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Abstract 

This paper introduces a new mixture Pareto distribution generated from logit of 

the weighted two-component mixture distribution which is mixed between a Pareto and a 

length biased Pareto distributions. Special sub-models include the Pareto, exponential, 

chi-square and logistic distributions. We contain derivation of the mixture Pareto types 

II , III , IV  and provide various mathematical properties including its limit behavior, 

hazard rate and thr  moment. Discussion of the estimation procedure is based on 

maximum likelihood. Also, we display an application to Norwegian fire claim data, it 

shows that the mixture Pareto distribution give a better fit than other important lifetime 

models; a Weibull, the Pareto and the length biased Pareto distributions. In conclusion, 

the mixture Pareto distribution provides a rather general and flexible framework for the 

statistical lifetime data analysis.  

______________________________ 
Keywords: length biased, two-component mixture, mixture Pareto distribution, maximum 

likelihood estimation, lifetime data, hazard rate. 

 

  



192 Thailand Statistician, 2015; 13(2): 191-207 

 

1. Introduction 

 The family of a Pareto distribution is well known in the literature for its capability in 

modeling the heavy-tailed data such as income data, exceedances of river flood data and 

fire claim data. The Pareto distribution is very versatile and a variety of uncertainties can be 

usefully modelled by it [1]. The Pareto distribution arises as tractable “life time” model in 

actuarial science, economics, finance, life testing, survival analysis and engineering. It is 

used in the frequency modeling of data with a right tail and no mode in the probability 

density. A random variable X  is said to have the Pareto distribution, denoted by 

 ,X Pareto   , its probability density function (pdf) is 
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        (1) 

 

and the cumulative distribution function (cdf) is  
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      (2) 

 

For a thorough discussion on various properties and applications and different 

forms of the Pareto distribution [2-4], some mathematical properties such as the thr  

moment and moment generating function (mgf) of the Pareto distribution are, 

respectively, given by 
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and, 
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where,   1,


    a y

b

a b y e dy  denotes an incomplete gamma function.  



Nareerat Nanuwong  193 

 

Patil and Rao [5] presented a length biased Pareto (LP) distribution by concept 

of a weighted distribution. If X  is Pareto random variable with pdf (1), then the pdf for the 

length biased distribution of random variable X  is 
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      (5) 

 

By (5), it is not difficult to show that the cdf of the LP distribution is 
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         (6) 

 

From (5), we can supply some mathematical properties for instance the thr  moment and 

mgf of the LP distribution are, respectively,  
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and, 
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1 1 , , 0.X LP

M t t t t
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Recently, attempts have been made to define new families of probability 

distributions that extend well-known families of distributions and at the same time provide 

great flexibility in modeling data in practice. One such class of distributions generated 

from the two-component mixture model of random variable which extends the original 

distribution with the length biased distribution provide powerful and popular tools for 

generating flexible distributions with attractive statistical and probabilistic properties, see 

McLachlan and Peel [6]. The two-component mixture model method is employed in 

many vocations. For example, Hall and Zhou [7] proposed nonparametric estimation for 

a mixture of two distributions in a multivariate mixture model. In addition, estimates of the 

mixing proportions, locations and variances for the components of a finite univariate 

mixture model were introduced by Cruz-Medina and Hettmansperger [8]. By assumed 
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the assumptions of symmetric, different locations and parametric model are imposed on 

the components.  

Furthermore, two real location parameters and the mixing proportion were 

presented by Bordes et al. [9]. Moreover, the problem of parameter estimation in finite 

mixtures is proposed by Hunter et al. [10], when comparing their method with the method 

of maximum likelihood using normal components, their method produces higher standard 

error estimates in the case where the components are truly normal. Their method 

dramatically outperforms the normal method when the components are heavy-tailed. 

Additionally, Leiva et al. [11] introduced a model that extends the inverse Gaussian 

distribution, their model is obtained when a parameter is incorporated into the logarithmic 

inverse Gaussian distribution producing great flexibility for fitting non-negative data. 

Moreover, several aspects of the mixture inverse Gaussian distributions are useful for 

modeling positive data that the empirical fit of the mixture inverse Gaussian distributions to 

the data is very good, introduced by Balakrishnan et al. [12]. Recently, Vandekerkhove 

[13] introduced the mixture of regression models which are generalization of the semi-

parametric two-component mixture model. 

In this paper, we propose a mixture Pareto (MP) distribution by method of the 

two-component mixture distribution. The main reasons for introducing it since its 

flexibility in accommodating mixture between original and length biased distributions. The 

MP distribution is an important model that can be used in a variety of problems in 

modeling lifetime data. The reminder of this paper is organized as follows: In Section 2, 

we approximate forms of the pdf and cdf for the MP distribution and provide special sub-

models of it. The other types of the MP distribution are containing in this Section. Section 

3, mathematical properties; limit behavior, hazard rate, the thr  moment and generating 

function are derived. Expressions for the mean, variance, skewness and kurtosis are 

discussed in Section 3. Moreover, in Section 4, we discuss estimation by the maximum 

likelihood method. An application using a real data set is presented in Section 5. Finally, 

in Section 6, we provide some conclusions, followed by the concluding remarks. 

 

2. A new mixture Pareto distribution 

 In this section, we propose a new MP distribution produce widely flexible 

models with good statistical. Its some special sub-models and the other types are display 

in this section. 
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2.1 The probability density function and cumulative distribution function  

Definition 1: Specifically, let  Pg x  and  LPg x  are the pdf and length biased pdf of the 

random variable X , respectively. If   is mixing parameter, 0 1  , then the weighted 

two-component mixture distribution produced by the mixture between  Pg x  and  LPg x  

is defined as 

 

       1 , 0.P LPf x g x g x x      

 

Theorem 1: Let  ~ , ,X MP    , then the pdf and cdf of random variable X , are, 

respectively, 
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and, 
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Proof: We then say that a random variable X  follows the MP distribution with 

parameters  ,   and  , if its pdf is obtain by substitute (1) and (5) in Definition 1, can 

be obtained as 

 

   
 

     

 

   

1

1

2

1

1
1

1 1

11
1 .

x x
f x

xx

xx

 





  
   

   
  

 
 

  

  

 

 

              
        

   
   

    

  
    

    

 

 



196 Thailand Statistician, 2015; 13(2): 191-207 

 

Let  F x  denote the cdf of a random variable X . The cdf for a generalized 

class of distribution, as defined by Definition 1, is generated by applying the cdf to the 

MP random variable to obtain 

 

       1 P LPF x G x G x          (11) 

 

hence, obtain by substitute (2) and (6) in (11), can be written as 
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The MP distribution contains a large number of distributions. In Figures 1 and 2, 

we present the pdf and cdf of it. 

 

 

Figure 1. The pdf of the MP distribution, for different values of    

where 2   and 0.7  . 
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Figure 2. The cdf of the MP distribution, for different values of    

where 2   and 0.4  . 

  

2.2 Special sub-models 

We consider some special sub-models of the MP distribution,  ~ , ,X MP    , 

in the following five corollaries. 

Corollary 1: Where 0  , the MP distribution reduces to the Pareto distribution with 

parameters   and  , is given by (1). 

Corollary 2: Specify transformation technique by a new random variable 2log
X

Y


 
  

 
 

and let 0  , the distribution of Y  is the chi-square distribution with pdf   2
1

.
2
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
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Corollary 3: Let a new random variable log 1
X

Y
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 and 0  , the distribution 

of Y  belongs to the logistic distribution with pdf  
 2
1

y

y

e
f y

e







, the mean and the 

standard deviation of Y  are 0 and 1, respectively. 

Corollary 4: Where 1  , the MP distribution reduces to the LP distribution as (5). 
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Corollary 5: If 1   and let log
X

Y


 
  

 
 by transformation technique, the distribution of 

Y  is the exponential distribution with pdf      11 yf y e     . 

2.3 Other types 

Various types of the Pareto distribution other than the Pareto density in (1) were 

discussed by Nadarajah [14]. The density in (1) is called the Pareto type I . The cdf of 

Pareto types II , III  and IV  are, respectively, defined as 
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and, 
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Note that, the Pareto types II  also known as a Lomax distribution. The mixture 

distribution for the random variable X , as Definition 1, the pdf of the MP distribution in 

(9) is originated 
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
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By applying  IIG x ,  IIIG x  and  IVG x  in (12), the corresponding types of MP density 

functions can be written, respectively, as 
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3. Mathematical properties of the MP distribution 

 The limit behavior of pdf and close form of the hazard rate for the MP 

distribution are studied in this section. 

 3.1 Limit behavior 

 The limit of pdf for the MP distribution as X    is 0 and the limit as X   is 

obtain by 
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Proof: It is straightforward to show the above from the pdf of the MP distribution in (9) 

the result follows 
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 3.2 Hazard rate 

 By definition, the hazard rate (or failure rate) of a random variable X with pdf 

 f x  and cdf  F x  is 
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 Using (9) and (10), the hazard rate of the MP distribution may be expressed as 
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We display some hazard rate graphs of the MP distribution in Figure 3. It is 

noted that by setting 0   in (13), we have the hazard rate of the Pareto distribution. In 

the like manner, by setting 1  , we have the hazard rate of the LP distribution. More 

generally, when modeling data with monotone hazard rate, right tail, high threshold and 

no mode in the probability density, the original distribution may be an initial choice 

because of its density shapes. However, in countering the phenomenon with non-

monotone failure rate, it does not provide a reasonable parametric fit. 
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Figure 3. The hazard rates of random variable  ~ , 2, 0.8X MP       

for different values of  . 

 

 3.3 The thr  Moment 

 In this section we will consider the thr  moment of random variable 

 ~ , ,X MP    . 

Definition 2: Let  r
PE X  and  r

LPE X  are the thr  moments of original and length 

biased distributions of the random variable X , respectively. If 0 1  , then the thr  

moments of two-component mixture of distribution produced by the mixture between 

 r
PE X  and  r

LPE X  is define by 
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Theorem 2: Let  ~ , ,X MP    , the thr  moment of random variable X  as follows 

 

   
   

2 1
, 1,2,3, ; 1,0 1.

1

r

r
r r

E X r r
r r

   
 

 

         
    

    (14) 



202 Thailand Statistician, 2015; 13(2): 191-207 

 

Proof: If  ~ , ,X MP    , from Definition 2, by replace (3) and (7), then the thr  moment 

of random variable X  is 
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From (14) we can find the mean and variance of the MP distribution, are, 

respectively, follows as 
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and, 
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Moreover, the skewness and kurtosis of the MP distribution can be written, 

respectively, as 

 

   
  

 
   

   
    

32 2 2 2

3
3 3 2

4 3 2 2 3 3 2 2
,

3 4 1 2 1 2 3

           

      

           
       
 

Skewness X W

           (17) 

and, 
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where, 
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From (15), the mean of the MP distribution is defined when 2   and from 

(16), the variance is defined when 3  . The skewness of the MP distribution in (17) is 

defined when 4   and from (18) the kurtosis is defined when 5  . 

 3.3 Moment generating function 

 The mgf corresponding to a random variable X  for the Pareto distribution with 

parameters   and   is only defined for non-positive values of t . When mgf of the MP 

distribution is produced by mixing between  X P
M t  and  X LP

M t ; thus, using (4) and (8), 

we can provide mgf of the MP distribution, is written by 

 

       

            

1

1
, , 1 , , 0.

X X XP LP
M t M t M t

t t t t t t
t

 

 


          



  

 
                

  

 

 

4. Maximum likelihood estimates of the parameters 

 We discuss maximum likelihood estimation for the MP distribution in this 

section. Let   , ,
T     be the vector of the model parameters and let 1, , nX X  be a 

random sample from  X MP � . The log-likelihood function for   reduces to 
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 The components corresponding to the model parameters are calculated by 

differentiating in (19) and setting the results equal to zero, we obtain by 
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and, 
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 Since x  , the maximum likelihood estimate of   is the first-order statistic 

 1x . The maximum likelihood estimates of the parameters   and  , which are solved 

iteratively (20) and (21). We use nlm function in statistical package of R program [15]. 

 

5. Application of the MP distribution 

 We provide an application of the MP distribution and compare the results of the 

fits for a Weibull, Pareto and LP distributions. We shall consider the data set in the field 

of insurance which has received extensive attention in the actuarial literature. This data 

set is one among the twenty sets of Norwegian fire claims (in millions of Norwegian 

krones) was presented in Fernández [16]. The results of parameter estimates for 

Norwegian fire claim data is shown in Table 1 while the density function is shown in 

Figure 4. In application, since the values of the K-S statistics are smaller for the MP 

distribution compared to those values of the Pareto, LP and 3-parameter Weibull 

distributions. Due to the fact that the MP distribution has flexibility in accommodating 

because parameter   has plasticity interval 0-1. Note that, the 3-parameter Weibull 

distribution with pdf 
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Table 1. Parameter estimates and K-S statistics for Norwegian fire claim data. 

Distribution Pareto LP MP Weibull 

Parameter 

estimates 

̂ =1.2175 ̂ =2.2175 ̂ =2.1988 ̂ =0.5792 

̂ =0.5 ̂ =0.5 ̂ =0.5 ̂ =0.5 

   ̂ =0.9661 ̂ =0.8276 

K-S statistics 0.0505 0.0505 0.0484 0.0983 

p-value 0.862 0.862 0.894 0.128 

AIC 268.487 268.487 270.479 284.586 

 

 

Figure 4. The density function of Norwegian fire claim data. 

 

6. Conclusion 

 In this work, we introduced a new two-component mixture distribution, so-called 

a mixture Pareto distribution. It has some special sub-models, such as the Pareto, 

exponential, chi-square, logistic and the mixture Pareto types II , III , IV  distributions. 
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We have derived various mathematical properties of the mixture Pareto distribution, 

including limit behavior, hazard rate and thr  moment. We demonstrate an application to 

Norwegian fire claim data by maximum likelihood estimation. An application to a real 

data set shows that the fit of the mixture Pareto distribution is best fit to the data with 

highest p-value. The mixture Pareto distribution provides a rather general and flexible 

framework for statistical analysis. We hope that the mixture Pareto distribution may 

attract wider application in lifetime data. The future research may consider in parameter 

estimation using Bayesian approach. In addition, a new mixture model between the beta 

and mixture Pareto distributions will be developed. 
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