0.8953 0.9493 0.8980 

0.300 0.9426 0.8816 0.9458 0.8899 0.9480 0.8945 0.9491 0.8981 

0.100 0.9447 0.8830 0.9473 0.8918 0.9489 0.8964 0.9492 0.8948 
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Table 4. The estimate coverage probabilities of a prediction interval  1PI  compared to a 

prediction interval  0PI  for M = 1000, 0.05, 0.50.α ρ= =  

 

 T = 30 T = 50 T =100 T =200 

( , )µ σ  0PI  1PI  0PI  1PI  0PI  1PI  0PI  1PI  

(1, 1) 0.9712 0.9375 0.9723 0.9430 0.9732 0.9450 0.9744 0.9483 

(1, 5) 0.9713 0.9381 0.9720 0.9415 0.9733 0.9462 0.9750 0.9494 

(1, 10) 0.9711 0.9380 0.9725 0.9429 0.9733 0.9451 0.9743 0.9478 

(5, 1) 0.9711 0.9373 0.9733 0.9433 0.9736 0.9452 0.9742 0.9481 

(5, 5) 0.9712 0.9377 0.9715 0.9413 0.9737 0.9466 0.9743 0.9482 

(5, 10) 0.9713 0.9387 0.9734 0.9431 0.9736 0.9456 0.9743 0.9483 

 

5. Conclusion 

We have proposed a new prediction interval for an AR(1) process based on the 

combined predictors of a stationary process and a non stationary process. The coverage 

probability of this new prediction interval is shown to be functionally independent of 
2( , )µ σ . This result allows us to set 0µ =  and 2σ = 1 in Monte Carlo simulation. This 

leads to a great reduction in computational effort. The new prediction interval is preferable 

to the standard prediction interval since it has a desired minimum coverage probability 

1 ,α−  for all values of ρ  and all sample sizes considered here.  
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