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Abstract

A new prediction interval for an unknown mean first-order autoregressive process
(AR(1)) using combined predictors from a stationary process and a non stationary process
is investigated in this paper. The coverage probabilities of a new prediction interval and a
standard prediction interval are also derived to be functionally independent of the
population mean and the variance of the innovation process. Monte Carlo simulation
shows that a new prediction interval has a desired minimum coverage probability 1— ¢,
which is better than a standard prediction interval for all the autoregressive parameter

values used and for all sample sizes considered in this paper.
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1. Introduction

Sanchez [5] proposed a combined predictors to forecast the h-steps-ahead
forecast for an AR(1) process near the non-stationary AR(1l) process. Combined

predictors consist of a predictor from a stationary AR(1) process and another predictor
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from a non- stationary AR(1) process. Sanchez compared these combined predictors with
the differenced stationary predictor, a pretest differenced stationary predictor, a fractional
differenced stationary predictor and classical combined predictors. Sanchez assessed
these combined predictors using the prediction mean square error (PMSE). A combined
predictors is superior to others predictors when the autoregressive parameter of this
process approaches one. In other words, this predictor produces a smaller PMSE than
others. Niwitpong [3] proposed a new prediction interval for an AR(1) process using
combined predictors of Sanchez [5]. He found that a new prediction interval has a
minimum coverage probability 0.95 which is better than a standard prediction interval.

Our aim in this paper is to construct a one-step-ahead prediction interval based
on the combined predictors for an unknown mean AR(1) process of Sanchez [5]. As in
Niwitpong [3], we have derived coverage probabilities of this new prediction interval and a
standard prediction interval. The coverage probabilities of these two prediction intervals
are shown to be functionally independent of the mean process and the variance of the
innovation process. This important result allows us to set the mean process equals zero
and the error variance of this process at equals one and this result is valid for all possible
parameter values of the mean and the error variance of this process. This leads to a great
reduction in computational effort. We have assessed these two prediction intervals based
on a minimum coverage probability 1 —¢r. In other words, we have compared these two
prediction interval using a minimum coverage probability of 1— ¢ as a criterion, see e.g.,
Casella and Berger [1].

Section 2 describes the method to construct prediction intervals for an unknown
mean AR(1) process based on a standard method and the combined predictors method.
Section 3 gives the idea to compute the coverage probabilities of both prediction intervals.
Section 4 presents Monte Carlo simulation results of the coverage probabilities of these

two prediction intervals. The conclusion is in Section 5.
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2. Prediction Intervals for an unknown mean AR(1) process

Suppose {Yt }is a non-zero mean AR(1) process satisfying

Yo-u = p(Y —H)+€, @)

where [/ is a population mean, o is an autoregressive parameter,
pE (—1, l), te{l2,3,...,T} and e, are unobservable independent errors having
zero mean and finite variance.
The ordinary least squares (OLS) estimator of p is denoted [) and is given by
T
Z (Yt -Y )(Yt—l _Y)
p = = e, )
7\ 2
2 (YY)
t=2

Also an unbiased estimator of 1 is ,[l:Y. For a stationary process, for

known g and p, the optimal predictor of Y;,, is  p(Y; — ) . Replacing the
unknown £ and p by the estimators [1 andﬁ , we obtain the predictor ,5(YT —[1)
For a non stationary process; p = 1, the optimal predictor of YT+1 is YT . These two
predictors are unbiased forecasts, see e.g. Sanchez [5]. Following Sanchez [5], Phillips
[4], and Diebold [2], we now construct the linear combination of two one-step-ahead

forecasts which achieves a lower PMSE. The combined predictors can be expressed as

Yia—u=B+ B =)+ A= B)p(Yr — 1)+ g s ®3)

where 1, p, B,and B, are the unknown parameters, €, ~ N(0,5°) and is
independent of €,,€,,...,€; .

Sanchez [5] further pointed out that as p approaches one, (3) reduces to

Ye =B + Q=)= p)+ pY;)+€,, s @)
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2(1-p*)’ 1+ p) |
TA-p)’ +2(1-p*)1+ p)

where [ =

The estimated combined predictor is obtained by replacing (Iu,p,ﬂ) with

(@t 5, /) - Then

Ve = BY +A=B)AA= D)+ PYe) e 5)

2(1-p*)*(1+ p)

h 3 = .
M B Ty 2 ) )

Now we propose a one-step-ahead prediction interval for YTC+1 using model (4).

From (4), it is straightforward to show that

6ra =Y = P~ (L= B p)+ PY;) and T2~ N(0.).

Thus hD Z Yi, = BY; == B)(ul-p)+pYr)
o 1‘5 o

where aozzéz(vt—ﬂvu—(l—m(u(l )+ PV ).
< = Y, — (- B)(u- )+ pY)

Oy
The (1 - & )100% predlction interval for YT°+1 is therefore

Using Z as a pivotal quantity.
1_

PYr+ Q= B)u@=p)+ pY)r =2 04,V +{A= )~ p)+ PV)+Z 0 |.-(6)

(04
where Z _ is a (1—E)th quantile of the standard nomal distribution.
1-¢

~

Replacing the unknown parameters (i, p, 5,0,) in (6) by estimators (i, p,B ,0,).

The approximate (1 - & )100% prediction interval for YTCH is
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Plo{/% (U-PEl-p)+ %) =2 6, PYr +(= Bt p)+ 1)+ 2 oo] X
wnere Gt == (Y, = Yy~ (W AN )+ YN

Similarly, from (1), the one-step-ahead prediction interval for YT+1 is

|:p(YT — 1) — Zliff1 oY — )+ Zlaal} ............................ 8)
2 2

where

=$Z(yt—u—p(vt_l—ﬂ»2.

Replacing the unknown (4, p, ;) in (8) by the estimators (i, p,0;). The

approximate (1 - & )100% prediction interval for YT+1 is therefore

Pl, = { oY, — 1) - Zl,z&l' oY — )+ Zla6l:| ....................... ©
2 2

- 1 & ~ A -
where G = T—Z (y, = it— p(Y,, — 2))°. We call a prediction interval
=
Pl, as a standard prediction interval for Y7,

3. The Coverage Probabilities of Prediction Intervals

The unconditional coverage probability for Y, of Pl in (7) is

P{ﬁﬂ + (=AYl )+ p¥r) =2, Gy < Vi < PYo + (L= P p) + p¥r) + zla&o}

- P{/?YT HG =26, < Yo + A= )l p)+ oY) +er o < Yy o+ zlao“—o}
2 2

(when  k, =(1-B)(a(l- p)+pY;))
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= P|:ﬁYT +k1—Zl_g5'0 Sp+(B+QA-P)p)(Yr —p)+ery S:éYT +k +Zl_a6—0:|

2

ol

—P{(ﬂﬂl PN, ~w)+k =2 6yt (B+L-Pp)Y; ~)+ ., < (B+ (L= B)A)Y, - >+k+za}
(when k, = 2—(B+@-B)p) i - w))

=P{k3m W+ U-P =P a-1)-Z 6, <oy <kl —u)+(1—/?+(1—/?>/3)<ﬁ—u)+zl_a&}

(when ky=4+@-B)p- -1~ p)p)

:P{k ot 0-pra-ppp )( B 7 Gt Gl g iapplpg i}
o (4 (2

-2 o o o

= P{kaxT FA-frU-PDX-Z 6 <TE <X, + (- f+A-H))X+Z o—}
].—E o l—E

=0k X, + (1= B+ (U= BPX +Z,6,) Ok Xy + L=+ (L-PP)X -2 ,6,) +10)

where 2 2

X - Y; —u (,[l—,tl)_ZYT_T/J_Z((YT_/J)/G)_ZXT v
T ’ - B T

=X and
o o ol T
®(.) is a cumulative standard Normal distribution.

Observe from (1) that
Xy =pX i+,
where 77, ze—t so that {77,} is a sequence of independent and identically
distributed ¢
N(0,1) random variables. Therefore ( X, X,,...., X; ) has a probability
distribution that does not depend on (4, 02) , i.e. itis a function of p only. Also,
Az

Gy = i[(Yt P~ A= P )+ Yot |

t=2
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1 ¢ - n a7
=y 2 ()= )= Y= )= G )= 1= DB )= G p)™
L=
=L S T(X, = K = B(X = X) - (= AKX~ KN |
=77 2L (X=X =A% = X) == A)p(Xs =X
and
YN0 ) i(a*«vt—u)—w‘—u)))(o*(ml—u)—w‘—m» > (%K)t %)
p==2 - _1=2 - _1=2 -
>0, -7) 20 (%)~ )Y > (¥, X’
are functions of (X, X, ..., X1).

From the previous section, £ is a function of [) .

Therefore the coverage

probability of F’IO is functionally independent of (,u, 62) , i.e. itis a function of p only.

Similarly, from (9), the coverage probability of |:’|l is therefore

<Y.

T+1

[,& p(Yr — 1)~ Z ‘71

[wp(Y —)=Z 1<+ p(Vr -

2

=P (=p)=)+(p=p)Y; - 1) =2 .0, <, < (-
=P (1—/3)(ﬁ_ﬂ)+(/3—p)(YT_”)—Z_fis(l-,s)_([“”)
- o o 2 0 o

= P{(l_,a)i"‘(/}_p)XT _leo’:lx <

2

eT+1
(o)

= q)((l_,a))z +(,5_p)XT "'Zligo’:lx)_(I)((]-_,a))z +(ﬁ—,0)XT

S[l+ﬁ(YT _I&)—I_Zlig&l

2

P)a=p)+(p=p)r ~m)+Z 0,

+(p-p)———

|

1) +€r,; < l&+ﬁ(YT - i)+ Zl_ao,\-li|
2

~

<A-p)X +(p—p)X; + Zla&lx}
2

-7 ,63).
(11)
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It is also straightforward to see that

2 Alz 1 < t_A_AYt—l_AZ 1 < t ~(a-p)-p -1 (g~
o ZW ﬂ,(';( H) ZW 1) = (=) = p((Yy — 1) - (- )

T _2 t=2 2 T _2 t=2 6
Thus,
2 1 < Y _ A 7 \\2
O1x :—Z(Xt - X=p(X1=X))
T - 2 t=2
Therefore, the coverage probability of P|l is functionally independent

of (u,0%) ,i.e. itis a function of p only.

4. Monte Carlo Simulation

In this section, the coverage probabilities of Pl and PI, are compared using
Monte Carlo simulation. Naturally, we prefer a prediction interval which has a large
coverage probability. In this paper, we also prefer a prediction interval which has a
desired minimum coverage probability 1 — ¢ .

Suppose the indicator |Plj (X,,;) defined by IPIJ- (X,,)=1 i
X, € Plj (j=0,1) and O otherwise. We suppose that each Monte Carlo simulation
consists of M independent runs.

Let the observed values of X, X,ka,ﬁ, 0.6y, 6, be denoted by

x®, x®, k;“,;ﬁw,,sm, 6% ¢® for the kth run. Thus, from (10) and (11), we have

M
Pr(X,,, €Pl,) = E(IPIO(Xn+1)) ~ Z[A_ B]
when -

A= DK% + 19+ (1~ f9)5)Y +Z_,6%)
2

B=d(k{x, +(1- A+ 1 f9)p)X0 -7 6
2
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and Pr(xm—lE Pll): E(IPll(Xm—l))

M
2 Y1 O((1-p )XY + (59 - p)x +Z 1)) - (- p“)xY + (6" - p)x, -Z 1) |
1-£ 1-£
2 2

We chose p =0.1, 0.3, 0.6, 0.8, 0.9, 0.95, 0.97 and 0.99, T = 30, 50, 100 and
200, ¢ =0.01,0.05, and 0.10, £=0,1, 5and 0% =1,5, 10. Here, we emphasize
P approaches one since our predictor is a linear combination of predictors from a
stationary process and a non stationary process. All simulations were performed using
programs written in S-PLUS with M =1000.

The estimated coverage probabilities for a prediction interval F’I0 and a
prediction interval F’I1 are reported in Tables 1-4. As can be seen from these tables, the
new prediction interval, PIO, has a minimum (estimated) coverage probability 1— ¢z, for
all sample sizes and values of p considered here. The standard prediction interval Pll,
however, does not have a minimum coverage probability 1— ¢z, for any sample sizes
and values of p considered here. Therefore the new prediction interval Pl is

preferable to the prediction interval P1, .

Tablel. The estimate coverage probabilities of a prediction interval PI, compared to a

prediction interval P1, for M =1000, & =0.01, £ =0, 0 =1.

T=30 T=50 T =100 T =200

P Pl, PI, Pl, PI, Pl, Pl Pl, Pl

0.990 | 0.9941 | 0.9884 | 0.9944 | 0.9890 | 0.9949 | 0.9896 | 0.9948 | 0.9896

0.970 | 0.9925 | 0.9859 | 0.9937 | 0.9870 | 0.9944 | 0.9888 | 0.9947 | 0.9893

0.950 | 0.9934 | 0.9857 | 0.9932 | 0.9867 | 0.9945 | 0.9887 | 0.9948 | 0.9895

0.900 | 0.9927 | 0.9847 | 0.9934 | 0.9863 | 0.9946 | 0.9886 | 0.9947 | 0.9894

0.800 | 0.9919 | 0.9822 | 0.9935 | 0.9865 | 0.9943 | 0.9882 | 0.9947 | 0.9892

0.600 | 0.9923 | 0.9831 | 0.9935 | 0.9859 | 0.9942 | 0.9881 | 0.9946 | 0.9891

0.300 | 0.9922 | 0.9828 | 0.9934 | 0.9855 | 0.9941 | 0.9878 | 0.9947 | 0.9892

0.100 | 0.9924 | 0.9836 | 0.9933 | 0.9859 | 0.9943 | 0.9884 | 0.9948 | 0.9894




102 Thailand Statistician, 2006; 4:93-104

Table 2. The estimate coverage probabilities of a prediction interval PI, compared to a

prediction interval  P1, for M = 1000, & = 0.05, £ =0, o =1.

T=30 T=50 T =100 T =200

0.990 | 0.9744 | 0.9504 | 0.9748 | 0.9521 | 0.9758 | 0.9486 | 0.9746 | 0.9489

0.970 | 0.9709 | 0.9450 | 0.9726 | 0.9451 | 0.9735 | 0.9477 | 0.9748 | 0.9490

0.950 | 0.9667 | 0.9355 | 0.9718 | 0.9433 | 0.9736 | 0.9471 | 0.9742 | 0.9485

0.900 | 0.9764 | 0.9479 | 0.9717 | 0.9431 | 0.9730 | 0.9455 | 0.9743 | 0.9484

0.800 | 0.9739 | 0.9411 | 0.9718 | 0.9423 | 0.9726 | 0.9445 | 0.9744 | 0.9485

0.600 | 0.9671 | 0.9321 | 0.9727 | 0.9435 | 0.9733 | 0.9454 | 0.9742 | 0.9486

0.300 | 0.9679 | 0.9349 | 0.9726 | 0.9425 | 0.9734 | 0.9458 | 0.9742 | 0.9483

0.100 | 0.9669 | 0.9316 | 0.9725 | 0.9424 | 0.9735 | 0.9461 | 0.9744 | 0.9484

Table 3. The estimate coverage probabilities of a prediction interval PI, compared to a

prediction interval P1, for M =1000, & =0.1, =0, o =1.

T=30 T=50 T =100 T =200

P Pl, Pl Pl, Pl, Pl, PI, Pl, PI,

0.990 | 0.9529 | 0.9067 | 0.9515 | 0.9033 | 0.9496 | 0.8973 | 0.9494 | 0.8983

0.970 | 0.9476 | 0.8935 | 0.9467 | 0.8937 | 0.9482 | 0.8960 | 0.9492 | 0.8985

0.950 | 0.9453 | 0.8901 | 0.9478 | 0.8935 | 0.9491 | 0.8952 | 0.9500 | 0.8988

0.900 | 0.9476 | 0.8893 | 0.9473 | 0.8924 | 0.9484 | 0.8950 | 0.9495 | 0.8982

0.800 | 0.9455 | 0.8865 | 0.9455 | 0.8903 | 0.9488 | 0.8958 | 0.9490 | 0.8976

0.600 | 0.9463 | 0.8834 | 0.9471 | 0.8911 | 0.9486 | 0.8953 | 0.9493 | 0.8980

0.300 | 0.9426 | 0.8816 | 0.9458 | 0.8899 | 0.9480 | 0.8945 | 0.9491 | 0.8981

0.100 | 0.9447 | 0.8830 | 0.9473 | 0.8918 | 0.9489 | 0.8964 | 0.9492 | 0.8948
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Table 4. The estimate coverage probabilities of a prediction interval PI, compared to a

prediction interval P1, for M = 1000, ¢ = 0.05, p = 0.50.

T=30 T=50 T =100 T =200

(/11 O') Pl, PI, Pl, PI, PI, Pl, PI, PI,

1, 1) 0.9712 | 0.9375 | 0.9723 | 0.9430 | 0.9732 | 0.9450 | 0.9744 | 0.9483

1, 5) 0.9713 | 0.9381 | 0.9720 | 0.9415 | 0.9733 | 0.9462 | 0.9750 | 0.9494

(1,10) | 0.9711 | 0.9380 | 0.9725 | 0.9429 | 0.9733 | 0.9451 | 0.9743 | 0.9478

(5,1) 0.9711 | 0.9373 | 0.9733 | 0.9433 | 0.9736 | 0.9452 | 0.9742 | 0.9481

(5, 5) 0.9712 | 0.9377 | 0.9715 | 0.9413 | 0.9737 | 0.9466 | 0.9743 | 0.9482

(5,10) | 0.9713 | 0.9387 | 0.9734 | 0.9431 | 0.9736 | 0.9456 | 0.9743 | 0.9483

5. Conclusion

We have proposed a new prediction interval for an AR(1) process based on the
combined predictors of a stationary process and a non stationary process. The coverage
probability of this new prediction interval is shown to be functionally independent of
(u, 0_2) . This result allows us to set 1 =0 and o= 1in Monte Carlo simulation. This
leads to a great reduction in computational effort. The new prediction interval is preferable
to the standard prediction interval since it has a desired minimum coverage probability

1-«, forall values of p and all sample sizes considered here.
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