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Abstract

This paper introduces a new mixture Pareto distribution generated from logit of
the weighted two-component mixture distribution which is mixed between a Pareto and a
length biased Pareto distributions. Special sub-models include the Pareto, exponential,
chi-square and logistic distributions. We contain derivation of the mixture Pareto types

I, I, IV and provide various mathematical properties including its limit behavior,

hazard rate and r"™ moment. Discussion of the estimation procedure is based on
maximum likelihood. Also, we display an application to Norwegian fire claim data, it
shows that the mixture Pareto distribution give a better fit than other important lifetime
models; a Weibull, the Pareto and the length biased Pareto distributions. In conclusion,
the mixture Pareto distribution provides a rather general and flexible framework for the

statistical lifetime data analysis.

Keywords: length biased, two-component mixture, mixture Pareto distribution, maximum

likelihood estimation, lifetime data, hazard rate.
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1. Introduction

The family of a Pareto distribution is well known in the literature for its capability in
modeling the heavy-tailed data such as income data, exceedances of river flood data and
fire claim data. The Pareto distribution is very versatile and a variety of uncertainties can be
usefully modelled by it [1]. The Pareto distribution arises as tractable “life time” model in
actuarial science, economics, finance, life testing, survival analysis and engineering. It is
used in the frequency modeling of data with a right tail and no mode in the probability

density. A random variable X is said to have the Pareto distribution, denoted by

X ~ Pareto(a,ﬁ) , its probability density function (pdf) is

—(a+1)
gp(x)=%[%j . x2fa>0,5>0, 1)

and the cumulative distribution function (cdf) is

G (X) = 1—(ija. (2)

For a thorough discussion on various properties and applications and different
forms of the Pareto distribution [2-4], some mathematical properties such as the r"
moment and moment generating function (mgf) of the Pareto distribution are,
respectively, given by

Ep(x'):“ﬁrr, r=12,3,..;a>r, 3)
o
and,

M (1), = (A T (e pt). 1< @

where, F(a,b)zjya‘le’ydy denotes an incomplete gamma function.
b
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Patil and Rao [5] presented a length biased Pareto (LP) distribution by concept
of a weighted distribution. If X is Pareto random variable with pdf (1), then the pdf for the

length biased distribution of random variable X is

9up(X) = (“_1)[1]a, x> fia>1p>0. )

By (5), it is not difficult to show that the cdf of the LP distribution is

)
G (X) = 1—[%} . (6)

From (5), we can supply some mathematical properties for instance the r" moment and

mgf of the LP distribution are, respectively,

ELp(x'):%, r=123..a>r+l, @)
o
and,

My (1), = (@-1)(-pt)“ ' T(~(a +1),-pt),  t<o. ®)

Recently, attempts have been made to define new families of probability
distributions that extend well-known families of distributions and at the same time provide
great flexibility in modeling data in practice. One such class of distributions generated
from the two-component mixture model of random variable which extends the original
distribution with the length biased distribution provide powerful and popular tools for
generating flexible distributions with attractive statistical and probabilistic properties, see
McLachlan and Peel [6]. The two-component mixture model method is employed in
many vocations. For example, Hall and Zhou [7] proposed nonparametric estimation for
a mixture of two distributions in a multivariate mixture model. In addition, estimates of the
mixing proportions, locations and variances for the components of a finite univariate

mixture model were introduced by Cruz-Medina and Hettmansperger [8]. By assumed
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the assumptions of symmetric, different locations and parametric model are imposed on
the components.

Furthermore, two real location parameters and the mixing proportion were
presented by Bordes et al. [9]. Moreover, the problem of parameter estimation in finite
mixtures is proposed by Hunter et al. [10], when comparing their method with the method
of maximum likelihood using normal components, their method produces higher standard
error estimates in the case where the components are truly normal. Their method
dramatically outperforms the normal method when the components are heavy-tailed.
Additionally, Leiva et al. [11] introduced a model that extends the inverse Gaussian
distribution, their model is obtained when a parameter is incorporated into the logarithmic
inverse Gaussian distribution producing great flexibility for fitting non-negative data.
Moreover, several aspects of the mixture inverse Gaussian distributions are useful for
modeling positive data that the empirical fit of the mixture inverse Gaussian distributions to
the data is very good, introduced by Balakrishnan et al. [12]. Recently, Vandekerkhove
[13] introduced the mixture of regression models which are generalization of the semi-
parametric two-component mixture model.

In this paper, we propose a mixture Pareto (MP) distribution by method of the
two-component mixture distribution. The main reasons for introducing it since its
flexibility in accommodating mixture between original and length biased distributions. The
MP distribution is an important model that can be used in a variety of problems in
modeling lifetime data. The reminder of this paper is organized as follows: In Section 2,
we approximate forms of the pdf and cdf for the MP distribution and provide special sub-
models of it. The other types of the MP distribution are containing in this Section. Section
3, mathematical properties; limit behavior, hazard rate, the r" moment and generating
function are derived. Expressions for the mean, variance, skewness and kurtosis are
discussed in Section 3. Moreover, in Section 4, we discuss estimation by the maximum
likelihood method. An application using a real data set is presented in Section 5. Finally,

in Section 6, we provide some conclusions, followed by the concluding remarks.

2. A new mixture Pareto distribution
In this section, we propose a new MP distribution produce widely flexible
models with good statistical. Its some special sub-models and the other types are display

in this section.
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2.1 The probability density function and cumulative distribution function

Definition 1: Specifically, let g,(x) and g,,(x) are the pdf and length biased pdf of the

random variable X , respectively. If @ is mixing parameter, 0<w <1, then the weighted
two-component mixture distribution produced by the mixture between g,(x) and g,, ()

is defined as
f(x):(l_w)gP(X)+a)ng(X)y x> 0.

Theorem 1: Let X ~ MP(a,ﬂ,a)), then the pdf and cdf of random variable X , are,

respectively,

f(x)_i[i]w) (1_w)a+m X2 fa>1f>00<w<] )
AV N .

and,

eyl

Proof: We then say that a random variable X follows the MP distribution with

parameters «, £ and o, if its pdf is obtain by substitute (1) and (5) in Definition 1, can

be obtained as
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Let F(x) denote the cdf of a random variable X . The cdf for a generalized

class of distribution, as defined by Definition 1, is generated by applying the cdf to the
MP random variable to obtain

F(x)=(1-0)Gp(x)+ @G (x) (11

hence, obtain by substitute (2) and (6) in (11), can be written as

o3 1
ool weef3)
ol ) el

The MP distribution contains a large number of distributions. In Figures 1 and 2,
we present the pdf and cdf of it.
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Figure 1. The pdf of the MP distribution, for different values of «
where =2 and ©=0.7.
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Figure 2. The cdf of the MP distribution, for different values of «
where =2 and w=04.

2.2 Special sub-models

We consider some special sub-models of the MP distribution, X ~ MP(a,ﬂ,w) ,

in the following five corollaries.

Corollary 1: Where « =0, the MP distribution reduces to the Pareto distribution with

J

parameters « and £, is given by (1).

Corollary 2: Specify transformation technique by a new random variable Y = 2Iog(

= | <

|
oL

and let @ =0, the distribution of Y is the chi-square distribution with pdf f (y) =—e

N |-

X a
Corollary 3: Let a new random variable Y =—log M;J —l] and o =0, the distribution

-y
of Y belongs to the logistic distribution with pdf f(y) = e—z, the mean and the
(1+e7)
standard deviation of Y are 0 and 1, respectively.

Corollary 4: Where o =1, the MP distribution reduces to the LP distribution as (5).
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Corollary 5: If =1 and let Y =log [%j by transformation technique, the distribution of

Y is the exponential distribution with pdf f(y) =(a —l)e’('H)y .

2.3 Other types

Various types of the Pareto distribution other than the Pareto density in (1) were
discussed by Nadarajah [14]. The density in (1) is called the Pareto type |. The cdf of

Pareto types Il , 1lIl and IV are, respectively, defined as

G, (x):l—[1+%j , x>0;a, >0,

1—1

Gy (x)=1- 1+[X_7“T . x> B0,

and,

P
v

Gy (x)=1- 1+(X;f’]“ L x> ga,fA>0,

Note that, the Pareto types Il also known as a Lomax distribution. The mixture
distribution for the random variable X , as Definition 1, the pdf of the MP distribution in

(9) is originated

f(x):{l—a)[l— E(XX)}g(x). (12)

By applying G, (x), G,,(x) and G, (x) in (12), the corresponding types of MP density

functions can be written, respectively, as
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and,

—a—1

f (X):%(X_Tﬂjil 1{%7@1 {1_“{1_ ﬁF(a—XZ/E;Z(H/i)}}

3. Mathematical properties of the MP distribution

The limit behavior of pdf and close form of the hazard rate for the MP
distribution are studied in this section.

3.1 Limit behavior

The limit of pdf for the MP distribution as X — « is 0 and the limitas X — g is

obtain by
ﬁ, when o =0,
s
lim f (x)=12=%,  when0<w<l,
x=p IB
a—_l, when o =1.

Proof: It is straightforward to show the above from the pdf of the MP distribution in (9)

the result follows




200 Thailand Statistician, 2015; 13(2): 191-207

3.2 Hazard rate

By definition, the hazard rate (or failure rate) of a random variable X with pdf

f(x) and cdf F(x) is

_ aff+o(ax—x-ap)

ﬁx+a)(x2 —ﬂx) 13)

h(x)

We display some hazard rate graphs of the MP distribution in Figure 3. It is
noted that by setting @ =0 in (13), we have the hazard rate of the Pareto distribution. In
the like manner, by setting @=1, we have the hazard rate of the LP distribution. More
generally, when modeling data with monotone hazard rate, right tail, high threshold and
no mode in the probability density, the original distribution may be an initial choice
because of its density shapes. However, in countering the phenomenon with non-

monotone failure rate, it does not provide a reasonable parametric fit.
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Figure 3. The hazard rates of random variable X ~MP (a8 =2,0=0.8)

for different values of « .

3.3 The r" Moment

In this section we will consider the r"™ moment of random variable

X ~MP(a,B,0).
Definition 2: Let E,(X") and E,(X') are the r" moments of original and length

biased distributions of the random variable X , respectively. If 0<@ <1, then the r"

moments of two-component mixture of distribution produced by the mixture between
E»(X") and E,(X") is define by
E(X")=(1-0)E (X")+@E,(X"),  r=123..;x>0.

Theorem 2: Let X ~ MP(a,ﬂ,aJ) , the r'"™ moment of random variable X as follows

. 7ﬂr[a2—(r+1)a+rwJ
E(X )_ (afr)[af(r+1)] ’

r=123,... ;a>r+1,0<w<1l. (14)
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Proof: If X ~MP(a,B,®), from Definition 2, by replace (3) and (7), then the r" moment

of random variable X is

ﬂr[az —(r+1)a+ ra)]
(a—r)[a—(r +1)J

From (14) we can find the mean and variance of the MP distribution, are,

respectively, follows as

ﬂ(az—2a+a))
)G o
and,
(X )= 52 (a2—3a+2a))_ (612—205+a))2
v (x)_ﬁ{(a—Z)(a—B) (a—l)z(a—Z)Z} (16)

Moreover, the skewness and kurtosis of the MP distribution can be written,

respectively, as

Skewness(x):w_{(o‘2 _40‘+3a’) . 2(012 —201+60)3 ~ 3(0t2 —3a+2a))(a2 —2a+m)

@3 (@1(@2 (aDa 2 (a9

(17)
and,

(az —5a+4a)) 3(0{2 —2a+a))4 4(0{2 —4a+3w)(a2 20+ a))

(a—4)(a-5) (a-1) (a-2)  (a-Y)(a-2)(a-3)(a-4)

Kurtosis(X ) =W~
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6(0:2 —3a + 2@)(0{2 —2a+ a))z

(a=1) (a-2)"(a-3)

: (18)

where, W = (o ~3a+20) B (o —20:+0))2

(a-2)(a-3) (a —1)2(a —2)2 '

From (15), the mean of the MP distribution is defined when « >2 and from
(16), the variance is defined when « > 3. The skewness of the MP distribution in (17) is
defined when « >4 and from (18) the kurtosis is defined when « >5.

3.3 Moment generating function

The mgf corresponding to a random variable X for the Pareto distribution with
parameters « and g is only defined for non-positive values of t . When mgf of the MP

distribution is produced by mixing between M, (t), and M, (t) ,; thus, using (4) and (8),

we can provide mgf of the MP distribution, is written by

My (t)=(1-@)M, (t), + @M (1) ,

= a(—ﬂt)a F(—a,—ﬂt) - a)(—ﬂt)a aF(—a,—,Bt) +

4. Maximum likelihood estimates of the parameters

We discuss maximum likelihood estimation for the MP distribution in this

section. Let O = (a,ﬂ,a))T be the vector of the model parameters and let X,,...,X, be a

random sample from X [ MP(G)) . The log-likelihood function for ® reduces to
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The components corresponding to the model parameters are calculated by

differentiating in (19) and setting the results equal to zero, we obtain by

ologL(®) o

P 2 {a _—/3 PV } Zlog [—'j (20)

and,

alogL() Z{ ap } 1)

~ ax —% —oaf

Since x> g, the maximum likelihood estimate of g is the first-order statistic

Xy - The maximum likelihood estimates of the parameters « and o , which are solved

iteratively (20) and (21). We use nlm function in statistical package of R program [15].

5. Application of the MP distribution

We provide an application of the MP distribution and compare the results of the
fits for a Weibull, Pareto and LP distributions. We shall consider the data set in the field
of insurance which has received extensive attention in the actuarial literature. This data
set is one among the twenty sets of Norwegian fire claims (in millions of Norwegian
krones) was presented in Fernandez [16]. The results of parameter estimates for
Norwegian fire claim data is shown in Table 1 while the density function is shown in
Figure 4. In application, since the values of the K-S statistics are smaller for the MP
distribution compared to those values of the Pareto, LP and 3-parameter Weibull
distributions. Due to the fact that the MP distribution has flexibility in accommodating
because parameter » has plasticity interval 0-1. Note that, the 3-parameter Weibull

distribution with pdf

o) =222 e
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Table 1. Parameter estimates and K-S statistics for Norwegian fire claim data.
Distribution Pareto LP MP Weibull
Parameter a=1.2175 a=2.2175 «=2.1988 a =0.5792
estimates £=0.5 B=0.5 =05 B=05

»=0.9661  (=0.8276
K-S statistics 0.0505 0.0505 0.0484 0.0983
p-value 0.862 0.862 0.894 0.128
AIC 268.487 268.487 270.479 284.586
&
P ] — MP
----- Pareto, LBP
"""" Weibull
o
c
z o
c =
8 (=]
8 |
o
g8 |
o
I I
15 20 25

Empirical

Figure 4. The density function of Norwegian fire claim data.

6. Conclusion
In this work, we introduced a new two-component mixture distribution, so-called
a mixture Pareto distribution. It has some special sub-models, such as the Pareto,

exponential, chi-square, logistic and the mixture Pareto types Il , Ill , IV distributions.
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We have derived various mathematical properties of the mixture Pareto distribution,
including limit behavior, hazard rate and r™ moment. We demonstrate an application to
Norwegian fire claim data by maximum likelihood estimation. An application to a real
data set shows that the fit of the mixture Pareto distribution is best fit to the data with
highest p-value. The mixture Pareto distribution provides a rather general and flexible
framework for statistical analysis. We hope that the mixture Pareto distribution may
attract wider application in lifetime data. The future research may consider in parameter
estimation using Bayesian approach. In addition, a new mixture model between the beta

and mixture Pareto distributions will be developed.
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