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Abstract

The aim of this article is to propose the method for choosing the value of the L2
penalty parameter, 1,, of elastic net linear regression model using Bayesian analysis. The
value of 1, is specified through the behavior of Bayes factor. We study the performance
of elastic net estimators where the value of 1, is based on Bayes factor and the value of
A, is chosen by 10-fold cross-validation method. Simulation studies and real data
examples show that the elastic net estimator where the value of 4, is based on Bayes

factor performs better in prediction accuracy.
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1. Introduction

The elastic net proposed by Zou and Hastie [1] is a penalized regression method
for variable selection and coefficient estimation. The elastic net simultaneously performs
automatic variable selection and continuous shrinkage, it can select groups of correlated
variables and overcomes the difficulty when the number of predictor variables (p) is greater
than the number of observation (n). The elastic net is based on a combination of the ridge

[2, 3] and the lasso [4] penalties. Consider a linear regression model
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y=Xp+e, (1)

where y is an n X 1 vector of response variable, X is an n x p matrix of predictor variables,
B is an p x 1 vector of parameter of regression coefficients, € is an n x 1 vector of random
errors, p is the number of predictors, and n is the number of observations. The errors are
assumed to be independent identically normally distributed random variable with mean 0
and finite variance o2. Without loss of generality, we assume the response is centered and
the predictors are standardized, so the intercept is not included in the regression function.
The elastic net is defined in two stages. Assuming that the response is centered and the

predictors are standardized, naive elastic net estimator is first found via

ENa'l'Ve elasticnet — aI'g minB[”y - Xﬁ”% +2J(B)] (2)

with the elastic net penalty J(B) = «allBll?+ (1 —a)lBll; , A=21;+ 1, ,and let a =
Ay /(A4 + A;). The elastic net procedure can be viewed as a penalized least squares
method. The elastic net penalty J(B) = a||Bll3 + (1 — a)||Bll, is a convex combination of
the lasso and ridge penalties. When a = 1, the naive elastic net becomes simple ridge
regression. If « = 0 then 1, = 0, the naive elastic net becomes the lasso. The elastic net

has the Bayesian connection. The elastic net penalty corresponds to a new prior given by

Paa(B) = c(A a)exp{=AlalIBll3 + (1 — ) lIBll1 ]}, @)

which is a compromise between the Gaussian and Laplacian priors. Zou and Hastie [1]
pointed out that the elastic net estimator can be viewed as the Bayes posterior mode of
under the prior in (3). The final elastic net estimator is taken to be a rescaled version of

the naive estimator,

ﬁelastic net — (1 + AZ)ﬁNaTve elasticnet - (4)

The scaling was introduced to reduce perceived overshrinkage of the naive estimator [1].

Hence, the elastic net estimator is defined as follows:

Belasticnet = (1 + Az){arg ming[|ly — XBlIZ + A, 1IBII3 + 11”3”1]}: (5)
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where 2, > 0 and 4, > 0 are the penalty parameters, ||Bll; = X7_,|B;| is the L1 norm of B,
and ||ll3 = Zleﬁ]? is the L2 norm of B. The L1 part of the elastic net performs automatic

variable selection, while the L2 part stabilizes the solution parts and, hence, improves the
prediction.

The penalty parameters (4, and 4,) control the amount of shrinkage imposed on
the coefficients, where some weak effects are forced to be exactly zero if the shrinkage
level is large enough. Hence, the penalty parameters (1, and A,) can be named the
shrinkage parameters. If the value of 4, and 1, are too small, then no shrinkage will be
performed. If the value of A; and 4, are too high, then all coefficients will be shrunk to zero.
Hence, the penalty parameters (1, and 4,) are important for the elastic net estimator. To
solve the elastic net estimator, the researchers usually search for the optimal values of 1,
and A,. K-fold cross-validation method is commonly used for choosing the values of 4,
and 4, [1]. To avoid intensive computation, a grid of values for 4, is first specified. Zou and
Hastie [1] suggested to pick a relatively small grid value of 1,, They used (0, 0.01, 0.1, 1,
10, 100, 1000). For each A,, a 10-fold cross-validation is then used to choose 4,. The
chosen A, is the one giving the smallest cross-validation error.

The elastic net has Bayesian interpretation as shown in (3), so many researchers
adopted the elastic net in the Bayesian frameworks over the past years such as Bornn,
Gottardo and Doucet [5], Kyung, Gill, Ghosh and Casella [6], Li and Lin [7], and Hans [8].
They did not propose the method for choosing the penalty parameters directly. Kyung, Gill,
Ghosh and Casella [6] and Li and Lin [7] chose the penalty parameters 1, and 1, via Gibbs
sampling approach. Bornn, Gottardo, and Doucet [5] and Hans [8] used cross-validation
method to choose the values of penalty parameters 1; and A,.

For elastic net method, there are two penalty parameters (1; and 1,). In this
article, we concentrate on A,. The penalty parameter A, is the penalty parameter of the L2
part which stabilizes the solution part of the elastic net estimator. The value of 4, is
suggested to specify in the first step of the elastic net procedure [1]. Hence, the value of
penalty parameter 1, plays an important role for elastic net method.

The objective of this article is to propose the method for choosing the value of
the L2 penalty parameter, 1,, of elastic net linear regression model using Bayesian
analysis. The value of 1, is chosen by using its effect on the posterior model probabilities
and the behavior of Bayes factor [9]. Hence, the value of 1, is specified through Bayes
factor. The Bayes factor proposed by Kass and Raftery [9] is a quantity for comparing
models and for testing hypotheses in the Bayesian framework. Bayes factor has played a

major role in assessing the goodness of fit of the competing models [10]. The advantages
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of the Bayes factor can see in Kass and Raftery [9], Raftery [11], and Ntzoufras [12]. The
method proposed in this article is developed from Lykou and Ntzoufras [13] which
proposed Bayesian lasso variable selection and the specification of the value of the
shrinkage parameter 4, of the lasso [4] through Bayes factor. The prior distributions for g
and o2 used in this article differ from the prior distribution used in [13]. In this research, we
limit our attention to full rank model. This article is organized as follows. Section 2
describes the process for choosing the value of the penalty parameter 1, based on Bayes
factor, 1,BF. Section 3 presents some simulation data to study the performance of naive
elastic net estimators where the value of 1, is chosen by 1,BF method and the value of 1,
is chosen by 10-fold cross-validation method. Section 4 illustrates the performance of the

1,BF on some real data examples. Conclusion and discussion are provided in Section 5.

2. Process for choosing the value of the penalty parameter 4, based on Bayes factor
(2,BF)

In this process, the response and the predictor variables are transformed by the
correlation transformation. The method of 1, BF is the following.
Step 1: Inclusion parameter

We begin by indexing each candidate model with one binary vector, y =
(77 ...,y,,)T. An element y; takes value 0 or 1 depending on whether or not the jth
predictor is excluded from the model. Hence, there are 2P possible models Mj, ..., My

where M, corresponds to the yth subset of X;, ..., X,,. Each submodel is of the form
M,y =X,B, + €, (6)

where X, is an n X g, design matrix whose columns correspond to the yth subset of
X1, ..,Xp, By is @ q, X 1 vector of regression coefficients for the yth subset, ¢, = y"1

denotes the size of the yth subset, and £ ~N,, (0, o21). The linear regression model for each
submodel of form (6) is

Y|Byt O-erNNn(XyBy'O—ZI)- (7)
Step 2: Prior distribution for B, 62, and y

In the process for choosing the value of 1,, we use the hierarchical prior models

in the form of submodel (7) as follows:
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Prior distribution for g

For elastic net estimator, the penalty parameter 1, is the L2 part which is ridge
penalty when 1, = 0. Suppose y ~ N,,(XB, %I) and each parameter p; is distributed as
N(0,72), independently of one another, with 72 and 2 assumed known. Then the ridge
estimator is the mode of the posterior distribution of g with 1 = ¢2/1% [14]. Hence, we

assume
2
Bjlo? ~ N(O,Z—z) forj=1,..,p.
The prior distribution of g in matrix form is
2. o
Blo? ~ Ny (0, ra D. @)

Prior distribution for ¢?
Assume ¢? has inverse gamma prior distribution [8, 15-17]. The inverse gamma
prior for o2 would maintain conjugacy which gives the posterior distribution in the closed

form.

0? ~ inverse gamma sz—f) 9)

(which is equivalent to v&/a? ~x2). In this research, we choose v = 3 as suggested by
Chipman, George and McCulloch [15] and choose & = S%;,, (the traditional unbiased
estimator of o2 based on saturated model) [16].
Prior distribution for y

For the specification of the model space prior, most Bayesian variable selection

implementations have used independence priors of the form
p(y) = I, w/” (1 —wp)' . (10)

Under this prior, each X; enters the model independently of the other coefficients, with
probability p(y; = 1) = 1 — p(y; = 0) = w;. In this research, we set w; = 1/2 which yields
the uniform prior.

Hence, the hierarchical prior models are summarized as follows:
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Y|Byr Uth ~ Nn(XyByr O-zl)’

By|az,y~1vqy(o,j—21), (11)

20ay _ 2 . v v¢
0°ly = 0 ~ inverse gamma 23 )

2
p(y) = (1/2)".

Step 3: Posterior model probability of y given y

Using the hierarchical prior models described in Step 2, the posterior model

probability of y given y, f(yly), is
faly) = fyivp(). (12)

Step 4: Bayes factor

Bayes factor proposed by Kass and Raftery [9] is the posterior odds of one
hypothesis when the prior probabilities of the two hypotheses are equal. For the Bayes
factor used in this research, we define the hypotheses associated with the Bayes factor
as

H,: Reduced model (Mz) versus H;: Full model (M),
where My (Reduced model) is the linear regression model with the predictors X,, and M
(Full model) is the linear regression model with the predictors X, of the reduced model and
additional predictor X;.

Suppose X, be the predictor variables of the reduced model, so
Mp:y=X,B,+€, and Mpy=X,B,+X;B;+¢.
The posterior odds of model M versus model My, is given by

_ fMely) _ ryIMg) o rome)
POwo = 5Maly) = 7Me) X Foim) - (13)

The Bayes factor for comparing the evidence of model M versus model My, is

 FyIMp)
BF10 = FyM,) - (14)
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P
In this research, we use the uniform prior p(y) = (%) . Thus, the prior model

probabilities f(My) and f(My) are equal for all competing models. Hence,

_ I(Mrly)
BF10 =50 ly) - o)

If the BF,, is greater than one, we choose the hypothesis H;. Otherwise, we

choose Hy. In this research, we use Bayes factor interpretation [9] as follows:

Table 1. Bayes factor interpretation.

BF,, Evidence against H,
1< BF,<3 Negligible
3 < BF;, <20 Positive
20 < BF;y < 150 Strong
BF;, > 150 Very strong

Step 5: Specification of the value of the penalty parameter 1, based on Bayes factor
Step 5.1: For all pairs of hypotheses, we compute the Bayes factor for multiple linear

regression model

f(y|M
BF1o(Mmuttipte modet) = % (16)

where the posterior probabilities f(y|Mg) and f(y|My) are

qM_R _% _(m+v)
FOIMR) = (1) % |XEy Xor, + Aal,, | Z(vE+55,)7 7, (17)
where
-1
St =YY = Y Xt [ X5 Xotp + Lalgy, | XEy. (18)
qM_F _% _(n+v)
fOIME) = A2 |XhXan, + Aol | Z(vE+5E,.)7 7, (19)
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where

-1
Sie = V'Y = Y Xurg [X5 Xy + oMy, | XEy. (20)

To find the posterior probabilities f(y|Mr) and f(y|My), the shrinkage parameter
A, is replaced by 6, and 8y,,, respectively. Thus, the posterior probabilities f(y|Mg) and

f(yIMg) are

Mg - _mtv)
FOIMR) = (Baa) * Kb Xorg + Ouaglay, | *(vE+55,)7 = (21)
where
-1
St =YY =V Xty [XGXat + Ol | Xy (22)
W -1 N0}
FOIME) = (6,)  [XE X, + Oua, Ny, | *(vE+5E,)7 2, (23)
where
-1
SEe =YY = Y g [XE X + Ol | Xhr,y. (24)

The shrinkage parameter 1, = 0. Hence, 6, = 0 and 6, = 0. In this research,
we choose the value of 6,, by the method proposed by Hoerl, Kennard, and Baldwin [18]
(cited by [19]). The value of 6, is

g, = — Sk 25
M [ELS(M)]T[BLS(M)] ( )

where q,, is the number of parameters in the model M (not counting the intercept term),
SZ is the residual mean square in the analysis of variance table obtained from the standard
least squared fit of the model M, and ELS(M) is the least squared estimator of the parameter

in model M.
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Step 5.2: Specification of the value of the penalty parameter A, based on Bayes
factor, A,BF, for elastic net regression model.

Step 5.2.1: If the Bayes factor BFiouitipie modery > 1, the model My is a
significance model as defined by Bayes factor and 6,,, associated with this model is
considered to be the choice of the value of 1,. There are many models M; in the set
BF10(muitipie modery > 1, SO there are many 6,/ associated with these models. The value
6y, of the model My which has the highest posterior model probability f(y|Mr) (the
posterior model probability using the prior in (11)) is selected to be the value of 4,
associated with Bayes factor and this 1, is called 1,BF.

Step 5.2.2: For checking the validity of 1,BF to fit the elastic net model, the Bayes
factor for elastic net linear regression model, BF.;4stic net» 1S computed. (The derivation of
BF ¢astic net 1S In Appendix.) The appropriate value of 1,BF should give the Bayes factor

BFelastic net > 1.

3. Simulation Study

In this section, we present simulations to study the performance of the naive
elastic net estimator. We considered two methods for choosing the value of the penalty
parameter A,: the value of 1, is based on Bayes factor (1,BF), and the value of 4, is
chosen by the 10-fold cross-validation method (4,CV). The elastic net method is
implemented using lasso command of MATLAB2012a software. The 10-fold cross-
validation (CV) method for tuning the penalty parameters (1; and A,) is CV random
partition using MATLAB2012a software. The value of A estimated by 10-fold CV method
is the 1 with minimum mean prediction squared error as calculated by CV. For naive elastic
net estimator, the relationship between the shrinkage parameters is a = 1,/(1; + 1,)
where a € (0,1). Thus, we study the performance of the elastic net estimator with variety
values of a. The decision criterions are the following.

1. The prediction accuracy is measured by the prediction error (PE) defined as
E(y — )% where § = XB.

2. For each estimator B, its estimation accuracy is measured by the mean square

error (MSE (B)) defined as E [(B - B)T(B - B)]
3. The variable selection performance is gauged by (C,IC), where C is the
number of zero coefficients that are correctly estimated by zero and IC is the number of

nonzero coefficients that are incorrectly estimated by zero.
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For each value of a, the average of PE, MSE(B), C and IC are computed based
on 100 datasets of each simulation design. The standard errors of PE and MSE(B) are
estimated using the bootstrap with B = 500 resampling from 100 PE’s and 100 MSE(B)’s,
respectively.

3.1 Simulation study |

We generate 100 datasets using the simulation design proposed by Lykou and
Ntzoufras [13], which consists of 15 predictor variables of 50 observations each. The first
10 predictors follow independent standard normal distribution and the last 5 predictors are

generated as follows,
(Xqq5---X15) = (Xq5..0,X5) X (0.3,0.5,0.7,09,1.1D)T x (1,1,1,1,1) + E ,

where E consists of 5 independent N(0,1) random variables. The response variable is

generated as
y =2Xq -X5 + 1.5X7 + X471 + 0.5x43 + €,

where € ~ N(0,2.52). This set of simulated data comprises of predictor variables that are
correlated with each other. The simulation method is repeated 100 times. This dataset has
different correlations between predictor variables. The last five predictors are highly
correlated, whereas, there are small to moderate correlations between x;,j = 1, ...,5 and
X115-+,X15 -

Using the process for choosing the value of the penalty parameter 1, based on
Bayes factor (1,BF) described in Section 2, the value of 1,BF is computed for 100
simulation datasets. We correct the validity of 1,BF by using Bayes factor BF,;4stic net- The
BF iqsticnet 1S computed using variety value of a (Table 2). For all values of «, the
simulation result reveals that the value 1,BF gives BF,;,stic net > 1, Whereas BF,stic net >
3 is derived using the small value of a. Hence, the appropriate value of 1,BF is the value
6y, of the submodel M which has highest posterior model probability f(y|Mg), (the
posterior model probability using the prior in (11)).

Table 3 shows result of naive elastic net estimators for simulation study | where
the penalty parameters A, are chosen by 4,CV and A,BF. Using the value of 1,BF and «
is close to one, the naive elastic net estimator has the prediction performance better than
the naive elastic net estimator where the value of 4, is chosen by 1,CV. Using 4,BF, the

prediction error of the naive elastic net estimator tends to be large when « is close to zero.



Kanyalin Jiratchayut 253

At some value of «, the naive elastic net estimator where the value of 1, is chosen by
1,BF has MSE (B) less than the naive elastic net estimator where the value of 1, is chosen
by 1,CV. At some value of «, the naive elastic net estimator where the value of A, is
chosen by 4,BF performs both prediction performance and estimation accuracy better
than the naive elastic net estimator where the value of 1, is chosen by 1,CV. The variable
selection performance is gauged by (C, IC), the naive elastic net estimator where the value
of 1, is chosen by 1,CV has the variable selection performance better than the naive
elastic net estimator where the value of 1, is chosen by 1,BF. Nevertheless, the naive
elastic net estimator where the value of 1, is chosen by 1,BF has the variable selection
performance, C is close to true value of C, better than the naive elastic net estimator where

the value of 1, is chosen by 1,CV when «a is small.

Table 2. Summary BF ;j4stic nee fOr simulation study |.

a 1< BFelustic net< 3 3< BFelastic net< 20 BFelastic net >20

0.9 100 datasets - -

0.8 100 datasets - -

0.7 100 datasets - -

0.6 100 datasets - -

0.5 100 datasets - -

0.4 100 datasets - -

0.3 100 datasets - -

0.2 100 datasets - -

0.1 100 datasets - -

0.05 100 datasets 16 datasets -

0.04 100 datasets 51 datasets 1 dataset
0.03 100 datasets 94 datasets 4 datasets
0.02 100 datasets 98 datasets 38 datasets
0.01 100 datasets 98 datasets 92 datasets
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Table 3. Model selection and fitting results of the naive elastic net estimators for simulation

study | where the value of penalty parameters 1, are chosen by 1,CV and 1,BF .

Method for choosing the value of the shrinkage parameter 1,

a 1,CV 2,BF

PE MSE(B) c Ic PE MSE(B) c IC
0.9 | 4.7364(0.1110) | 0.1739(0.0187) | 0.53 | 0.07 | 4.2591(0.0925) | 0.1858 (0.0089) [ 0.13 | 0.04
0.8 | 4.7545(0.1171) | 0.1735(0.0248) | 1.22 | 0.13 | 4.2749(0.0944) | 0.1780 (0.0086) | 0.32 | 0.05
0.7 | 4.7669 (0.1112) | 0.1550(0.0122) | 1.81 | 0.23 | 4.2968 (0.0973) | 0.1696 (0.0084) | 0.55 | 0.07
0.6 | 4.8117(0.1217) | 0.1819(0.0204) | 2.47 | 0.29 | 4.3275(0.0995) | 0.1609 (0.0080) [ 0.84 | 0.09
0.5 | 4.8143(0.1263) | 0.1788(0.0260) | 2.92 | 0.37 | 4.3742(0.1029) | 0.1514 (0.0075) | 1.25 | 0.11
0.4 | 4.8442(0.1268) | 0.1762(0.0202) | 3.49 | 0.37 | 4.4501(0.1092) | 0.1417 (0.0067) | 1.81 | 0.19
0.3 | 4.8483(0.1300) | 0.1723(0.0223) | 4.04 | 0.50 | 4.5850(0.1028) | 0.1335 (0.0063) | 2.69 | 0.28
0.2 | 4.9220(0.1100) | 0.1636 (0.0210) | 4.70 | 0.58 | 4.8654 (0.1217) | 0.1320 (0.0061) | 4.02 | 0.43
0.1 | 4.8910(0.1256) | 0.1733(0.0268) | 5.00 | 0.64 | 5.7001(0.1472) | 0.1525 (0.0067) | 6.14 | 0.92
0.09 | 4.9151(0.1247) | 0.1718 (0.0254) | 5.12 | 0.68 | 5.8816 (0.1560) | 0.1585 (0.0074) | 6.55 | 1.02
0.08 | 4.8919(0.1213) | 0.1720(0.0263) | 5.02 | 0.71 | 6.1082(0.1674) | 0.1662 (0.0079) | 6.94 | 1.13
0.07 | 4.8459(0.1186) | 0.1581(0.0152) | 4.93 | 0.69 | 6.4014 (0.1720) | 0.1760 (0.0079) | 7.30 | 1.21
0.06 | 4.8836(0.1288) | 0.1888(0.0278) | 4.95 | 0.69 | 6.7972(0.1985) | 0.1898 (0.0095) | 7.75 | 1.38
0.05 | 4.8858(0.1179) | 0.1737(0.0226) | 5.08 | 0.69 | 7.3519(0.2223) | 0.2094 (0.0097) | 8.15 | 1.52
0.04 | 4.8900 (0.1275) | 0.1760(0.0233) | 5.16 | 0.78 | 8.2403 (0.2690) | 0.2418 (0.0116) | 8.71 | 1.69
0.03 | 4.9169(0.1205) | 0.1676(0.0238) | 5.36 | 0.74 | 9.7310(0.2931) | 0.2971 (0.0128) [ 9.19 | 2.12
0.02 | 4.8752(0.1151) | 0.1751(0.0274) | 5.11 | 0.73 | 12.5960(0.3705) | 0.3943 (0.0121) | 9.65 | 2.92
0.01 | 4.9237(0.1168) | 0.1761(0.0242) | 5.42 | 0.77 | 17.6766(0.3707) | 0.5385 (0.0061) | 9.97 | 4.63

The numbers in parenthesis are the corresponding standard errors of PE and MSE(E)

estimated using the bootstrap with B = 500 resampling from the 100 PE’s and 100

MSE(B)’s, respectively. For simulation study I, the true value of C is 10.

3.2 Simulation study Il

In this section, we study the performance of the 1,BF with the simulation design

where the number of parameters (p) depend on the sample size (n). The datasets are

simulated by the simulation method proposed by Zou and Zhang [20].
Let p = p, = [4n'/2] — 5 for n = 100, 200, 400. The data is generated from the

linear regression model

y=X"B+¢,

where y is an n x 1 vector of response variable, g is an p x 1 vector of parameter of

regression coefficients, and € is an n X 1 vector of random errors where £ ~N(0,0%1), o

= 6. LetX = [X,,X,, ... X

14

]T; X; is an n x 1 vector of the j th predictor variables. X follows
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a p-dim multivariate normal distribution with zero mean and covariance X, X ~N,(0, X),
where the covariance matrix X has the entry X; = corr(j, k) = pl=k 1 <k,j<p.In this

research, we set p = 0.5 and p = 0.75. Let 1, denotes a g X 1 vector of 1’s, and 0,_3,

denotes a (p — 3q) x 1 vector of 0’s. The true coefficients g = (3 1¢,3-14,3-1,, Op_3q)T
where g = [p,/9]. LetA ={j: B; #0,j = 1,2,...,p}. The size of A is the number of non-
zero coefficients which are used to generate the response variable of the model. For this
simulation method, the size of A is denoted by |A| =3q. There are six cases for
combination of n = 100, 200, 400 and p = 0.5, 0.75. The simulation method is repeated
100 times.

Table 4 — Table 6 show the model selection and fitting results of the naive elastic
net estimators for simulation study Il with different value of a. For every combination of
(n, p, p) and «a is not close to zero, the naive elastic net estimator where the value of 4, is
chosen by A,BF has the prediction performance better than the naive elastic net estimator
where the value of 4, is chosen by 1,CV. For almost cases, the naive elastic net estimator
where the value of 1, is chosen by 1,CV performs the estimation accuracy better than the
naive elastic net estimator where the value of 1, is chosen by 1,BF. At some small value
of a, the naive elastic net estimator where the value of 4, is chosen by 1,BF has the
estimation accuracy better than the naive elastic net estimator where the value of A, is
chosen by 1,CV. For variable selection performance, the naive elastic net estimator where
the value of 1, is chosen by 1,CV has the variable selection performance better than the
naive elastic net estimator where the value of 4, is chosen by 1,BF. For small value of a
(a is close to zero), the naive elastic net estimator where the value of 1, is chosen by 1,BF
has the value C tends to the true value of C better than the naive elastic net estimator

where the value of A, is chosen by 1,CV.
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Table 4. Model selection and fitting results of naive elastic net estimators for simulation

study Il: n =100 and p,, = 35.

n=100, p,=35 p=05

Truth 2,CV 1,BF
p a - _

c|ic PE MSE®) c | 1c PE MSE(B) o ic
0.5 26 0 0.9 27.0197 (0.4712) 0.3476 (0.0116) 1.25 0 23.3527 0.4215) 0.7631 (0.0224) 0.26 0
0.8 27.3919 (0.5048) 0.3190 (0.0098) 2.82 0 23.3792 (0.3803) 0.7469 (0.0215) 0.49 0

0.7 27.6590 (0.5507) 0.3032 (0.0093) 4.50 0 23.4165 (0.3985) 0.7268 (0.0212) 0.77 0

0.6 28.2900 (0.5340) 0.2769 (0.0097) 6.82 0 23.4717 (0.3931) 0.7014 (0.0200) 1.16 0

0.5 28.6017 (0.5310) 0.2649 (0.0113) 8.82 0 23.5589 (0.4174) 0.6680 (0.0196) 1.65 0

0.4 29.1849 (0.5599) 0.2465 (0.0110) 11.06 0 23.7110 (0.4057) 0.6218 (0.0179) 2.26 0

0.3 29.7014 (0.5257) 0.2379 (0.0109) 13.57 0 24.0115 (0.4244) 0.5548 (0.0167) 3.51 0

0.2 29.7958 (0.5952) 0.2433 (0.0119) 15.38 0 24.7206 (0.4334) 0.4537 (0.0139) 5.79 0

0.1 30.2554 (0.5788) 0.2441 (0.0120) 17.60 0 27.1133 (0.4779) 0.2989 (0.0125) 11.76 0

0.09 30.4487 (0.6386) 0.2339 (0.0099) 18.04 0 27.6419 (0.4904) 0.2807 (0.0120) 12.82 0

0.08 30.2920 (0.6345) 0.2476 (0.0127) 17.92 0 28.2887 (0.5066) 0.2630 (0.0115) 14.06 0

0.07 30.5599 (0.5508) 0.2417 (0.0116) 18.38 0 29.0935 (0.5255) 0.2466 (0.0111) 15.42 0

0.06 30.3694 (0.6509) 0.2514 (0.0130) 18.20 0 30.1075 (0.5470) 0.2324 (0.0106) 16.95 0

0.05 30.0570 (0.5936) 0.2626 (0.0135) 18.08 0 31.4413 (0.5579) 0.2220 (0.0098) 19.14 0

0.04 30.4318 (0.6136) 0.2564 (0.0134) 18.71 0 33.3806 (0.6844) 0.2204 (0.0091) 20.96 0

0.03 30.2753 (0.5783) 0.2610 (0.0135) 18.63 0 36.5138 (0.7253) 0.2393 (0.0088) 23.48 0.01

0.02 30.3068 (0.6351) 0.2735 (0.0172) 18.98 0 43.1768 (0.8871) 0.3232 (0.0117) 25.29 0.03

0.01 30.2835 (0.6037) 0.2658 (0.0140) 19.00 0 72.1491 (2.2532) 0.7680 (0.0285) 25.94 0.69
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Table 4. (Continued).
n=100, p,=35 p=0.75
Truth 1,CV 1,BF
p clic| a PE MSE(B) c IC PE MSE(B) c IC
0.75 26 0 0.9 28.2136 (0.4770) 0.3010 (0.0129) 2.14 0 23.2912 (0.3677) 1.4239 (0.0483) 0.24 0
0.8 28.4762 (0.5303) 0.2843 (0.0140) 4.30 0 23.3149 (0.3845) 1.3957 (0.0454) 0.44 0
0.7 28.9119 (0.4746) 0.2666 (0.0173) 6.73 0 23.3477 (0.3959) 1.3608 (0.0489) 0.71 0.01
0.6 29.4100 (0.5178) 0.2438 (0.0179) 9.28 0 23.3953 (0.3796) 1.3163 (0.0442) 1.04 0.03
0.5 29.8884 (0.5297) 0.2239 (0.0158) 11.98 0 23.4690 (0.3887) 1.2578 (0.0444) 1.44 0.03
0.4 30.2770 (0.4994) 0.2110 (0.0137) 14.56 0 23.5919 (0.4130) 1.1776 (0.0441) 2.31 0.04
0.3 30.7705 (0.4875) 0.2146 (0.0155) 17.14 0 23.8238 (0.3991) 1.0618 (0.0414) 3.36 0.06
0.2 30.6925 (0.4935) 0.2371 (0.0174) 18.69 0.01 24.3525 (0.3913) 0.8825 (0.0379) 5.55 0.05
0.1 30.9058 (0.5215) 0.2809 (0.0189) 20.43 0.02 26.0741 (0.4032) 0.5825 (0.0305) 10.76 0.05
0.09 31.1063 (0.5396) 0.2778 (0.0174) 20.98 0.01 26.4299 (0.4073) 0.5456 (0.0289) 11.78 0.04
0.08 31.0708 (0.5248) 0.2966 (0.0204) 20.82 0.02 26.8578 (0.4324) 0.5077 (0.0283) 12.56 0.04
0.07 30.9802 (0.4698) 0.3116 (0.0227) 21.05 0.01 27.3832 (0.4320) 0.4700 (0.0261) 13.93 0.05
0.06 31.1741 (0.5264) 0.3140 (0.0221) 21.46 0.04 28.0007 (0.4376) 0.4348 (0.0274) 15.45 0.05
0.05 | 31.0699 (0.4493) 0.3234 (0.0205) 21.47 0.03 28.7370 (0.4628) 0.4021 (0.0238) 17.21 0.05
0.04 30.8949 (0.5077) 0.3441 (0.0205) 21.44 0.04 29.6760 (0.4708) 0.3727 (0.0240) 18.86 0.05
0.03 30.8157 (0.4875) 0.3605 (0.0233) 21.36 0.06 31.0206 (0.4897) 0.3507 (0.0210) 21.01 0.06
0.02 30.8951 (0.4950) 0.3686 (0.0210) 21.63 0.08 33.3505 (0.5347) 0.3462 (0.0209) 23.38 0.07
0.01 30.8513 (0.4806) 0.4132 (0.0269) 21.66 0.07 40.9169 (0.9822) 0.4196 (0.0217) 25.54 0.19

The numbers in parenthesis are the corresponding standard errors of PE and MSE(B)
estimated using the bootstrap with B = 500 resampling from the 100 PE’s, and 100
MSE(B)’s, respectively.
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Table 5. Model selection and fitting results of naive elastic net estimators for simulation

study II: n =200 and p,, = 51.

n=200, p,=51, p=05

Truth 2,CV 1,BF
14 a — —

C IC PE MSE(B) C IC PE MSE(B) C IC
o5 |3 | o 09 28.3981 (0.3431) | 0.1940 (0.0048) 1.76 0 26.3703 (0.3098) | 0.3395 (0.0075) 0.13 0
08 285592 (0.3387) | 0.1814 (0.0046) 359 0 26.3796 (0.3078) | 0.3340 (0.0076) 0.35 0

07 28.8540 (0.3537) | 0.1691 (0.0046) 5.97 0 26.3935 (0.3155) | 0.3272 (0.0075) 065 0

06 29.1381 (0.3517) | 0.1567 (0.0046) 8.64 0 26.4151 (0.2952) | 0.3185 (0.0075) 113 0

05 29.4533 (0.3756) | 0.1451 (0.0042) | 1168 | © 26.4508 (0.3037) | 0.3068 (0.0077) 1.91 0

04 29.8231 (0.3635) | 0.1360 (0.0043) | 1507 | o 265157 (0.3017) | 0.2906 (0.0073) 2.81 0

03 301617 (0.3671) | 0.1290 (0.0043) | 1804 | © 26.6495 (0.3141) | 0.2665 (0.0068) 434 0

02 30.5984 (0.3711) | 0.1259 (0.0048) | 2145 | o 26.9924 (0.3119) | 0.2276 (0.0059) 7.24 0

0.1 30.8230 (0.3596) | 0.1258 (0.0048) | 2435 | o 28.3058 (0.3297) | 0.1618 (0.0048) | 15.22 0

009 | 309338 (0.4049) | 0.1254 (0.0049) | 2473 | o 28.6078 (0.3613) | 0.1536 (0.0049) | 16.82 0

008 | 308147 (0.3607) | 0.1261 (0.0042) | 2456 [ o 28.9835 (0.3447) | 0.1452 (0.0048) | 18.49 0

007 | 309431 (0.3822) | 0.1261 (0.0048) | 2522 | © 29.4668 (0.3560) | 0.1370 (0.0047) [ 20.19 0

006 | 309112 (0.3852) | 0.1277 (0.0047) | 2520 | © 301043 (0.3428) | 0.1293 (0.0044) | 2239 0

005 | 309377 (0.3633) | 0.1282 (0.0043) | 2556 | O 30.9635 (0.3758) | 0.1233 (0.0044) | 25.14 0

004 | 31.0337 (0.3759) | 0.1281 (0.0047) | 2598 [ o 32.1606 (0.3791) | 0.1207 (0.0043) [ 28.11 0

003 | 30.9982 (0.3943) | 0.1302 (0.0049) | 26.15 | © 341056 (0.4076) | 0.1255 (0.0044) | 31.41 0

002 | 309534 (0.3943) | 0.1316 (0.0051) | 2609 [ o0 38.1089 (0.4803) | 0.1543 (0.0054) | 3454 0

001 | 309319 (0.3871) | 0.1327 (0.0050) | 2623 [ o 551290 (0.8797) | 0.3336 (0.0109) | 3594 | 0.02
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Table 5. (Continued).
n=200, p,=51, p=075
Truth 2,CV 1,BF
P a ~ ~
c|Ic PE MSEB) c |1 PE MSEB) c ic
0.75 36 0 0.9 30.0407 (0.3708) 0.1865 (0.0063) 273 0 26.9033 (0.3273) 0.6741 (0.0177) 0.27 0
0.8 30.3418 (0.3610) 0.1687 (0.0062) 6.03 0 26.9161 (0.3165) 0.6617 (0.0169) 0.62 0
0.7 30.6939 (0.3814) 0.1528 (0.0062) 9.58 0 26.9346 (0.3096) 0.6464 (0.0174) 0.97 0
0.6 31.0237 (0.3534) 0.1417 (0.0067) 13.23 0 26.9625 (0.3036) 0.6268 (0.0166) 1.38 0
0.5 31.4804 (0.3823) 0.1310 (0.0058) 17.33 0 27.0076 (0.3198) 0.6007 (0.0175) 2.03 0
0.4 31.8323 (0.3675) 0.1267 (0.0070) 21.04 0 27.0871 (0.3135) 0.5646 (0.0155) 3.14 0
0.3 32.1215 (0.3709) 0.1246 (0.0066) 24.29 0 27.2466 (0.3398) 0.5116 (0.0166) 4.83 0
0.2 32.3657 (0.3673) 0.1319 (0.0062) 26.83 0 27.6306 (0.3271) 0.4277 (0.0147) 8.07 0
0.1 32.4528 (0.3603) 0.1586 (0.0078) 29.03 0 28.9601 (0.3265) 0.2878 (0.0126) 15.48 0
0.09 32.4124 (0.3588) 0.1647 (0.0083) 28.95 0 29.2411 (0.3284) 0.2710 (0.0130) 17.05 0
0.08 32.3310 (0.3779) 0.1687 (0.0083) 29.08 0 29.5719 (0.3070) 0.2543 (0.0119) 18.61 0
0.07 32.3409 (0.3801) 0.1750 (0.0083) 29.18 0 29.9589 (0.3472) 0.2384 (0.0113) 20.52 0
0.06 32.3340 (0.3683) 0.1801 (0.0081) 29.30 0 30.4266 (0.3410) 0.2233 (0.0112) 22.52 0
0.05 32.2802 (0.3879) 0.1884 (0.0085) 29.33 0 30.9956 (0.3377) 0.2098 (0.0100) 24.73 0
0.04 32.2772 (0.3787) 0.1941 (0.0103) 29.62 0 31.7217 (0.3360) 0.1990 (0.0099) 27.41 0
0.03 32.3147 (0.3559) 0.1990 (0.0094) 29.82 0 32.7258 (0.3594) 0.1918 (0.0087) 30.10 0
0.02 32.1887 (0.3809) 0.2106 (0.0096) 29.62 0 34.4767 (0.3771) 0.1928 (0.0093) 33.23 0
0.01 32.2076 (0.3716) 0.2187 (0.0104) 29.80 0 40.4271 (0.5470) 0.2383 (0.0089) 35.64 0.01

The numbers in parenthesis are the corresponding standard errors of PE and MSE(B)

estimated using the bootstrap with B = 500 resampling from the 100 PE’s, and 100

MSE(B)’s, respectively.
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Table 6. Model selection and fitting results of naive elastic net estimators for simulation

study II: n =400 and p,, = 75.

n=400, p,=75 p=05
Truth A,CV A,BF
p a — —

c|Ic PE MSE(B) c IC PE MSE(B) c IC
05 |51 | o 0.9 29.7342 (0.2344) | 0.1124 (0.0021) 1.98 0 28.6442 (0.2195) 0.1678 (0.0033) 0.22 0
0.8 29.9357 (0.2417) | 0.1041 (0.0023) 4.32 0 28.6470 (0.2291) 0.1660 (0.0031) 0.49 0

07 30.0597 (0.2493) | 0.0970 (0.0019) 7.40 0 28.6513 (0.2339) 0.1638 (0.0031) 0.98 0

0.6 30.3179 (0.2544) 0.0892 (0.0020) 11.00 0 28.6582 (0.2288) 0.1609 (0.0031) 1.54 0

05 30.6452 (0.2618) | 0.0811 (0.0021) 15.57 0 28.6699 (0.2248) 0.1570 (0.0031) 2.22 0

0.4 309591 (0.2519) | 0.0747 (0.0020) 20.14 0 28.6921 (0.2411) 0.1514 (0.0030) 3.10 0

03 31.2381 (0.2626) | 0.0699 (0.0019) 24.60 0 28.7402 (0.2357) 0.1428 (0.0027) 4.64 0

0.2 31.5680 (0.2551) 0.0660 (0.0017) 29.46 0 28.8723 (0.2247) 0.1277 (0.0026) .77 0

0.1 31.6470 (0.2607) | 0.0662 (0.0019) 32.67 0 29.4628 (0.2376) 0.0965 (0.0021) 15.87 0

009 | 31.7481 (0.2753) | 0.0653 (0.0020) 33.42 0 29.6174 (0.2378) 0.0917 (0.0022) 17.36 0

0.08 31.7449 (0.2682) 0.0657 (0.0019) 33.95 0 29.8161 (0.2338) 0.0866 (0.0021) 19.45 0

0.07 | 31.8506 (0.2893) | 0.0649 (0.0018) 34.71 0 30.0764 (0.2399) 0.0811 (0.0019) 22.03 0

0.06 | 31.8116 (0.2718) | 0.0655 (0.0020) 34.73 0 30.4254 (0.2410) 0.0754 (0.0019) 25.30 0

005 | 31.9557 (0.2607) | 0.0647 (0.0018) 3591 0 30.9026 (0.2380) 0.0698 (0.0018) 29.11 0

0.04 31.8538 (0.2731) 0.0658 (0.0019) 35.60 0 31.5871 (0.2544) 0.0648 (0.0016) 33.83 0

0.03 | 31.8563 (0.2614) | 0.0659 (0.0018) 3591 0 32,6799 (0.2632) 0.0618 (0.0017) 39.25 0

002 | 31.7761 (0.2814) | 0.0664 (0.0019) 35.69 0 34.8073 (0.2924) 0.0652 (0.0017) 46.18 0

0.01 31.8163 (0.2749) 0.0667 (0.0019) 36.05 0 42.1288 (0.4126) 0.1075 (0.0028) 50.75 0
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Table 6. (Continued).

n=400, p,=75 p=0.75

Truth 1,0V 1,BF
P a — —

c|iIc PE MSE(B) c ic PE MSE(B) c ic

075 | 51 | o | 09 | 312760 (0.2286) | 0.1174 (0.0027) | 4.34 0 20.2677 (0.2259) | 0.3445 (0.0068) | 0.38 0

08 | 314973 (0.2576) | 0.1062 (0.0025) | 8.87 0 20.2735 (0.2247) | 0.3391 (0.0066) | 0.73 0

0.7 | 317710 (0.2440) | 0.0951 (0.0025) | 14.12 0 29.2823 (0.2152) | 0.3323 (0.0069) 1.21 0

06 | 320469 (0.2591) | 0.0870 (0.0025) | 19.43 0 29.2061 (0.2148) | 0.3235 (0.0067) 1.85 0

05 | 323491 (0.2344) | 0.0807 (0.0022) | 24.68 0 29.3196 (0.2215) | 0.3118 (0.0065) | 270 0

04 | 326519 (0.2501) | 0.0776 (0.0025) | 29.57 0 29.3627 (0.2273) | 0.2955 (0.0060) | 4.20 0

03 | 327587 (0.2390) | 0.0789 (0.0023) | 3361 0 20.4533 (0.2189) | 0.2711 (0.0054) | 6.42 0

02 | 330183 (0.2323) | 0.0826 (0.0025) | 37.82 0 20.6874 (02169) | 0.2315 (0.0053) [ 10.71 0

04 | 331332 (0.2419) | 0.0960 (0.0033) | 4053 0 305516 (02175) | 0.1631 (0.0041) | 2154 0

009 | 330487 (0.2551) | 0.0995 (0.0032) | 40.52 0 307440 (0.2307) | 0.1543 (0.0041) | 2357 0

008 | 330701 (0.2497) | o0.1007 (0.0035) | 40.92 0 30.9765 (0.2196) | 0.1454 (0.0041) | 25.77 0

007 | 330901 (0.2514) | 0.1020 (0.0033) | 41.19 0 31.2627 (0.2411) | 0.1365 (0.0038) | 28.04 0

006 | 330349 (0.2526) | 0.1057 (0.0033) | 41.08 0 31.6087 (0.2271) | 0.1281 (0.0037) | 31.19 0

005 | 330648 (0.2486) | 0.1078 (0.0033) | 41.49 0 32.0283 (0.2409) | 0.1206 (0.0036) | 34.66 0

004 | 330284 (0.2537) | 0.1113 (0.0036) | 41.62 0 325531 (0.2322) | 0.1142 (0.0034) | 38.46 0

003 | 330120 (0.2446) | 0.1137 (0.0035) | 41.69 0 33.2632 (0.2436) | 0.1095 (0.0035) | 42.62 0

002 | 331257 (0.2544) | 0.1159 (0.0036) | 42.49 0 344910 (02413) | 0.1078 (0.0035) | 47.19 0

001 | 328665 (0.2389) | 0.1221 (0.0038) | 41.34 0 382721 (02797) | 0.1226 (0.0036) | 5062 0

The numbers in parenthesis are the corresponding standard errors of PE and MSE(B)
estimated using the bootstrap with B = 500 resampling from the 100 PE’s, and 100
MSE(B)’s, respectively.

4. Real data examples

In this section, we apply two real datasets to illustrate the efficiency of the method
for choosing the value of the penalty parameter 1, based on Bayes factor. The two
datasets are the diabetes data and prostate cancer data which are used in elastic net
literature and related methods.
4.1 Diabetes Data

The diabetes data is a data from Efron, Hastie, Johnstone and Tibshirani [21].
The response variable (y) is a quantitative measure of disease progression one year after
baseline for 442 diabetes patients. The dataset contains 10 baseline predictor variables:
AGE, SEX, body mass index (BMI), average blood pressure (BP), and six blood serum
measurements: tc(S1), 1dI(S2), hdI(S3), tch(S4), Itg(S5), glu(S6).

Using the method for choosing the value of the penalty parameter 1, based on
Bayes factor described in Section 2, 1,BF = 0.0128 is the value of penalty parameter 1,

based on Bayes factor for the diabetes data. Table 7 shows summary of BF,;4stic ne: fOr
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diabetes data, the value 1,BF gives BF, sticne: > 1 for all @ whereas BF,jqtic net > 3 i
derived with the small value of a. The result BF ;¢ ne: fOr diabetes data is similar to the
result BF 4stic ner fOr simulation study I; i.e., BF justic ner > 3 is derived when « is close to
zero.

Table 8 and Table 9 show the results of the naive elastic net estimators for
diabetes data where the shrinkage parameters A, are chosen by 1,CV and A,BF,
respectively. The prediction error (PE) is computed for each value of a. In this research,
the CV method is CV random partition. This causes the different value of (1,,1,) at each
value of a. For some value of a, the naive elastic net estimator where the value of 4, is
chosen by 1,BF has the prediction performance better than the naive elastic net estimator
where the value of 1, is chosen by 1,CV. Using the 4,BF, the prediction error of the naive
elastic net estimator tends to be large when « is small. Using the 1,BF with « = 0.01, the
predictors AGE, Idl, and tch are excluded. This variable selection result is the same as the
result of Li and Lin [7] when the variable selection criterion of Li and Lin [7] is the scaled

neighborhood criterion.

Table 7. Summary BF,;,.:ic net fOr diabetes data.

a 1< BFelastic net < 3 3< BFelastic net< 20 BFelastic net > 20

0.9 v - -

0.8 4 - -

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.05

0.04

0.03

0.02

NN IEN RN N RN AN RN N RN RN RN

SNIEN IR RN

0.01
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Table 8. Naive elastic net estimators of diabetes data using 1,CV.
a 1,CV i Predictor variables g
AGE BMI BP S1 S2 S3 S4 S5 S6 SEX
0.9 | 0.0537 | 0.0059 | -0.0080 | 5.4561 | 1.0692| -0.1798| -0.0654 -0.6519| 4.1757 | 43.6550| 0.3303 | -20.9670| 2,880.171
0.8 | 0.0605 | 0.0151 | -0.0050 | 5.4289| 1.0637| -0.1642| -0.0766| -0.6649| 4.1560 | 43.0250| 0.3342| -20.7470| 2,881.734
0.7 | 0.0677 | 0.0290| -0.0015| 5.4001| 1.0576| -0.1504| -0.0858| -0.6759| 4.1302| 42.4330| 0.3379| -20.5040| 2,883.446
0.6 | 0.0362 | 0.0241| -0.0121| 5.5233| 1.0800| -0.2357| -0.0172| -0.6030| 4.1335| 45.7490| 0.3160| -21.4150| 2,876.303
05 | 0.0736|0.0736| 0 |5.3747| 1.0506| -0.1382| -0.0907| -0.6865| 4.0241| 41.9670| 0.3391| -20.1910| 2,885.256
0.4 | 0.0030 | 0.0045 | -0.0313 | 5.6152| 1.1110| -0.8008| 0.4859 | 0.0295 | 5.5871 | 61.2020| 0.2855| -22.6540| 2,861.407
0.3 | 0.0315| 0.0735| -0.0088 | 5.5383| 1.0786| -0.2502 0 -0.5932( 3.9812| 46.3570| 0.3087 | -21.3800| 2,875.600
0.2 | 0.0387 | 0.1549 0 5.5059| 1.0662| -0.2104| -0.0251]| -0.6380| 3.6790| 45.1630| 0.3084 | -20.8860| 2,878.200
01 |00228|02048| 0 |55714|1.0723|-02438] 0 |-0.6062| 3.6280| 46.7150| 0.2919| -21.1500| 2,875.676
0.01|0.0036 | 0.3579| -0 |56538]1.0717|-0.2454| 0 |-0.6085| 3.2822| 47.8290| 0.2651| -21.0770| 2,876.946
Table 9. Naive elastic net estimators of diabetes data using 1,BF.
N 1,BF n Predictor variables bE
AGE BMI BP S1 S2 S3 S4 S5 S6 SEX
0.9 |0.0128 |0.0014 |-0.0243| 5.6048| 1.1007 | -0.4581| 0.1766 | -0.3636| 4.6361 | 52.2420| 0.2975( -22.2460| 2,868.025
0.8 |0.0128 |0.0032 |-0.0241| 5.6050| 1.1005| -0.4558 | 0.1746 | -0.3659 | 4.6295 | 52.1870| 0.2974| -22.2390| 2,868.085
0.7 |0.0128 |0.0055 |-0.0238| 5.6053| 1.1002| -0.4529 | 0.1719| -0.3690| 4.6210| 52.1170| 0.2972| -22.2290| 2,868.163
0.6 |0.0128 | 0.0085 |-0.0234| 5.6056| 1.0999| -0.4490| 0.1684 | -0.3731| 4.6096 | 52.0230| 0.2969 | -22.2160| 2,868.267
0.5 |0.0128 |0.0128 |-0.0229| 5.6061| 1.0994 | -0.4436| 0.1634 | -0.3788| 4.5937 | 51.8910| 0.2967 | -22.1980| 2,868.415
04 |0.0128 |0.0192 |-0.0221| 5.6068| 1.0987| -0.4355 | 0.1560 | -0.3874 | 4.5699 | 51.6930| 0.2962| -22.1710| 2,868.638
0.3 [0.0128 |0.0299 |-0.0207| 5.6081| 1.0975| -0.4219 | 0.1436| -0.4017| 4.5301| 51.3640| 0.2955| -22.1260| 2,869.017
0.2 |0.0128 |0.0512 |-0.0180| 5.6105| 1.0952| -0.3949| 0.1189( -0.4303| 4.4507 | 50.7050| 0.2939( -22.0370| 2,869.803
0.1 0.0128 | 0.1152 | -0.0100| 5.6177| 1.0881| -0.3138 | 0.0447| -0.5161| 4.2123| 48.7290| 0.2895| -21.7670| 2,872.381
0.01 {00128 |1.2672 | -0 |55551|0.9960|-0.1148| -0 |[-0.8154| 0 | 45.329|0.2163|-17.4370| 2,893.634

4.2 Prostate cancer data

The prostate cancer data is a data from a prostate cancer study of Stamey,

Kabalin, Mcneal, et al. [22]. The response variable (y) is the logarithm of prostate specific

antigen (Ipsa) for 97 patients. The predictor variables are eight clinical measures: the

logarithm of cancer volume (Icavol), the logarithm of prostate weight (lweight), age, the

logarithm of the amount of benign prostatic hyperplasia (Ibph), seminal vesicle invasion

(svi), the logarithm of capsular penetration (Icp), the Gleason score (gleason), and the

percentage Gleason score 4 or 5 (pgg45).
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Using the method for choosing the value of the penalty parameter 1, based on
Bayes factor described in Section 2, 1,BF = 0.0286 is the value of penalty parameter 1,
based on Bayes factor for the prostate cancer data. Table 10 shows summary of
BF¢1asticnet fOr prostate cancer data, the value A1,BF gives BF sicner > 1 for all a
whereas BF . 5tic net > 3 is derived with the small value of a. The result BF.;4tic ner fOr
prostate cancer data is similar to the result BF,;45¢ic ne: fOr simulation study | and diabetes
data; i.e., BF qstic net > 3 is derived when « is close to zero.

Table 11 and Table 12 show the results of the naive elastic net estimators for
prostate cancer data where the shrinkage parameters 1, are chosen by 1,CV and 4,BF,
respectively. The prediction error (PE) is computed for each value of a. For some value of
a, the naive elastic net estimator where the value of 1, is chosen by A,BF has the
prediction performance better than the naive elastic net estimator where the value of 4, is
chosen by 1,CV. Using the 1,BF, the prediction error of the naive elastic net estimator
tends to be large when «a is small. For « = 0.8, 0.9 where the 1,BF has the prediction
performance better than the 4,CV, all predictors are included in the optimal model. This

variable selection result is the same as the naive elastic net of Zou and Hastie [1].

Table 10. Summary BF,;q4stic ne: fOr prostate cancer data.

a 1< BFelaStic net< 3 3< BFelastic net < 20 BFelastic net > 20
0.9 v - -

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.05
0.04
0.03
0.02
0.01

NN EN RN NN RN ENEN RN RN NN

NN N N RN
NRNAN
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Table 11. Naive elastic net estimators of prostate cancer data using 1,CV.
a 1OV i Predictor variables PE
Icavol Iweight age Ibph svi Icp gleason pgg4s
0.9 [0.0314 |0.0035 | 05223 | 0.6079 |-0.0178 | 0.0882 | 0.7031 |-0.0579 | 0.0521 | 0.0036 | 0.4462
08 |0.0816 |0.0204 | 0.4654 | 05611 |-0.0103 | 0.0679 | 0.6144 0 0.0404 | 0.0026 | 0.4596
0.7 [0.0047 | 0.0020 0.554 0.6169 -0.0201 0.0939 0.7420 | -0.0910 0.0478 0.0042 0.4441
0.6 [0.0083 [ 0.0055 0.5416 0.6086 -0.0185 0.0897 0.7139 | -0.0704 0.0436 0.0038 0.4451
0.5 [0.0224 |0.0224 | 04973 | 05699 | -0.0117 | 0.0717 | 0.6117 0 00238 | 0.0025 | 0.4555
04 |0.0286 |0.0429 | 0.4869 | 0.5263 |-0.0054 | 0.0528 | 0.5828 0 00033 | 0.0022 | 0.4656
0.3 [0.0127 | 0.0296 0.5009 0.5566 -0.0098 0.0662 0.6006 0 0.0128 0.0024 0.4576
0.2 [0.0067 | 0.0269 0.5055 0.5631 -0.0108 0.0692 0.6038 0 0.0138 0.0024 0.4562
0.1 |0.0007 |0.0061 | 0.5489 | 0.6089 | -0.0188 | 0.0904 | 0.7188 |-0.0759 | 0.0406 | 0.0039 | 0.4447
Table 12. Naive elastic net estimators of prostate cancer data using 1,BF.
Predictor variables
a 2,BF N PE
Icavol Iweight age Ibph svi lep gleason pgg4s
0.9 | 0.0286 | 0.0032 0.5256 0.6092 -0.0181 0.0889 0.7078 | -0.0616 0.0520 0.0037 0.4459
0.8 | 0.0286 | 0.0072 0.5172 0.6007 -0.0167 0.0852 0.6833 | -0.0446 0.0461 0.0034 0.4475
0.7 | 00286 | 0.0123 | 05064 | 0.5899 | -0.0148 | 0.0803 | 0.6517 | -0.0228 | 0.0386 | 0.0030 | 0.4504
06 | 0.0286 | 0.0191 | 0.4946 | 05755 | -0.0124 | 0.0740 | 0.6167 -0 00201 | 0.0025 | 0.4548
0.5 | 0.0286 | 0.0286 0.4915 0.5558 -0.0096 0.0655 0.6031 -0 0.0188 0.0024 0.4583
0.4 | 0.0286 | 0.0430 0.4869 0.5263 -0.0054 0.0528 0.5827 0 0.0033 0.0022 0.4656
0.3 | 0.0286 | 0.0668 | 0.4774 | 0.4852 -0 0.0329 | 0.5510 0 0 0.0016 | 0.4805
02 |0.0286 | 0.1146 | 0.4638 | 0.4410 0 0.0062 | 0.4815 0 0 0.0008 | 0.5042
0.1 0.0286 | 0.2578 0.4154 0.1950 0 0 0.2763 0 0 0 0.6089

5. Conclusion and discussion

The method for choosing the value of 1, based on Bayes factor, 1,BF, improves

the prediction accuracy of the elastic net method. When «a is not close to zero, the elastic

net estimator where the value of 1, is chosen by 1,BF has the prediction performance

better than the elastic net estimator where the value of 4, is chosen by 4,CV. This is

expected according to the L2 part stabilizes the solution parts and improves the prediction.

Using 1,BF, the result reveals that the elastic net model is significance model as defined

by Bayes factor (BF,;q4stic ne: > 1) when a € (0,1). Using 1,BF to fit elastic net model, the

penalty parameter 4, is derived from the relationship between the shrinkage parameters,

i.e., « =1,/(A4; + 1;). This may cause the value of 1, associated with 1,BF becomes
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higher than the value of 4, derived from CV method when « is close to zero. It affects the
prediction error of elastic net estimator derived from the 1,BF becomes larger when « is
small.

Elastic net does both parameter estimation and variable selection. The elastic net
is based on a combination of the ridge (L2) and the lasso (L1) penalties. The L1 part of the
elastic net performs automatic variable selection, while the L2 part stabilizes the solution
parts and, hence, improves the prediction. In this article, we propose the 1,BF which is the
value of the penalty parameter of the L2 part of the elastic net method; nevertheless, the
elastic net estimator where the value of 4, is chosen by A,BF performs the variable
selection performance better than the elastic net estimator where the value of 1, is chosen
by 1,CV when « is close to zero. For some small value of a, the elastic net estimator
where the value of 1, is chosen by 1,BF has the estimation accuracy better than elastic
net estimator where the value of 1, is chosen by 1,CV. Using the appropriate combination
of 1; and 14,, the elastic net estimator performs best in the prediction performance, the
estimation accuracy and the variable selection performance.

The 1,BF can be applied to different dataset where the number of parameters (p)
less than the sample size (n), e.g. small p or the cases where the number of parameters
diverges with the sample size. The method of 1,BF can be used for adaptive elastic net
estimator where the adaptive weight is included in the L1 penalty e.g. the adaptive elastic
net proposed by Zou and Zhang [20] and Ghosh [23]. In this research, the prior for a2 is
inverse gamma distribution. The other choice is a noninformative prior p(¢?) « 1/0?, and
Gibbs sampling method can be used to search for the model having highest posterior
probability rather than compute the entire posterior probability.

The extensions of the method proposed in this article to choose the value of the
shrinkage parameter for penalized estimation in generalized linear models (e.g.
regularized logistic regression [24], regularized multinomial regression [24]) are interesting
for future research. It is also interesting to develop the other generalized linear model such
as the generalized zero-altered Poisson regression model [25] into the penalized
(regularized) regression framework, and apply the method proposed in this article to
choose the value of the shrinkage parameter for the penalized version of the model in [25].

The model selection criterions AIC, BIC, and C,, can be applied for choosing the
value of the penalty parameters of the elastic net. The research of Keerativibool [26] will

be guidance for using these model selection criterions.
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Appendix
Bayes factor for elastic net linear regression model

Zou and Hastie [1] pointed out that, solving the elastic net problem is equivalent
to find the marginal posterior mode of By when the prior distribution of 8 is given by a
compromise between the Gaussian (normal) and Laplace (double exponential) priors.

Kyung, Gill, Ghosh and Casella [6] proposed hierarchical model prior for B as

Bylo% Dy, y ~ Ny, (0, o?D,), (26)
where D is a diagonal matrix with diagonal elements (7; % + /12)_1,

7~ Exponential (/1;) ,j=123,..,p,
using the prior in (26), the Bayes factor for elastic net linear regression model is

g(MF(elastic net) |Y)

27
g(MR(elastic net) |Y) (27)

BFlO(elastic net) =

where the posterior model probabilities g(Mgeiastic net)|y) @nd g(Mr eastic nery|y) are as

follows.
1
= -2 T -1 Tz 2 -
g(”’R(elasticnet)lY) = |D‘[| 2|XMRXMR + D‘[ | (Vf + SMRD) z (28)
where
_11-1
Sirep = YTV = ¥ Xu [Xir, X, + D7 Xy, (29)
1 T —% 2 _(n+v)
g(MF(elasticnet)|Y) = |D1:| 2|XMFXMF + D1_71| (V'f + SMFD) 2 (30)
where

_11—1
Siep =YY = ¥ Xu, [X0, Xur, + DT Xy (31)



