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Abstract 

 The aim of this article is to propose the method for choosing the value of the L2 

penalty parameter, ߣଶ, of elastic net linear regression model using Bayesian analysis. The 

value of ߣଶ is specified through the behavior of Bayes factor. We study the performance 

of elastic net estimators where the value of ߣଶ is based on Bayes factor and the value of 

 ଶ is chosen by 10-fold cross-validation method. Simulation studies and real dataߣ

examples show that the elastic net estimator where the value of ߣଶ is based on Bayes 

factor performs better in prediction accuracy. 

______________________________ 
Keywords: Bayes factor, Bayesian analysis, elastic net, L2 penalty, shrinkage 

 

1.  Introduction 

The elastic net proposed by Zou and Hastie [1] is a penalized regression method 

for variable selection and coefficient estimation. The elastic net simultaneously performs 

automatic variable selection and continuous shrinkage, it can select groups of correlated 

variables and overcomes the difficulty when the number of predictor variables (݌) is greater 

than the number of observation (݊). The elastic net is based on a combination of the ridge 

[2, 3] and the lasso [4] penalties. Consider a linear regression model 
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ܡ  ൌ ઺܆ ൅ ઽ ,                                              (1) 

 

where ܡ is an ݊ ൈ 1 vector of response variable, ܆ is an ݊ ൈ  ,matrix of predictor variables ݌

઺ is an ݌ ൈ 1 vector of parameter of regression coefficients, ઽ is an ݊ ൈ 1 vector of random 

errors, ݌ is the number of predictors, and ݊ is the number of observations. The errors are 

assumed to be independent identically normally distributed random variable with mean 0 

and finite variance ߪଶ. Without loss of generality, we assume the response is centered and 

the predictors are standardized, so the intercept is not included in the regression function. 

The elastic net is defined in two stages. Assuming that the response is centered and the 

predictors are standardized, naïve elastic net estimator is first found via 

 

  ઺෡୒ୟï୴ୣ	ୣ୪ୟୱ୲୧ୡ	୬ୣ୲  = argminஒሾ‖ܡ െ ઺‖ଶ܆
ଶ ൅  ሺ઺ሻሿ             (2)ࣤ	ߣ

 

with the elastic net penalty  ࣤሺ઺ሻ = ߙ‖઺‖ଶ
ଶ ൅ ሺ1 െ ߣ , ሻ‖઺‖ଵߙ ൌ ଵߣ ൅ ߙ ଶ ,and letߣ ൌ

ଶߣ ሺߣଵ ൅ ⁄ଶሻߣ . The elastic net procedure can be viewed as a penalized least squares 

method. The elastic net penalty ࣤሺ઺ሻ = ߙ‖઺‖ଶ
ଶ ൅ ሺ1 െ  ሻ‖઺‖ଵ is a convex combination ofߙ

the lasso and ridge penalties. When ߙ ൌ 1, the naïve elastic net becomes simple ridge 

regression. If ߙ ൌ 0 then ߣଶ ൌ 0, the naïve elastic net becomes the lasso. The elastic net 

has the Bayesian connection. The elastic net penalty corresponds to a new prior given by 

 

ఒ,ఈሺ઺ሻ݌   ൌ ܿሺߣ, ઺‖ଶ‖ߙሾߣሼെ݌ݔሻ݁ߙ
ଶ ൅ ሺ1 െ  ሻ‖઺‖ଵሿሽ,                        (3)ߙ

 

which is a compromise between the Gaussian and Laplacian priors. Zou and Hastie [1] 

pointed out that the elastic net estimator can be viewed as the Bayes posterior mode of ઺ 

under the prior in (3). The final elastic net estimator is taken to be a rescaled version of 

the naïve estimator, 

 

 ઺෡ୣ୪ୟୱ୲୧ୡ	୬ୣ୲ = ሺ1 ൅  ୬ୣ୲ .                        (4)	ୣ୪ୟୱ୲୧ୡ	ଶሻ઺෡୒ୟï୴ୣߣ

 

The scaling was introduced to reduce perceived overshrinkage of the naïve estimator [1]. 

Hence, the elastic net estimator is defined as follows: 

 

  ઺෡ୣ୪ୟୱ୲୧ୡ	୬ୣ୲ = ሺ1 ൅ ܡ‖minஒሾ	ଶሻ൛argߣ െ ઺‖ଶ܆
ଶ ൅ ଶ‖઺‖ଶߣ

ଶ ൅  ଵ‖઺‖ଵሿൟ,               (5)ߣ
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where ߣଵ ൒ 0 and ߣଶ ൒ 0 are the penalty parameters, ‖઺‖ଵ ൌ 	∑ หߚ௝ห
௣
௝ୀଵ  is the L1 norm of ઺, 

and ‖઺‖ଶ
ଶ ൌ ∑ ௝ߚ

ଶ௣
௝ୀଵ  is the L2 norm of ઺. The L1 part of the elastic net performs automatic 

variable selection, while the L2 part stabilizes the solution parts and, hence, improves the 

prediction. 

 The penalty parameters (ߣଵ and ߣଶ) control the amount of shrinkage imposed on 

the coefficients, where some weak effects are forced to be exactly zero if the shrinkage 

level is large enough. Hence, the penalty parameters (ߣଵ and ߣଶ) can be named the 

shrinkage parameters. If the value of ߣଵ and ߣଶ are too small, then no shrinkage will be 

performed. If the value of ߣଵ and ߣଶ are too high, then all coefficients will be shrunk to zero. 

Hence, the penalty parameters (ߣଵ and ߣଶ) are important for the elastic net estimator. To 

solve the elastic net estimator, the researchers usually search for the optimal values of ߣଵ 

and ߣଶ. K-fold cross-validation method is commonly used for choosing the values of ߣଵ 

and ߣଶ [1]. To avoid intensive computation, a grid of values for ߣଶ is first specified. Zou and 

Hastie [1] suggested to pick a relatively small grid value of ߣଶ, They used (0, 0.01, 0.1, 1, 

10, 100, 1000). For each ߣଶ, a 10-fold cross-validation is then used to choose ߣଵ. The 

chosen ߣଶ is the one giving the smallest cross-validation error. 

 The elastic net has Bayesian interpretation as shown in (3), so many researchers 

adopted the elastic net in the Bayesian frameworks over the past years such as Bornn, 

Gottardo and Doucet [5], Kyung, Gill, Ghosh and Casella [6], Li and Lin [7], and Hans [8]. 

They did not propose the method for choosing the penalty parameters directly. Kyung, Gill, 

Ghosh and Casella [6] and Li and Lin [7] chose the penalty parameters ߣଵ and ߣଶ via Gibbs 

sampling approach. Bornn, Gottardo, and Doucet [5] and Hans [8] used cross-validation 

method to choose the values of penalty parameters ߣଵ and ߣଶ. 

 For elastic net method, there are two penalty parameters (ߣଵ and ߣଶ). In this 

article, we concentrate on ߣଶ. The penalty parameter ߣଶ is the penalty parameter of the L2 

part which stabilizes the solution part of the elastic net estimator. The value of ߣଶ is 

suggested to specify in the first step of the elastic net procedure [1]. Hence, the value of 

penalty parameter ߣଶ plays an important role for elastic net method.  

 The objective of this article is to propose the method for choosing the value of 

the L2 penalty parameter, ߣଶ, of elastic net linear regression model using Bayesian 

analysis. The value of ߣଶ is chosen by using its effect on the posterior model probabilities 

and the behavior of Bayes factor [9]. Hence, the value of ߣଶ is specified through Bayes 

factor. The Bayes factor proposed by Kass and Raftery [9] is a quantity for comparing 

models and for testing hypotheses in the Bayesian framework. Bayes factor has played a 

major role in assessing the goodness of fit of the competing models [10]. The advantages 
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of the Bayes factor can see in Kass and Raftery [9], Raftery [11], and Ntzoufras [12]. The 

method proposed in this article is developed from Lykou and Ntzoufras [13] which 

proposed Bayesian lasso variable selection and the specification of the value of the 

shrinkage parameter ߣଵ of the lasso [4] through Bayes factor. The prior distributions for ઺ 

and ߪଶ used in this article differ from the prior distribution used in [13]. In this research, we 

limit our attention to full rank model. This article is organized as follows. Section 2 

describes the process for choosing the value of the penalty parameter ߣଶ based on Bayes 

factor, ߣଶBF. Section 3 presents some simulation data to study the performance of naïve 

elastic net estimators where the value of ߣଶ is chosen by ߣଶBF method and the value of ߣଶ 

is chosen by 10-fold cross-validation method. Section 4 illustrates the performance of the 

 .ଶBF on some real data examples. Conclusion and discussion are provided in Section 5ߣ

 

2. Process for choosing the value of the penalty parameter ࣅ૛ based on Bayes factor 

 (૛BFࣅ)

In this process, the response and the predictor variables are transformed by the 

correlation transformation. The method of ߣଶ BF is the following.  

Step 1: Inclusion parameter 

We begin by indexing each candidate model with one binary vector, ઻ ൌ

	൫ߛଵ,… , ,௝ߛ … , ௣൯ߛ
்
. An element ߛ௝ takes value 0 or 1 depending on whether or not the jth 

predictor is excluded from the model. Hence, there are 2௣ possible models ܯଵ,…  ଶ೛ܯ,

where ܯ઻ corresponds to the ઻th subset of ܆ଵ, … ,  ௣. Each submodel is of the form܆

 

ܡ	:઻ܯ  ൌ ઻઺઻܆ ൅ ઽ ,                                             (6) 

 

where ܆઻ is an ݊ ൈ  ઻ design matrix whose columns correspond to the ઻th subset ofݍ

,ଵ܆ … , ઻ݍ ௣, ઺઻ is a܆ ൈ 1 vector of regression coefficients for the ઻th subset, ݍ઻ ≡ ઻்૚ 

denotes the size of the ઻th subset, and ઽ	~ ௡ܰሺ૙,  ଶ۷ሻ. The linear regression model for eachߪ

submodel of form (6) is    

 

,઺઻|ܡ  ,ଶߪ ઻	~	 ௡ܰሺ܆઻઺઻,  ଶ۷ሻ.                                   (7)ߪ

 

Step 2: Prior distribution for ઺, ߪଶ, and ઻ 

In the process for choosing the value of ߣଶ, we use the hierarchical prior models 

in the form of submodel (7) as follows: 
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Prior distribution for ઺ 

For elastic net estimator, the penalty parameter ߣଶ is the L2 part which is ridge 

penalty when ߣଵ ൌ 0. Suppose ܡ	~	 ௡ܰሺ܆઺,  ௝ is distributed asߚ ଶ۷ሻ and each parameterߪ

ܰሺ0, ߬ଶሻ, independently of one another, with ߬ଶ and ߪଶ assumed known. Then the ridge 

estimator is the mode of the posterior distribution of ઺ with ߣ ൌ ଶߪ ߬ଶ⁄   [14]. Hence, we 

assume 

 

ܰ	~	ଶߪ|௝ߚ  ቀ0,
ఙమ

ఒమ
ቁ  for ݆ ൌ 1,… ,  .݌

 

The prior distribution of ઺ in matrix form is  

 

 ઺|ߪଶ	~	 ௣ܰሺ૙,
ఙమ

ఒమ
۷ሻ.                                    (8) 

 

Prior distribution for ߪଶ 

 Assume ߪଶ has inverse gamma prior distribution [8, 15-17]. The inverse gamma 

prior for ߪଶ would maintain conjugacy which gives the posterior distribution in the closed 

form.   

 

gammaቀ	inverse	~	ଶߪ   
ఔ

ଶ
,
ఔక

ଶ
ቁ,                                                (9) 

 

 

(which is equivalent to ߦߥ ⁄ଶߪ ~߯ఔଶ). In this research, we choose ߥ ൌ 3 as suggested by 

Chipman, George and McCulloch [15] and choose ߦ ൌ ܵி௎௅௅
ଶ  (the traditional unbiased 

estimator of ߪଶ based on saturated model) [16].            

Prior distribution for ઻ 

For the specification of the model space prior, most Bayesian variable selection 

implementations have used independence priors of the form 

 

ሺ઻ሻ݌  ൌ ∏ ௝ݓ
ఊೕ௣

௝ୀଵ ሺ1 െ ௝ሻݓ
ଵିఊೕ.                                          (10) 

 

Under this prior, each ܆௝ enters the model independently of the other coefficients, with 

probability ݌൫ߛ௝ ൌ 1൯ ൌ 1 െ ௝ߛ൫݌ ൌ 0൯ ൌ ௝ݓ ௝. In this research, we setݓ ൌ 1 2⁄  which yields 

the uniform prior. 

Hence, the hierarchical prior models are summarized as follows: 
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,઺઻|ܡ ,ଶߪ ઻	~	 ௡ܰሺ܆઻઺઻,  ,ଶ۷ሻߪ

઺઻|ߪଶ, ઻	~	 ௤ܰ઻ሺ૙,
ఙమ

ఒమ
۷ሻ,                                     (11) 

ଶ|઻ߪ  ൌ gammaቀ	inverse	~	ଶߪ
ఔ

ଶ
,
ఔక

ଶ
ቁ, 

ሺ઻ሻ݌ ൌ ሺ1 2⁄ ሻ௣. 

 

Step 3: Posterior model probability of ઻ given ܡ 

Using the hierarchical prior models described in Step 2, the posterior model 

probability of ઻ given ܡ, ݂ሺ઻|ܡሻ, is  

 

  ݂ሺ઻|ܡሻ ൌ 	݂ሺܡ|઻ሻ݌ሺ઻ሻ.                                               (12) 

 

Step 4: Bayes factor 

 Bayes factor proposed by Kass and Raftery [9] is the posterior odds of one 

hypothesis when the prior probabilities of the two hypotheses are equal. For the Bayes 

factor used in this research, we define the hypotheses associated with the Bayes factor 

as  

 ,(ிܯ) ଵ: Full modelܪ versus   (ோܯ) ଴: Reduced modelܪ

where ܯோ (Reduced model) is the linear regression model with the predictors ܆઻, and ܯி 

(Full model) is the linear regression model with the predictors ܆઻ of the reduced model and 

additional predictor ܆௝.  

Suppose ܆઻ be the predictor variables of the reduced model, so 

 

:ோܯ ܡ ൌ ઻઺઻܆ ൅ ઽ ,   and ܯி: ܡ ൌ ઻઺઻܆ ൅ ௝઺௝܆ ൅ ઽ . 

 

The posterior odds of model ܯி versus model ܯோ is given by 

 

  ܲ ଵܱ଴ ൌ
௙൫ܯிหܡ൯
௙൫ܯோหܡ൯

	ൌ 	
௙൫ܡหܯி൯

௙൫ܡหܯோ൯
ൈ

௙ሺெಷሻ

௙ሺெೃሻ
   .                              (13) 

 

The Bayes factor for comparing the evidence of model ܯி versus model ܯோ is  

 

 BFଵ଴ ൌ
௙൫ܡหܯி൯

௙൫ܡหܯோ൯
  .                                              (14) 
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In this research, we use the uniform prior ݌ሺ઻ሻ ൌ ቀ
ଵ

ଶ
ቁ
௣
. Thus, the prior model 

probabilities ݂ሺܯிሻ and ݂ሺܯோሻ are equal for all competing models. Hence, 

 

 BFଵ଴ ൌ
௙൫ܯிหܡ൯
௙൫ܯோหܡ൯

  .                                                             (15) 

 

If the BFଵ଴ is greater than one, we choose the hypothesis ܪଵ. Otherwise, we 

choose ܪ଴. In this research, we use Bayes factor interpretation [9] as follows: 

 

Table 1. Bayes factor interpretation. 

BFଵ଴ Evidence against ܪ଴ 

1 ൏ ଵ଴ܨܤ ൏ 3 Negligible 

3 ൏ BFଵ଴ ൏ 20 Positive 

20 ൏ BFଵ଴ ൏ 150 Strong 

BFଵ଴ ൐ 150 Very strong 

 

Step 5: Specification of the value of the penalty parameter ߣଶ based on Bayes factor 

Step 5.1: For all pairs of hypotheses, we compute the Bayes factor for multiple linear 

regression model 

 

 BFଵ଴ሺெ௨௟௧௜௣௟௘	௠௢ௗ௘௟ሻ ൌ
௙൫ܡหߊி൯

௙ሺܡ|௹ೃሻ
                     (16) 

 

where the posterior probabilities ݂ሺߊ|ܡோሻ and ݂ሺߊ|ܡிሻ are 

 

݂ሺߊ|ܡோሻ = ሺߣଶሻ
೜ೱೃ
మ ቚ܆௹ೃ

் ೃ௹܆
൅ ଶ۷௤ೱೃߣ

ቚ
ି
భ
మ ൫ߦߥ ൅ ܵ௹ೃ

ଶ ൯
ି
ሺ೙శഌሻ
మ ,              (17) 

 

where                            

 

 ܵ௹ೃ
ଶ ൌ ܡ்ܡ െ ೃ௹܆்ܡ

ቂ܆௹ೃ
் ೃ௹܆

൅ ଶ۷௤ೱೃߣ
ቃ
ିଵ
ೃ௹܆
்  (18)                             .ܡ

 

݂ሺߊ|ܡிሻ = ሺߣଶሻ
೜ೱಷ
మ ቚ܆௹ಷ

் ಷ௹܆
൅ ଶ۷௤ೱಷߣ

ቚ
ି
భ
మ ൫ߦߥ ൅ ܵ௹ಷ

ଶ ൯
ି
ሺ೙శഌሻ
మ ,             (19) 
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where                           

 

 ܵ௹ಷ
ଶ ൌ ܡ்ܡ െ ಷ௹܆்ܡ

ቂ܆௹ಷ
் ಷ௹܆

൅ ଶ۷௤ೱಷߣ
ቃ
ିଵ
ಷ௹܆
்  (20)                              .ܡ

 

To find the posterior probabilities ݂ሺߊ|ܡிሻ and ݂ሺߊ|ܡோሻ, the shrinkage parameter 

ಷ௹ߠ ଶ is replaced byߣ
 and ߠ௹ೃ

, respectively. Thus, the posterior probabilities ݂ሺߊ|ܡோሻ and 

݂ሺߊ|ܡிሻ are 

 

 ݂ሺߊ|ܡோሻ = ൫ߠ௹ೃ
൯
೜ೱೃ
మ ቚ܆௹ೃ

் ೃ௹܆
൅ ೃ௹ߠ

۷௤ೱೃ
ቚ
ି
భ
మ ൫ߦߥ ൅ ܵ௹ೃ

ଶ ൯
ି
ሺ೙శഌሻ
మ ,           (21) 

 

where                       

 

 ܵ௹ೃ
ଶ ൌ ܡ்ܡ െ ೃ௹܆்ܡ

ቂ܆௹ೃ
் ೃ௹܆

൅ ೃ௹ߠ
۷௤ೱೃ

ቃ
ିଵ
ೃ௹܆
்  (22)                  .ܡ

 

 ݂ሺߊ|ܡிሻ = ൫ߠ௹ಷ
൯
೜ೱಷ
మ ቚ܆௹ಷ

் ಷ௹܆
൅ ಷ௹ߠ

۷௤ೱಷ
ቚ
ି
భ
మ ൫ߦߥ ൅ ܵ௹ಷ

ଶ ൯
ି
ሺ೙శഌሻ
మ ,             (23) 

 

where                      

 

 ܵ௹ಷ
ଶ ൌ ܡ்ܡ െ ಷ௹܆்ܡ

ቂ܆௹ಷ
் ಷ௹܆

൅ ಷ௹ߠ
۷௤ೱಷ

ቃ
ିଵ
ಷ௹܆
்  (24)             .ܡ

 

The shrinkage parameter ߣଶ ൒ 0. Hence, ߠ௹ಷ
൒ 0 and ߠ௹ೃ

൒ 0. In this research, 

we choose the value of ߠெ by the method proposed by Hoerl, Kennard, and Baldwin [18] 

(cited by [19]). The value of  ߠெ is 

 

ெߠ ൌ
௤ಾௌಾ

మ

ൣ઺෡ಽೄሺ౉ሻ൧
೅
ൣ઺෡ಽೄሺ౉ሻ൧

  ,      (25) 

 

where ݍெ is the number of parameters in the model ܯ (not counting the intercept term), 

ܵெ
ଶ  is the residual mean square in the analysis of variance table obtained from the standard 

least squared fit of the model ܯ, and ઺෡௅ௌሺெሻ is the least squared estimator of the parameter 

in model ܯ. 
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Step 5.2: Specification of the value of the penalty parameter ߣଶ based on Bayes 

factor,	ߣଶBF, for elastic net regression model. 

Step 5.2.1: If the Bayes factor BFଵ଴ሺெ௨௟௧௜௣௟௘	௠௢ௗ௘௟ሻ ൐ 1, the model ܯி is a 

significance model as defined by Bayes factor and ߠ௹ಷ
 associated with this model is 

considered to be the choice of the value of ߣଶ. There are many models ܯி in the set 

BFଵ଴ሺெ௨௟௧௜௣௟௘	௠௢ௗ௘௟ሻ ൐ 1, so there are many ߠ௹ಷ
 associated with these models. The value 

ಷ௹ߠ
 of the model ܯி which has the highest posterior model probability ݂ሺߊ|ܡிሻ (the 

posterior model probability using the prior in (11)) is selected to be the value of ߣଶ 

associated with Bayes factor and this ߣଶ is called ߣଶBF.  

Step 5.2.2: For checking the validity of ߣଶBF to fit the elastic net model, the Bayes 

factor for elastic net linear regression model, BF௘௟௔௦௧௜௖	௡௘௧, is computed. (The derivation of 

BF௘௟௔௦௧௜௖	௡௘௧ is in Appendix.) The appropriate value of ߣଶBF should give the Bayes factor 

BF௘௟௔௦௧௜௖	௡௘௧ ൐ 1. 

 

3. Simulation Study 

In this section, we present simulations to study the performance of the naïve 

elastic net estimator. We considered two methods for choosing the value of the penalty 

parameter ߣଶ: the value of ߣଶ is based on Bayes factor (ߣଶBF), and the value of ߣଶ is 

chosen by the 10-fold cross-validation method (ߣଶCV). The elastic net method is 

implemented using lasso command of MATLAB2012a software. The 10-fold cross-

validation (CV) method for tuning the penalty parameters (ߣଵ and ߣଶ) is CV random 

partition using MATLAB2012a software. The value of ߣ estimated by 10-fold CV method 

is the ߣ with minimum mean prediction squared error as calculated by CV. For naïve elastic 

net estimator, the relationship between the shrinkage parameters is ߙ ൌ ଶߣ ሺߣଵ ൅ ⁄ଶሻߣ  

where	ߙ ∈ ሺ0,1). Thus, we study the performance of the elastic net estimator with variety 

values of ߙ. The decision criterions are the following. 

 1. The prediction accuracy is measured by the prediction error (ܲܧ) defined as 

ܡሺܧ െ ොܡ  ොሻଶ whereܡ ൌ  .઺෡܆

 2. For each estimator ઺෡, its estimation accuracy is measured by the mean square 

error (ܧܵܯሺ઺෡ሻ) defined as ܧ ቂ൫઺ െ ઺෡൯
்
൫઺ െ ઺෡൯ቃ. 

 3. The variable selection performance is gauged by ሺܥ,  is the ܥ ሻ, whereܥܫ

number of zero coefficients that are correctly estimated by zero and ܥܫ is the number of 

nonzero coefficients that are incorrectly estimated by zero. 
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 For each value of ߙ, the average of ܲ,ܧ	ܧܵܯሺ઺෡ሻ, ܥ and ܥܫ are computed based 

on 100 datasets of each simulation design. The standard errors of ܲܧ and ܧܵܯሺ઺෡ሻ are 

estimated using the bootstrap with B = 500 resampling from 100 ܲܧ’s and 100 ܧܵܯሺ઺෡ሻ’s, 

respectively. 

3.1 Simulation study I 

 We generate 100 datasets using the simulation design proposed by Lykou and 

Ntzoufras [13], which consists of 15 predictor variables of 50 observations each. The first 

10 predictors follow independent standard normal distribution and the last 5 predictors are 

generated as follows, 

 

(x11,…,x15) ൌ	 (x1,…,x5) × ሺ0.3,0.5,0.7,0.9,1.1ሻ୘ × (1,1,1,1,1) + E , 

 

where E consists of 5 independent N(0,1) random variables. The response variable is 

generated as  

 

y = 2x1	-	x5 + 1.5x7 + x11 + 0.5x13 + ε , 

 

where ε ~ N(0,2.52). This set of simulated data comprises of predictor variables that are 

correlated with each other. The simulation method is repeated 100 times. This dataset has 

different correlations between predictor variables. The last five predictors are highly 

correlated, whereas, there are small to moderate correlations between x௝	, ݆ ൌ 1,… ,5 and 

x11,…,x15	.  

Using the process for choosing the value of the penalty parameter ߣଶ based on 

Bayes factor (ߣଶBF) described in Section 2, the value of ߣଶBF is computed for 100 

simulation datasets. We correct the validity of ߣଶBF by using Bayes factor BF௘௟௔௦௧௜௖	௡௘௧. The 

BF௘௟௔௦௧௜௖	௡௘௧ is computed using variety value of ߙ (Table 2). For all values of ߙ, the 

simulation result reveals that the value ߣଶBF gives BF௘௟௔௦௧௜௖	௡௘௧ ൐ 1, whereas BF௘௟௔௦௧௜௖	௡௘௧ ൐

3 is derived using the small value of ߙ. Hence, the appropriate value of ߣଶBF is the value 

ಷ௹ߠ
 of the submodel ߊி which has highest posterior model probability ݂ሺߊ|ܡிሻ, (the 

posterior model probability using the prior in (11)). 

Table 3 shows result of naïve elastic net estimators for simulation study I where 

the penalty parameters ߣଶ are chosen by ߣଶCV and ߣଶBF. Using the value of ߣଶBF and ߙ 

is close to one, the naïve elastic net estimator has the prediction performance better than 

the naïve elastic net estimator where the value of ߣଶ is chosen by ߣଶCV. Using ߣଶBF, the 

prediction error of the naïve elastic net estimator tends to be large when ߙ is close to zero. 
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At some value of ߙ, the naïve elastic net estimator where the value of ߣଶ is chosen by 

 ଶ is chosenߣ ሺ઺෡ሻ less than the naïve elastic net estimator where the value ofܧܵܯ ଶBF hasߣ

by ߣଶCV. At some value of ߙ, the naïve elastic net estimator where the value of ߣଶ is 

chosen by ߣଶBF performs both prediction performance and estimation accuracy better 

than the naïve elastic net estimator where the value of ߣଶ is chosen by ߣଶCV. The variable 

selection performance is gauged by ሺܥ,  ሻ, the naïve elastic net estimator where the valueܥܫ

of ߣଶ is chosen by ߣଶCV has the variable selection performance better than the naïve 

elastic net estimator where the value of ߣଶ is chosen by ߣଶBF. Nevertheless, the naïve 

elastic net estimator where the value of ߣଶ is chosen by ߣଶBF has the variable selection 

performance, ܥ is close to true value of ܥ, better than the naïve elastic net estimator where 

the value of ߣଶ is chosen by ߣଶCV when ߙ is small. 

 

Table 2. Summary BF௘௟௔௦௧௜௖	௡௘௧ for simulation study I. 

BF௘௟௔௦௧௜௖ > 1 ߙ ௡௘௧< 3 3 < BF௘௟௔௦௧௜௖ ௡௘௧< 20 BF௘௟௔௦௧௜௖	௡௘௧ > 20 

0.9 100 datasets - - 

0.8 100 datasets - - 

0.7 100 datasets - - 

0.6 100 datasets - - 

0.5 100 datasets - - 

0.4 100 datasets - - 

0.3 100 datasets - - 

0.2 100 datasets - - 

0.1 100 datasets - - 

0.05 100 datasets 16 datasets - 

0.04 100 datasets 51 datasets 1 dataset 

0.03 100 datasets 94 datasets 4 datasets 

0.02 100 datasets 98 datasets 38 datasets 

0.01 100 datasets 98 datasets 92 datasets 
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Table 3. Model selection and fitting results of the naïve elastic net estimators for simulation 

study I where the value of penalty parameters ߣଶ are chosen by ߣଶCV and ߣଶBF . 

 ߙ

Method for choosing the value of the shrinkage parameter ߣଶ 

 ଶBFߣ ଶCVߣ

 ܥܫ ܥ ሺ઺෡ሻܧܵܯ ܧܲ ܥܫ ܥ ሺ઺෡ሻܧܵܯ ܧܲ

0.9 4.7364 (0.1110) 0.1739 (0.0187) 0.53 0.07 4.2591 (0.0925) 0.1858  (0.0089) 0.13 0.04 

0.8 4.7545 (0.1171) 0.1735 (0.0248) 1.22 0.13 4.2749 (0.0944) 0.1780  (0.0086) 0.32 0.05 

0.7 4.7669 (0.1112) 0.1550 (0.0122) 1.81 0.23 4.2968 (0.0973) 0.1696  (0.0084) 0.55 0.07 

0.6 4.8117 (0.1217) 0.1819 (0.0204) 2.47 0.29 4.3275 (0.0995) 0.1609  (0.0080) 0.84 0.09 

0.5 4.8143 (0.1263) 0.1788 (0.0260) 2.92 0.37 4.3742 (0.1029) 0.1514  (0.0075) 1.25 0.11 

0.4 4.8442 (0.1268) 0.1762 (0.0202) 3.49 0.37 4.4501 (0.1092) 0.1417  (0.0067) 1.81 0.19 

0.3 4.8483 (0.1300) 0.1723 (0.0223) 4.04 0.50 4.5850 (0.1028) 0.1335  (0.0063) 2.69 0.28 

0.2 4.9220 (0.1100) 0.1636 (0.0210) 4.70 0.58 4.8654 (0.1217) 0.1320  (0.0061) 4.02 0.43 

0.1 4.8910 (0.1256) 0.1733 (0.0268) 5.00 0.64 5.7001 (0.1472) 0.1525  (0.0067) 6.14 0.92 

0.09 4.9151 (0.1247) 0.1718 (0.0254) 5.12 0.68 5.8816 (0.1560) 0.1585  (0.0074) 6.55 1.02 

0.08 4.8919 (0.1213) 0.1720 (0.0263) 5.02 0.71 6.1082 (0.1674) 0.1662  (0.0079) 6.94 1.13 

0.07 4.8459 (0.1186) 0.1581 (0.0152) 4.93 0.69 6.4014 (0.1720) 0.1760  (0.0079) 7.30 1.21 

0.06 4.8836 (0.1288) 0.1888 (0.0278) 4.95 0.69 6.7972 (0.1985) 0.1898  (0.0095) 7.75 1.38 

0.05 4.8858 (0.1179) 0.1737 (0.0226) 5.08 0.69 7.3519 (0.2223) 0.2094  (0.0097) 8.15 1.52 

0.04 4.8900 (0.1275) 0.1760 (0.0233) 5.16 0.78 8.2403 (0.2690) 0.2418  (0.0116) 8.71 1.69 

0.03 4.9169 (0.1205) 0.1676 (0.0238) 5.36 0.74 9.7310 (0.2931) 0.2971  (0.0128) 9.19 2.12 

0.02 4.8752 (0.1151) 0.1751 (0.0274) 5.11 0.73 12.5960(0.3705) 0.3943  (0.0121) 9.65 2.92 

0.01 4.9237 (0.1168) 0.1761 (0.0242) 5.42 0.77 17.6766(0.3707) 0.5385  (0.0061) 9.97 4.63 
 

The numbers in parenthesis are the corresponding standard errors of ܲܧ and ܧܵܯ൫઺෡൯ 

estimated using the bootstrap with B = 500 resampling from the 100 ܲܧ’s and 100 

 .is 10 ܥ ሺ઺෡ሻ’s, respectively. For simulation study I, the true value ofܧܵܯ

 

3.2 Simulation study II 

In this section, we study the performance of the ߣଶBF with the simulation design 

where the number of parameters (݌) depend on the sample size (݊). The datasets are 

simulated by the simulation method proposed by Zou and Zhang [20].  

Let ݌ ൌ ௡݌ ൌ ൣ4݊ଵ ଶ⁄ ൧ െ 5  for n = 100, 200, 400. The data is generated from the 

linear regression model 

 

ܡ ൌ ઺܂܆ ൅ ઽ , 

 

where ܡ is an ݊ ൈ 1 vector of response variable, ઺ is an ݌ ൈ 1  vector of parameter of 

regression coefficients, and ઽ is an ݊ ൈ 1  vector of random errors where  ઽ	~ܰሺ૙,  ߪ ,ଶ۷ሻߪ

= 6. Let ܆ ൌ ,ଵ܆ൣ ,ଶ܆ … , ௣൧܆
்
݊ ௝ is an܆ ; ൈ 1 vector of the j th predictor variables. ܆ follows 
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a p-dim multivariate normal distribution with zero mean and covariance ઱, ܆	~ ௣ܰሺ૙, ઱ሻ, 

where the covariance matrix ઱ has the entry ઱௝,௞= corrሺ݆, ݇ሻ ൌ ,	|௝ି௞|ߩ 1 ൑ ݇	, ݆ ൑  In this .݌

research, we set 0.5 = ߩ and 0.75 = ߩ. Let ૚௤ denotes a ݍ ൈ 1 vector of 1’s, and ૙௣ିଷ௤ 

denotes a ሺ݌ െ ሻݍ3 ൈ 1 vector of 0’s. The true coefficients ઺ ൌ ൫3 ⋅ ૚௤, 3 ⋅ ૚௤, 3 ⋅ ૚௤, ૙௣ିଷ௤൯
்
 

where ݍ ൌ ሾ݌௡ 9⁄ ሿ. Let ࣛ ൌ ൛	݆ ∶ 	 ௝ߚ ് 0, ݆ ൌ 1, 2,… , -ൟ. The size of ࣛ is the number of non݌

zero coefficients which are used to generate the response variable of the model. For this 

simulation method, the size of ࣛ is denoted by |ࣛ| ൌ  There are six cases for .ݍ3

combination of n = 100, 200, 400 and 0.75 ,0.5 = ߩ. The simulation method is repeated 

100 times.  

 Table 4 – Table 6 show the model selection and fitting results of the naïve elastic 

net estimators for simulation study II with different value of ߙ. For every combination of 

 ଶ isߣ is not close to zero, the naïve elastic net estimator where the value of ߙ and (ߩ	,݌	,݊)

chosen by ߣଶBF has the prediction performance better than the naïve elastic net estimator 

where the value of ߣଶ is chosen by ߣଶCV. For almost cases, the naïve elastic net estimator 

where the value of ߣଶ is chosen by ߣଶCV performs the estimation accuracy better than the 

naïve elastic net estimator where the value of ߣଶ is chosen by ߣଶBF. At some small value 

of ߙ, the naïve elastic net estimator where the value of ߣଶ is chosen by ߣଶBF has the 

estimation accuracy better than the naïve elastic net estimator where the value of ߣଶ is 

chosen by ߣଶCV. For variable selection performance, the naïve elastic net estimator where 

the value of ߣଶ is chosen by ߣଶCV has the variable selection performance better than the 

naïve elastic net estimator where the value of ߣଶ is chosen by ߣଶBF. For small value of ߙ 

 ଶBFߣ ଶ is chosen byߣ the naïve elastic net estimator where the value of ,(is close to zero ߙ)

has the value ܥ tends to the true value of ܥ better than the naïve elastic net estimator 

where the value of ߣଶ is chosen by ߣଶCV. 
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Table 4. Model selection and fitting results of naïve elastic net estimators for simulation 

study II: ݊	= 100 and ݌௡ = 35. 

݊  0.5 = ߩ    ,௡ = 35݌   ,100 =

 ߩ
Truth 

 ߙ
 ଶBFߣ ଶCVߣ

ܥܫ ܥ  ܥܫ ܥ ሺ઺෡ሻܧܵܯ ܧܲ ܥܫ ܥ ሺ઺෡ሻܧܵܯ ܧܲ

0.5 26 0 0.9 27.0197  (0.4712) 0.3476  (0.0116) 1.25 0 23.3527  0.4215) 0.7631  (0.0224) 0.26 0 

   
0.8 27.3919  (0.5048) 0.3190  (0.0098) 2.82 0 23.3792  (0.3803) 0.7469  (0.0215) 0.49 0 

   
0.7 27.6590  (0.5507) 0.3032  (0.0093) 4.50 0 23.4165  (0.3985) 0.7268  (0.0212) 0.77 0 

   
0.6 28.2900  (0.5340) 0.2769  (0.0097) 6.82 0 23.4717  (0.3931) 0.7014  (0.0200) 1.16 0 

   0.5 28.6017  (0.5310) 0.2649  (0.0113) 8.82 0 23.5589  (0.4174) 0.6680  (0.0196) 1.65 0 

   0.4 29.1849  (0.5599) 0.2465  (0.0110) 11.06 0 23.7110  (0.4057) 0.6218  (0.0179) 2.26 0 

   0.3 29.7014  (0.5257) 0.2379  (0.0109) 13.57 0 24.0115  (0.4244) 0.5548  (0.0167) 3.51 0 

   
0.2 29.7958  (0.5952) 0.2433  (0.0119) 15.38 0 24.7206  (0.4334) 0.4537  (0.0139) 5.79 0 

   
0.1 30.2554  (0.5788) 0.2441  (0.0120) 17.60 0 27.1133  (0.4779) 0.2989  (0.0125) 11.76 0 

   
0.09 30.4487  (0.6386) 0.2339  (0.0099) 18.04 0 27.6419  (0.4904) 0.2807  (0.0120) 12.82 0 

   0.08 30.2920  (0.6345) 0.2476  (0.0127) 17.92 0 28.2887  (0.5066) 0.2630  (0.0115) 14.06 0 

   0.07 30.5599  (0.5508) 0.2417  (0.0116) 18.38 0 29.0935  (0.5255) 0.2466  (0.0111) 15.42 0 

   0.06 30.3694  (0.6509) 0.2514  (0.0130) 18.20 0 30.1075  (0.5470) 0.2324  (0.0106) 16.95 0 

   
0.05 30.0570  (0.5936) 0.2626  (0.0135) 18.08 0 31.4413  (0.5579) 0.2220  (0.0098) 19.14 0 

   
0.04 30.4318  (0.6136) 0.2564  (0.0134) 18.71 0 33.3806  (0.6844) 0.2204  (0.0091) 20.96 0 

   
0.03 30.2753  (0.5783) 0.2610  (0.0135) 18.63 0 36.5138  (0.7253) 0.2393  (0.0088) 23.48 0.01 

   0.02 30.3068  (0.6351) 0.2735  (0.0172) 18.98 0 43.1768  (0.8871) 0.3232  (0.0117) 25.29 0.03 

   0.01 30.2835  (0.6037) 0.2658  (0.0140) 19.00 0 72.1491  (2.2532) 0.7680  (0.0285) 25.94 0.69 
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Table 4. (Continued). 

݊  0.75 = ߩ    ,௡ = 35݌   ,100 =

 ߩ

Truth 

 ߙ

 ଶBFߣ ଶCVߣ

 ܥܫ ܥ ሺβ෠ሻܧܵܯ ܧܲ ܥܫ ܥ ሺβ෠ሻܧܵܯ ܧܲ ܥܫ ܥ

0.75 26 0 0.9 28.2136  (0.4770) 0.3010  (0.0129) 2.14 0 23.2912  (0.3677) 1.4239  (0.0483) 0.24 0 

   0.8 28.4762  (0.5303) 0.2843  (0.0140) 4.30 0 23.3149  (0.3845) 1.3957  (0.0454) 0.44 0 

   0.7 28.9119  (0.4746) 0.2666  (0.0173) 6.73 0 23.3477  (0.3959) 1.3608  (0.0489) 0.71 0.01 

   0.6 29.4100  (0.5178) 0.2438  (0.0179) 9.28 0 23.3953  (0.3796) 1.3163  (0.0442) 1.04 0.03 

   0.5 29.8884  (0.5297) 0.2239  (0.0158) 11.98 0 23.4690  (0.3887) 1.2578  (0.0444) 1.44 0.03 

   0.4 30.2770  (0.4994) 0.2110  (0.0137) 14.56 0 23.5919  (0.4130) 1.1776  (0.0441) 2.31 0.04 

   0.3 30.7705  (0.4875) 0.2146  (0.0155) 17.14 0 23.8238  (0.3991) 1.0618  (0.0414) 3.36 0.06 

   0.2 30.6925  (0.4935) 0.2371  (0.0174) 18.69 0.01 24.3525  (0.3913) 0.8825  (0.0379) 5.55 0.05 

   0.1 30.9058  (0.5215) 0.2809  (0.0189) 20.43 0.02 26.0741  (0.4032) 0.5825  (0.0305) 10.76 0.05 

   0.09 31.1063  (0.5396) 0.2778  (0.0174) 20.98 0.01 26.4299  (0.4073) 0.5456  (0.0289) 11.78 0.04 

   0.08 31.0708  (0.5248) 0.2966  (0.0204) 20.82 0.02 26.8578  (0.4324) 0.5077  (0.0283) 12.56 0.04 

   0.07 30.9802  (0.4698) 0.3116  (0.0227) 21.05 0.01 27.3832  (0.4320) 0.4700  (0.0261) 13.93 0.05 

   0.06 31.1741  (0.5264) 0.3140  (0.0221) 21.46 0.04 28.0007  (0.4376) 0.4348  (0.0274) 15.45 0.05 

   0.05 31.0699  (0.4493) 0.3234  (0.0205) 21.47 0.03 28.7370  (0.4628) 0.4021  (0.0238) 17.21 0.05 

   0.04 30.8949  (0.5077) 0.3441  (0.0205) 21.44 0.04 29.6760  (0.4708) 0.3727  (0.0240) 18.86 0.05 

   0.03 30.8157  (0.4875) 0.3605  (0.0233) 21.36 0.06 31.0206  (0.4897) 0.3507  (0.0210) 21.01 0.06 

   0.02 30.8951  (0.4950) 0.3686  (0.0210) 21.63 0.08 33.3505  (0.5347) 0.3462  (0.0209) 23.38 0.07 

   0.01 30.8513  (0.4806) 0.4132  (0.0269) 21.66 0.07 40.9169  (0.9822) 0.4196  (0.0217) 25.54 0.19 
 

The numbers in parenthesis are the corresponding standard errors of ܲܧ and ܧܵܯሺ઺෡ሻ 
estimated using the bootstrap with B = 500 resampling from the 100 ܲܧ’s, and 100 

  .ሺ઺෡ሻ’s, respectivelyܧܵܯ
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Table 5. Model selection and fitting results of naïve elastic net estimators for simulation 

study II: ݊	= 200 and ݌௡ = 51. 

݊  0.5 = ߩ    ,௡ = 51݌   ,200 =

 ߩ
Truth 

 ߙ
 ଶBFߣ ଶCVߣ

ܥܫ ܥ  ܥܫ ܥ ሺ઺෡ሻܧܵܯ ܧܲ ܥܫ ܥ ሺ઺෡ሻܧܵܯ ܧܲ

0.5 36 0 0.9 28.3981  (0.3431) 0.1940  (0.0048) 1.76 0 26.3703  (0.3098) 0.3395  (0.0075) 0.13 0 

   0.8 28.5592  (0.3387) 0.1814  (0.0046) 3.59 0 26.3796  (0.3078) 0.3340  (0.0076) 0.35 0 

   0.7 28.8540  (0.3537) 0.1691  (0.0046) 5.97 0 26.3935  (0.3155) 0.3272  (0.0075) 0.65 0 

   0.6 29.1381  (0.3517) 0.1567  (0.0046) 8.64 0 26.4151  (0.2952) 0.3185  (0.0075) 1.13 0 

   0.5 29.4533  (0.3756) 0.1451  (0.0042) 11.68 0 26.4508  (0.3037) 0.3068  (0.0077) 1.91 0 

   0.4 29.8231  (0.3635) 0.1360  (0.0043) 15.07 0 26.5157  (0.3017) 0.2906  (0.0073) 2.81 0 

   0.3 30.1617  (0.3671) 0.1290  (0.0043) 18.04 0 26.6495  (0.3141) 0.2665  (0.0068) 4.34 0 

   0.2 30.5984  (0.3711) 0.1259  (0.0048) 21.45 0 26.9924  (0.3119) 0.2276  (0.0059) 7.24 0 

   0.1 30.8230  (0.3596) 0.1258  (0.0048) 24.35 0 28.3058  (0.3297) 0.1618  (0.0048) 15.22 0 

   0.09 30.9338  (0.4049) 0.1254  (0.0049) 24.73 0 28.6078  (0.3613) 0.1536  (0.0049) 16.82 0 

   0.08 30.8147  (0.3607) 0.1261  (0.0042) 24.56 0 28.9835  (0.3447) 0.1452  (0.0048) 18.49 0 

   0.07 30.9431  (0.3822) 0.1261  (0.0048) 25.22 0 29.4668  (0.3560) 0.1370  (0.0047) 20.19 0 

   0.06 30.9112  (0.3852) 0.1277  (0.0047) 25.20 0 30.1043  (0.3428) 0.1293  (0.0044) 22.39 0 

   0.05 30.9377  (0.3633) 0.1282  (0.0043) 25.56 0 30.9635  (0.3758) 0.1233  (0.0044) 25.14 0 

   0.04 31.0337  (0.3759) 0.1281  (0.0047) 25.98 0 32.1606  (0.3791) 0.1207  (0.0043) 28.11 0 

   0.03 30.9982  (0.3943) 0.1302  (0.0049) 26.15 0 34.1056  (0.4076) 0.1255  (0.0044) 31.41 0 

   0.02 30.9534  (0.3943) 0.1316  (0.0051) 26.09 0 38.1089  (0.4803) 0.1543  (0.0054) 34.54 0 

   0.01 30.9319  (0.3871) 0.1327  (0.0050) 26.23 0 55.1290  (0.8797) 0.3336  (0.0109) 35.94 0.02 
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Table 5. (Continued). 

݊  0.75 = ߩ    ,௡ = 51݌   ,200 =

 ߩ
Truth 

 ߙ
 ଶBFߣ ଶCVߣ

ܥܫ ܥ  ܥܫ ܥ ሺβ෠ሻܧܵܯ ܧܲ ܥܫ ܥ ሺβ෠ሻܧܵܯ ܧܲ

0.75 36 0 0.9 30.0407  (0.3708) 0.1865  (0.0063) 2.73 0 26.9033  (0.3273) 0.6741  (0.0177) 0.27 0 

   0.8 30.3418  (0.3610) 0.1687  (0.0062) 6.03 0 26.9161  (0.3165) 0.6617  (0.0169) 0.62 0 

   0.7 30.6939  (0.3814) 0.1528  (0.0062) 9.58 0 26.9346  (0.3096) 0.6464  (0.0174) 0.97 0 

   0.6 31.0237  (0.3534) 0.1417  (0.0067) 13.23 0 26.9625  (0.3036) 0.6268  (0.0166) 1.38 0 

   0.5 31.4804  (0.3823) 0.1310  (0.0058) 17.33 0 27.0076  (0.3198) 0.6007  (0.0175) 2.03 0 

   0.4 31.8323  (0.3675) 0.1267  (0.0070) 21.04 0 27.0871  (0.3135) 0.5646  (0.0155) 3.14 0 

   0.3 32.1215  (0.3709) 0.1246  (0.0066) 24.29 0 27.2466  (0.3398) 0.5116  (0.0166) 4.83 0 

   0.2 32.3657  (0.3673) 0.1319  (0.0062) 26.83 0 27.6306  (0.3271) 0.4277  (0.0147) 8.07 0 

   0.1 32.4528  (0.3603) 0.1586  (0.0078) 29.03 0 28.9601  (0.3265) 0.2878  (0.0126) 15.48 0 

   0.09 32.4124  (0.3588) 0.1647  (0.0083) 28.95 0 29.2411  (0.3284) 0.2710  (0.0130) 17.05 0 

   0.08 32.3310  (0.3779) 0.1687  (0.0083) 29.08 0 29.5719  (0.3070) 0.2543  (0.0119) 18.61 0 

   0.07 32.3409  (0.3801) 0.1750  (0.0083) 29.18 0 29.9589  (0.3472) 0.2384  (0.0113) 20.52 0 

   0.06 32.3340  (0.3683) 0.1801  (0.0081) 29.30 0 30.4266  (0.3410) 0.2233  (0.0112) 22.52 0 

   0.05 32.2802  (0.3879) 0.1884  (0.0085) 29.33 0 30.9956  (0.3377) 0.2098  (0.0100) 24.73 0 

   0.04 32.2772  (0.3787) 0.1941  (0.0103) 29.62 0 31.7217  (0.3360) 0.1990  (0.0099) 27.41 0 

   0.03 32.3147  (0.3559) 0.1990  (0.0094) 29.82 0 32.7258  (0.3594) 0.1918  (0.0087) 30.10 0 

   0.02 32.1887  (0.3809) 0.2106  (0.0096) 29.62 0 34.4767  (0.3771) 0.1928  (0.0093) 33.23 0 

   0.01 32.2076  (0.3716) 0.2187  (0.0104) 29.80 0 40.4271  (0.5470) 0.2383  (0.0089) 35.64 0.01 

The numbers in parenthesis are the corresponding standard errors of ܲܧ and ܧܵܯሺ઺෡ሻ 

estimated using the bootstrap with B = 500 resampling from the 100 ܲܧ’s, and 100 

 .ሺ઺෡ሻ’s, respectivelyܧܵܯ
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Table 6. Model selection and fitting results of naïve elastic net estimators for simulation 

study II: ݊	= 400 and ݌௡ = 75. 

݊  0.5 = ߩ    ,௡ = 75݌   ,400 =

 ߩ
Truth 

 ߙ
 ଶBFߣ ଶCVߣ

 ܥܫ ܥ ሺβ෠ሻܧܵܯ ܧܲ ܥܫ ܥ ሺβ෠ሻܧܵܯ ܧܲ ܥܫ ܥ

0.5 51 0 0.9 29.7342  (0.2344) 0.1124  (0.0021) 1.98 0 28.6442  (0.2195) 0.1678  (0.0033) 0.22 0 

   0.8 29.9357  (0.2417) 0.1041  (0.0023) 4.32 0 28.6470  (0.2291) 0.1660  (0.0031) 0.49 0 

   0.7 30.0597  (0.2493) 0.0970  (0.0019) 7.40 0 28.6513  (0.2339) 0.1638  (0.0031) 0.98 0 

   0.6 30.3179  (0.2544) 0.0892  (0.0020) 11.00 0 28.6582  (0.2288) 0.1609  (0.0031) 1.54 0 

   0.5 30.6452  (0.2618) 0.0811  (0.0021) 15.57 0 28.6699  (0.2248) 0.1570  (0.0031) 2.22 0 

   0.4 30.9591  (0.2519) 0.0747  (0.0020) 20.14 0 28.6921  (0.2411) 0.1514  (0.0030) 3.10 0 

   0.3 31.2381  (0.2626) 0.0699  (0.0019) 24.60 0 28.7402  (0.2357) 0.1428  (0.0027) 4.64 0 

   0.2 31.5680  (0.2551) 0.0660  (0.0017) 29.46 0 28.8723  (0.2247) 0.1277  (0.0026) 7.77 0 

   0.1 31.6470  (0.2607) 0.0662  (0.0019) 32.67 0 29.4628  (0.2376) 0.0965  (0.0021) 15.87 0 

   0.09 31.7481  (0.2753) 0.0653  (0.0020) 33.42 0 29.6174  (0.2378) 0.0917  (0.0022) 17.36 0 

   0.08 31.7449  (0.2682) 0.0657  (0.0019) 33.95 0 29.8161  (0.2338) 0.0866  (0.0021) 19.45 0 

   0.07 31.8506  (0.2893) 0.0649  (0.0018) 34.71 0 30.0764  (0.2399) 0.0811  (0.0019) 22.03 0 

   0.06 31.8116  (0.2718) 0.0655  (0.0020) 34.73 0 30.4254  (0.2410) 0.0754  (0.0019) 25.30 0 

   0.05 31.9557  (0.2607) 0.0647  (0.0018) 35.91 0 30.9026  (0.2380) 0.0698  (0.0018) 29.11 0 

   0.04 31.8538  (0.2731) 0.0658  (0.0019) 35.60 0 31.5871  (0.2544) 0.0648  (0.0016) 33.83 0 

   0.03 31.8563  (0.2614) 0.0659  (0.0018) 35.91 0 32.6799  (0.2632) 0.0618  (0.0017) 39.25 0 

   0.02 31.7761  (0.2814) 0.0664  (0.0019) 35.69 0 34.8073  (0.2924) 0.0652  (0.0017) 46.18 0 

   0.01 31.8163  (0.2749) 0.0667  (0.0019) 36.05 0 42.1288  (0.4126) 0.1075  (0.0028) 50.75 0 
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Table 6. (Continued). 

݊  0.75 = ߩ    ,௡ = 75݌   ,400 =

 ߩ
Truth 

 ߙ
 ଶBFߣ ଶCVߣ

 ܥܫ ܥ ሺβ෠ሻܧܵܯ ܧܲ ܥܫ ܥ ሺβ෠ሻܧܵܯ ܧܲ ܥܫ ܥ

0.75 51 0 0.9 31.2760  (0.2286) 0.1174  (0.0027) 4.34 0 29.2677  (0.2259) 0.3445  (0.0068) 0.38 0 

   0.8 31.4973  (0.2576) 0.1062  (0.0025) 8.87 0 29.2735  (0.2247) 0.3391  (0.0066) 0.73 0 

   0.7 31.7710  (0.2440) 0.0951  (0.0025) 14.12 0 29.2823  (0.2152) 0.3323  (0.0069) 1.21 0 

   0.6 32.0469  (0.2591) 0.0870  (0.0025) 19.43 0 29.2961  (0.2148) 0.3235  (0.0067) 1.85 0 

   0.5 32.3491  (0.2344) 0.0807  (0.0022) 24.68 0 29.3196  (0.2215) 0.3118  (0.0065) 2.70 0 

   0.4 32.6519  (0.2501) 0.0776  (0.0025) 29.57 0 29.3627  (0.2273) 0.2955  (0.0060) 4.20 0 

   0.3 32.7587  (0.2390) 0.0789  (0.0023) 33.61 0 29.4533  (0.2189) 0.2711  (0.0054) 6.42 0 

   0.2 33.0183  (0.2323) 0.0826  (0.0025) 37.82 0 29.6874  (0.2169) 0.2315  (0.0053) 10.71 0 

   0.1 33.1332  (0.2419) 0.0960  (0.0033) 40.53 0 30.5516  (0.2175) 0.1631  (0.0041) 21.54 0 

   0.09 33.0487  (0.2551) 0.0995  (0.0032) 40.52 0 30.7440  (0.2307) 0.1543  (0.0041) 23.57 0 

   0.08 33.0701  (0.2497) 0.1007  (0.0035) 40.92 0 30.9765  (0.2196) 0.1454  (0.0041) 25.77 0 

   0.07 33.0901  (0.2514) 0.1029  (0.0033) 41.19 0 31.2627  (0.2411) 0.1365  (0.0038) 28.04 0 

   0.06 33.0349  (0.2526) 0.1057  (0.0033) 41.08 0 31.6087  (0.2271) 0.1281  (0.0037) 31.19 0 

   0.05 33.0648  (0.2486) 0.1078  (0.0033) 41.49 0 32.0283  (0.2409) 0.1206  (0.0036) 34.66 0 

   0.04 33.0284  (0.2537) 0.1113  (0.0036) 41.62 0 32.5531  (0.2322) 0.1142  (0.0034) 38.46 0 

   0.03 33.0120  (0.2446) 0.1137  (0.0035) 41.69 0 33.2632  (0.2436) 0.1095  (0.0035) 42.62 0 

   0.02 33.1257  (0.2544) 0.1159  (0.0036) 42.49 0 34.4910  (0.2413) 0.1078  (0.0035) 47.19 0 

   0.01 32.8665  (0.2389) 0.1221  (0.0038) 41.34 0 38.2721  (0.2797) 0.1226  (0.0036) 50.62 0 

The numbers in parenthesis are the corresponding standard errors of ܲܧ and ܧܵܯሺ઺෡ሻ 

estimated using the bootstrap with B = 500 resampling from the 100 ܲܧ’s, and 100 

 .ሺ઺෡ሻ’s, respectivelyܧܵܯ
 

4. Real data examples 

In this section, we apply two real datasets to illustrate the efficiency of the method 

for choosing the value of the penalty parameter ߣଶ based on Bayes factor. The two 

datasets are the diabetes data and prostate cancer data which are used in elastic net 

literature and related methods. 

4.1 Diabetes Data  

 The diabetes data is a data from Efron, Hastie, Johnstone and Tibshirani [21]. 

The response variable (y) is a quantitative measure of disease progression one year after 

baseline for 442 diabetes patients. The dataset contains 10 baseline predictor variables: 

AGE, SEX, body mass index (BMI), average blood pressure (BP), and six blood serum 

measurements: tc(S1), ldl(S2), hdl(S3), tch(S4), ltg(S5), glu(S6).  

Using the method for choosing the value of the penalty parameter ߣଶ based on 

Bayes factor described in Section 2, ߣଶBF = 0.0128 is the value of penalty parameter ߣଶ 

based on Bayes factor for the diabetes data. Table 7 shows summary of BF௘௟௔௦௧௜௖	௡௘௧ for 
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diabetes data, the value ߣଶBF gives BF௘௟௔௦௧௜௖	௡௘௧ ൐ 1 for all ߙ whereas BF௘௟௔௦௧௜௖	௡௘௧ ൐ 3 is 

derived with the small value of ߙ. The result BF௘௟௔௦௧௜௖	௡௘௧ for diabetes data is similar to the 

result BF௘௟௔௦௧௜௖	௡௘௧ for simulation study I; i.e., BF௘௟௔௦௧௜௖	௡௘௧ ൐ 3 is derived when ߙ is close to 

zero.   

Table 8 and Table 9 show the results of the naïve elastic net estimators for 

diabetes data where the shrinkage parameters ߣଶ are chosen by ߣଶCV and ߣଶBF, 

respectively. The prediction error (ܲܧ) is computed for each value of ߙ. In this research, 

the CV method is CV random partition. This causes the different value of (ߣଵ,  ଶ) at eachߣ

value of ߙ. For some value of ߙ, the naïve elastic net estimator where the value of ߣଶ is 

chosen by ߣଶBF has the prediction performance better than the naïve elastic net estimator 

where the value of ߣଶ is chosen by ߣଶCV. Using the ߣଶBF, the prediction error of the naïve 

elastic net estimator tends to be large when ߙ is small. Using the ߣଶBF with 0.01 = ߙ, the 

predictors AGE, ldl, and tch are excluded. This variable selection result is the same as the 

result of Li and Lin [7] when the variable selection criterion of Li and Lin [7] is the scaled 

neighborhood criterion. 

 

Table 7. Summary BF௘௟௔௦௧௜௖	௡௘௧ for diabetes data. 

BF௘௟௔௦௧௜௖ > 1 ߙ ௡௘௧ < 3 3 < BF௘௟௔௦௧௜௖ ௡௘௧< 20 BF௘௟௔௦௧௜௖	௡௘௧ > 20 

0.9  - - 

0.8  - - 

0.7  - - 

0.6  - - 

0.5  - - 

0.4  - - 

0.3  - - 

0.2  - - 

0.1  - - 

0.05  - - 

0.04   - 

0.03   - 

0.02    

0.01    
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Table 8. Naïve elastic net estimators of diabetes data using ߣଶCV. 

 ଵߣ ଶCVߣ ߙ
Predictor variables 

 ܧܲ

AGE BMI BP S1 S2 S3 S4 S5 S6 SEX 

0.9 0.0537 0.0059 -0.0080 5.4561 1.0692 -0.1798 -0.0654 -0.6519 4.1757 43.6550 0.3303 -20.9670 2,880.171 

0.8 0.0605 0.0151 -0.0050 5.4289 1.0637 -0.1642 -0.0766 -0.6649 4.1560 43.0250 0.3342 -20.7470 2,881.734 

0.7 0.0677 0.0290 -0.0015 5.4001 1.0576 -0.1504 -0.0858 -0.6759 4.1302 42.4330 0.3379 -20.5040 2,883.446 

0.6 0.0362 0.0241 -0.0121 5.5233 1.0800 -0.2357 -0.0172 -0.6030 4.1335 45.7490 0.3160 -21.4150 2,876.303 

0.5 0.0736 0.0736 0 5.3747 1.0506 -0.1382 -0.0907 -0.6865 4.0241 41.9670 0.3391 -20.1910 2,885.256 

0.4 0.0030 0.0045 -0.0313 5.6152 1.1110 -0.8008 0.4859 0.0295 5.5871 61.2020 0.2855 -22.6540 2,861.407 

0.3 0.0315 0.0735 -0.0088 5.5383 1.0786 -0.2502 0 -0.5932 3.9812 46.3570 0.3087 -21.3800 2,875.600 

0.2 0.0387 0.1549 0 5.5059 1.0662 -0.2104 -0.0251 -0.6380 3.6790 45.1630 0.3084 -20.8860 2,878.200 

0.1 0.0228 0.2048 0 5.5714 1.0723 -0.2438 0 -0.6062 3.6280 46.7150 0.2919 -21.1500 2,875.676 

0.01 0.0036 0.3579 -0 5.6538 1.0717 -0.2454 0 -0.6085 3.2822 47.8290 0.2651 -21.0770 2,876.946 

 

Table 9. Naïve elastic net estimators of diabetes data using ߣଶBF. 

 ଵߣ ଶBFߣ ߙ
Predictor variables 

 ܧܲ

AGE BMI BP S1 S2 S3 S4 S5 S6 SEX 

0.9 0.0128 0.0014 -0.0243 5.6048 1.1007 -0.4581 0.1766 -0.3636 4.6361 52.2420 0.2975 -22.2460 2,868.025 

0.8 0.0128 0.0032 -0.0241 5.6050 1.1005 -0.4558 0.1746 -0.3659 4.6295 52.1870 0.2974 -22.2390 2,868.085 

0.7 0.0128 0.0055 -0.0238 5.6053 1.1002 -0.4529 0.1719 -0.3690 4.6210 52.1170 0.2972 -22.2290 2,868.163 

0.6 0.0128 0.0085 -0.0234 5.6056 1.0999 -0.4490 0.1684 -0.3731 4.6096 52.0230 0.2969 -22.2160 2,868.267 

0.5 0.0128 0.0128 -0.0229 5.6061 1.0994 -0.4436 0.1634 -0.3788 4.5937 51.8910 0.2967 -22.1980 2,868.415 

0.4 0.0128 0.0192 -0.0221 5.6068 1.0987 -0.4355 0.1560 -0.3874 4.5699 51.6930 0.2962 -22.1710 2,868.638 

0.3 0.0128 0.0299 -0.0207 5.6081 1.0975 -0.4219 0.1436 -0.4017 4.5301 51.3640 0.2955 -22.1260 2,869.017 

0.2 0.0128 0.0512 -0.0180 5.6105 1.0952 -0.3949 0.1189 -0.4303 4.4507 50.7050 0.2939 -22.0370 2,869.803 

0.1 0.0128 0.1152 -0.0100 5.6177 1.0881 -0.3138 0.0447 -0.5161 4.2123 48.7290 0.2895 -21.7670 2,872.381 

0.01 0.0128 1.2672 -0 5.5551 0.9960 -0.1148 -0 -0.8154 0 45.329 0.2163 -17.4370 2,893.634 

 

4.2 Prostate cancer data 

The prostate cancer data is a data from a prostate cancer study of Stamey, 

Kabalin, Mcneal, et al. [22]. The response variable (y) is the logarithm of prostate specific 

antigen (lpsa) for 97 patients. The predictor variables are eight clinical measures: the 

logarithm of cancer volume (lcavol), the logarithm of prostate weight (lweight), age, the 

logarithm of the amount of benign prostatic hyperplasia (lbph), seminal vesicle invasion 

(svi), the logarithm of capsular penetration (lcp), the Gleason score (gleason), and the 

percentage Gleason score 4 or 5 (pgg45). 
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Using the method for choosing the value of the penalty parameter ߣଶ based on 

Bayes factor described in Section 2, ߣଶBF = 0.0286 is the value of penalty parameter ߣଶ 

based on Bayes factor for the prostate cancer data. Table 10 shows summary of 

BF௘௟௔௦௧௜௖	௡௘௧ for prostate cancer data, the value ߣଶBF gives BF௘௟௔௦௧௜௖	௡௘௧ ൐ 1 for all ߙ 

whereas BF௘௟௔௦௧௜௖	௡௘௧ ൐ 3 is derived with the small value of ߙ. The result BF௘௟௔௦௧௜௖	௡௘௧ for 

prostate cancer data is similar to the result BF௘௟௔௦௧௜௖	௡௘௧ for simulation study I and diabetes 

data; i.e., BF௘௟௔௦௧௜௖	௡௘௧ ൐ 3 is derived when ߙ is close to zero. 

Table 11 and Table 12 show the results of the naïve elastic net estimators for 

prostate cancer data where the shrinkage parameters ߣଶ are chosen by ߣଶCV and ߣଶBF, 

respectively. The prediction error (ܲܧ) is computed for each value of ߙ. For some value of 

 ଶBF has theߣ ଶ is chosen byߣ the naïve elastic net estimator where the value of ,ߙ

prediction performance better than the naïve elastic net estimator where the value of ߣଶ is 

chosen by ߣଶCV. Using the ߣଶBF, the prediction error of the naïve elastic net estimator 

tends to be large when ߙ is small. For 0.9 ,0.8 = ߙ where the ߣଶBF has the prediction 

performance better than the ߣଶCV, all predictors are included in the optimal model. This 

variable selection result is the same as the naïve elastic net of Zou and Hastie [1].   

 

Table 10. Summary BF௘௟௔௦௧௜௖	௡௘௧ for prostate cancer data. 

BF௘௟௔௦௧௜௖ > 1 ߙ ௡௘௧< 3 3 < BF௘௟௔௦௧௜௖ ௡௘௧ < 20 BF௘௟௔௦௧௜௖	௡௘௧ > 20 

0.9  - - 

0.8  - - 

0.7  - - 

0.6  - - 

0.5  - - 

0.4  - - 

0.3  - - 

0.2  - - 

0.1  - - 

0.05   - 

0.04   - 

0.03    

0.02    

0.01    
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Table 11. Naïve elastic net estimators of prostate cancer data using ߣଶCV. 

 ଵߣ ଶCVߣ ߙ
Predictor variables 

 ܧܲ

lcavol lweight age lbph svi lcp gleason pgg45 

0.9 0.0314 0.0035 0.5223 0.6079 -0.0178 0.0882 0.7031 -0.0579 0.0521 0.0036 0.4462 

0.8 0.0816 0.0204 0.4654 0.5611 -0.0103 0.0679 0.6144 0 0.0404 0.0026 0.4596 

0.7 0.0047 0.0020 0.554 0.6169 -0.0201 0.0939 0.7420 -0.0910 0.0478 0.0042 0.4441 

0.6 0.0083 0.0055 0.5416 0.6086 -0.0185 0.0897 0.7139 -0.0704 0.0436 0.0038 0.4451 

0.5 0.0224 0.0224 0.4973 0.5699 -0.0117 0.0717 0.6117 0 0.0238 0.0025 0.4555 

0.4 0.0286 0.0429 0.4869 0.5263 -0.0054 0.0528 0.5828 0 0.0033 0.0022 0.4656 

0.3 0.0127 0.0296 0.5009 0.5566 -0.0098 0.0662 0.6006 0 0.0128 0.0024 0.4576 

0.2 0.0067 0.0269 0.5055 0.5631 -0.0108 0.0692 0.6038 0 0.0138 0.0024 0.4562 

0.1 0.0007 0.0061 0.5489 0.6089 -0.0188 0.0904 0.7188 -0.0759 0.0406 0.0039 0.4447 

 

Table 12. Naïve elastic net estimators of prostate cancer data using ߣଶBF. 

 ଵߣ ଶBFߣ ߙ
Predictor variables 

 ܧܲ
lcavol lweight age lbph svi lcp gleason pgg45 

0.9 0.0286 0.0032 0.5256 0.6092 -0.0181 0.0889 0.7078 -0.0616 0.0520 0.0037 0.4459 

0.8 0.0286 0.0072 0.5172 0.6007 -0.0167 0.0852 0.6833 -0.0446 0.0461 0.0034 0.4475 

0.7 0.0286 0.0123 0.5064 0.5899 -0.0148 0.0803 0.6517 -0.0228 0.0386 0.0030 0.4504 

0.6 0.0286 0.0191 0.4946 0.5755 -0.0124 0.0740 0.6167 -0 0.0291 0.0025 0.4548 

0.5 0.0286 0.0286 0.4915 0.5558 -0.0096 0.0655 0.6031 -0 0.0188 0.0024 0.4583 

0.4 0.0286 0.0430 0.4869 0.5263 -0.0054 0.0528 0.5827 0 0.0033 0.0022 0.4656 

0.3 0.0286 0.0668 0.4774 0.4852 -0 0.0329 0.5510 0 0 0.0016 0.4805 

0.2 0.0286 0.1146 0.4638 0.4410 -0 0.0062 0.4815 0 0 0.0008 0.5042 

0.1 0.0286 0.2578 0.4154 0.1950 0 0 0.2763 0 0 0 0.6089 

 

5. Conclusion and discussion 

The method for choosing the value of ߣଶ based on Bayes factor, ߣଶBF, improves 

the prediction accuracy of the elastic net method. When ߙ is not close to zero, the elastic 

net estimator where the value of ߣଶ is chosen by ߣଶBF has the prediction performance 

better than the elastic net estimator where the value of ߣଶ is chosen by ߣଶCV. This is 

expected according to the L2 part stabilizes the solution parts and improves the prediction. 

Using ߣଶBF, the result reveals that the elastic net model is significance model as defined 

by Bayes factor (BF௘௟௔௦௧௜௖	௡௘௧ ൐ 1) when ߙ ∈ ሺ0,1ሻ. Using ߣଶBF to fit elastic net model, the 

penalty parameter ߣଵ is derived from the relationship between the shrinkage parameters, 

i.e., ߙ ൌ ଶߣ ሺߣଵ ൅ ⁄ଶሻߣ . This may cause the value of ߣଵ associated with ߣଶBF becomes 
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higher than the value of ߣଵ derived from CV method when ߙ is close to zero. It affects the 

prediction error of elastic net estimator derived from the ߣଶBF becomes larger when ߙ is 

small. 

Elastic net does both parameter estimation and variable selection. The elastic net 

is based on a combination of the ridge (L2) and the lasso (L1) penalties. The L1 part of the 

elastic net performs automatic variable selection, while the L2 part stabilizes the solution 

parts and, hence, improves the prediction. In this article, we propose the ߣଶBF which is the 

value of the penalty parameter of the L2 part of the elastic net method; nevertheless, the 

elastic net estimator where the value of ߣଶ is chosen by ߣଶBF performs the variable 

selection performance better than the elastic net estimator where the value of ߣଶ is chosen 

by ߣଶCV when ߙ is close to zero. For some small value of ߙ, the elastic net estimator 

where the value of ߣଶ is chosen by ߣଶBF has the estimation accuracy better than elastic 

net estimator where the value of ߣଶ is chosen by ߣଶCV. Using the appropriate combination 

of ߣଵ and ߣଶ, the elastic net estimator performs best in the prediction performance, the 

estimation accuracy and the variable selection performance.  

The ߣଶBF can be applied to different dataset where the number of parameters (݌) 

less than the sample size (݊), e.g. small ݌ or the cases where the number of parameters 

diverges with the sample size. The method of ߣଶBF can be used for adaptive elastic net 

estimator where the adaptive weight is included in the L1 penalty e.g. the adaptive elastic 

net proposed by Zou and Zhang [20] and Ghosh [23]. In this research, the prior for ߪଶ is 

inverse gamma distribution. The other choice is a noninformative prior ݌ሺߪଶሻ ∝ 	1 ⁄ଶߪ , and 

Gibbs sampling method can be used to search for the model having highest posterior 

probability rather than compute the entire posterior probability.  

The extensions of the method proposed in this article to choose the value of the 

shrinkage parameter for penalized estimation in generalized linear models (e.g. 

regularized logistic regression [24], regularized multinomial regression [24]) are interesting 

for future research. It is also interesting to develop the other generalized linear model such 

as the generalized zero-altered Poisson regression model [25] into the penalized 

(regularized) regression framework, and apply the method proposed in this article to 

choose the value of the shrinkage parameter for the penalized version of the model in [25].  

The model selection criterions AIC, BIC, and ܥ௣ can be applied for choosing the 

value of the penalty parameters of the elastic net. The research of Keerativibool [26] will 

be guidance for using these model selection criterions.    
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Appendix 

Bayes factor for elastic net linear regression model 

 Zou and Hastie [1] pointed out that, solving the elastic net problem is equivalent 

to find the marginal posterior mode of ઺|ܡ when the prior distribution of ઺ is given by a 

compromise between the Gaussian (normal) and Laplace (double exponential) priors. 

Kyung, Gill, Ghosh and Casella [6] proposed hierarchical model prior for ઺ as 

 

઺઻|σଶ, ۲τ, ઻	~	 ௤ܰ઻ሺ૙,σ
ଶ۲τሻ ,      (26) 

 

where ۲τ is a diagonal matrix with diagonal elements ൫ ௝߬
ିଶ ൅ ଶ൯ߣ

ିଵ
,   

 

௝߬
ଶ~	݈ܽ݅ݐ݊݁݊݋݌ݔܧ ቀ

ఒభ
మ

ଶ
ቁ , ݆ ൌ 1,2,3, … ,  ,݌

 

using the prior in (26), the Bayes factor for elastic net linear regression model is    

 

BFଵ଴ሺ௘௟௔௦௧௜௖	௡௘௧ሻ ൌ
௚ቀܯிሺ௘௟௔௦௧௜௖	௡௘௧ሻቚܡቁ
௚ቀܯோሺ௘௟௔௦௧௜௖	௡௘௧ሻቚܡቁ

            (27) 

 

where the posterior model probabilities ݃൫ܯோሺ௘௟௔௦௧௜௖	௡௘௧ሻหܡ൯ and ݃൫ܯிሺ௘௟௔௦௧௜௖	௡௘௧ሻหܡ൯ are as 

follows. 

 

 ݃൫ܯோሺ௘௟௔௦௧௜௖	௡௘௧ሻหܡ൯ ≡ |۲த|
ି
భ
మห܆௹ೃ

் ೃ௹܆
൅ ۲த

ିଵห
ି
భ
మ
൫ߦߥ ൅ ܵ௹ೃ۲

ଶ ൯
ି
ሺ೙శഌሻ
మ             (28) 

 

where                       

  

 ܵ௹ೃ۲
ଶ ൌ ܡ்ܡ െ ೃ௹܆்ܡ

ೃ௹܆ൣ
் ೃ௹܆

൅ ۲த
ିଵ൧

ିଵ
ೃ௹܆
்   (29)            .ܡ

 

݃൫ܯிሺ௘௟௔௦௧௜௖	௡௘௧ሻหܡ൯ ≡ |۲த|
ି
భ
మห܆௹ಷ

் ಷ௹܆
൅ ۲த

ିଵห
ି
భ
మ
൫ߦߥ ൅ ܵ௹ಷ۲

ଶ ൯
ି
ሺ೙శഌሻ
మ               (30) 

 

where            

             

 ܵ௹ಷ۲
ଶ ൌ ܡ்ܡ െ ಷ௹܆்ܡ

ಷ௹܆ൣ
் ಷ௹܆

൅ ۲த
ିଵ൧

ିଵ
ಷ௹܆
்  (31)                  .ܡ


