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Abstract

Bayesian estimators of the scale parameter of Pareto type | model have been obtained by direct
method and Lindley’s approach. Further, the expressions for posterior expected loss under squared
error loss function (SELF) and asymmetric precautionary loss function (APLF) are obtained. The
calculations have been illustrated with the help of numerical example.
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1. Introduction

Bayesian statistics, named after the Revd. Thomas Bayes (1702-1761), represents a different
approach to statistical inference. Bayesians consider unknown parameters to be random variables and
assign prior distributions for the parameters. After this the prior distribution is multiplied by the
likelihood to give the posterior distribution of the parameter.

The Pareto distribution was first known as a model for the distribution of income. Later on, it
was applied in various other fields such as biological, demographic, economic, linguistic, and
sociological etc.

The probability density function of Pareto type | distribution is given by,

f(x[6,p)= po” p,0>0 H<x<ow,

Xp+l
=0  otherwise, Q)
or

9P
f (X|9' p) z(spﬂ J Lig.0) (x) p.0>0,

where p is the shape parameter and & is the scale parameter of the distribution.
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Ashour et al. (1994) used the quasi-likelihood function to derive Bayesian and non-
Bayesian estimates for the unknown parameters of the Pareto distribution. Bodhisuwan and
Nanuwong (2014) developed a new four-parameter beta length-biased Pareto distribution, studied
various properties of this distribution and obtained estimates of the parameters of the distribution.
Finally, the new distribution was applied to Norwegian fire claims data.

Ertefaie and Parsian (2005) dealt with Bayes estimation of the parameters of interest under an
asymmetric LINEX loss function, using suitable choice of priors when the scale parameter was
known and unknown. Hosking and Wallis (1987) explained that the generalized Pareto distribution
is a two-parameter distribution that contains uniform, exponential and Pareto distributions as special
cases. It has applications in a number of fields, including reliability studies and the analysis of
environmental extreme events.

Howlader and Hossain (2002) presented Bayesian estimation of the survival function of the
Pareto distribution of the second kind using the methods of Lindley (1980) and Tierney and Kadane
(1986). Kifayat et al. (2012) performed Bayesian analysis of the power distribution using two
informative (gamma and Rayleigh) priors and two non-informative (Jeffreys and uniform) priors.

Liang (1993) studied the Pareto distribution with known shape parameter and unknown scale
parameter. He studied the problem of estimating the scale parameter under a squared-error loss
through the nonparametric empirical Bayes approach.

Lindley (1980) concluded that the Bayes estimators are often obtained as a ratio of two integrals
which cannot be expressed in closed forms, consequently numerical approximation are needed. He
developed an asymptotic approximation to such ratios, which is of paramount importance in finding
out the Bayes estimators of parameters and their functions in such situation. Preda and Ciumara
(2007) studied the problem of estimating the scale parameter 6 for a Pareto distribution under a
weighted squared-error loss through the empirical Bayes approach, proposed an empirical Bayes
estimator and gave some asymptotic optimality properties.

Setiya and Kumar (2013) obtained the Bayes estimators of the shape parameters of a Pareto type-
I model for different priors using Square Error and Asymmetric Precautionary Error Loss Functions
through direct method and Lindley’s approach. Bayes estimators of reliability and hazard rate
functions have also been obtained. Comparison between Squared Error and Asymmetric
Precautionary Error Loss Functions have also been shown with the help of a numerical example.
Tierney and Kadane (1986) described approximations to posterior means and variances of positive
functions of a real or vector-valued parameter and to the marginal posterior densities of arbitrary
parameters. Wang (2005) proposed a criterion of choosing which tells us how to choose a loss
function in Bayesian analysis.

In this paper we have obtained Bayes estimates of the scale parameter of Pareto type | model
under different priors by using direct method (Section 2.2) and Lindley’s approach (Section 2.3). The
expressions for posterior expected loss under squared error loss function (SELF) and asymmetric
precautionary loss function (APLF) have also been obtained. The comparative study reveals that
Mukherjee-Islam’s prior with increasing value of its shape parameter o is more suitable prior for
estimating scale parameter of Pareto type | distribution for a fixed value of its shape parameter under
both methods. This has been illustrated with the help of an example in a simpler manner, which may
encourage the researchers carrying out the research work in the relevant field in future.
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1.1. Moments
r'™ moment of X about origin is

. r po*
u =E(X")= , p>r
(x)- 22 (=1
' po
=E(X)=—" p>1
#=E(X) -1 (p>1)
Central Moments
y2=Var(X)=p2—92, (p>2)
(p-1)"(p-2)
My = s =3 + 2,4
=2e{ Sp(erl) } (p>3)
(P-1) (P-2)(p-3)
g =ty — A + 60107 =31,
30'p 5
= 3p*+p+2). (p>4)
(p—1)4(p—2)(p—3)(p—4)( )
1.2. Karl Pearson’s coefficients of skewness and kurtosis
Karl Pearson’s Coefficients of Skewness ( 7, ) and Kurtosis (y, ) are given by-
2(p+1) [p-2
7/ = y p>3
6(p®+p*-6p-2
=2 ) (p>4
p(p-3)(p—4)

Here, y, and y, both are positive, showing that the distribution is positively skewed and
leptokurtic.

1.3.  Loss function

A loss function shows the associated risk with an event. The estimator having the least expected
loss is preferable compared to others. There are different forms of loss function. From Bayesian point
of view, selection of loss function is very crucial part in the estimation problems, since there is not
any definite methodology to identify the appropriate loss function to be used. In most of the cases, in
estimation problems authors for convenience consider the underlying loss function to be squared error
which is symmetric in nature. Squared error loss function gives equal weightage to over estimation
and under estimation. The squared error loss function is most suited when the loss is symmetric. One
advantage of SELF is that it is simple to calculate. But in many situations the loss occurred is not
always symmetric, in these cases, it is reasonable to use an alternative asymmetric precautionary loss
function, which approaches infinity near the origin to prevent underestimation, thus giving
conservative estimators especially when underestimation may lead to serious consequence. In this
paper, we have used squared error loss function (SELF) and asymmetric precautionary loss function
(APLF).
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Squared Error Loss Function (SELF)
A commonly used loss function is the squared error loss function (SELF)

L(HB'Q):(QB_H)Z' )
Asymmetric Precautionary Error Loss Function (APLF)
A very useful and simple asymmetric precautionary loss function is
(03 _ 9)2
O
Bayes Estimators of ¢ Given p under Different Priors

L(6;,0)= ®)

In this section, we have obtained Bayes estimators of @ given p under different priors using

direct method and Lindley’s approach. It is always comfortable to use direct method if the integrals
used for finding posterior distribution and Bayes estimators can be evaluated and may be reduced to
closed form. In situation, where these integrals cannot be evaluated, Lindley’s or some other
approximate method is more useful.

3.

Estimation of Parameters (Direct Method)
Likelihood function of the above said distribution is given by

1(0)x) =TT 2% |
( |)~()_1|:1[ x P+ (O,w)(xi)'
Let Y,,Y,,...,Y, be the order statistics corresponding to X,, X,,..., X,

0<O<Y,<Y,<...<Y, <o,

1(0lx)= ﬁ[;’%}w (0): @

i=1 i
Then the posterior distribution of 4 is
1(6|x)g(E
[1(0lx)g(0)0

Bayes estimator of & give p is
Y
0, =E(0)= [0 (0]x)de. (6)
0

(i) Jeffrey’s prior
Jeffrey’s prior for the parameter @ is given by
1
5(0)= 21, (0).

Then the posterior distribution of @ is
enp—l

1

Hence the Bayes estimator (6;) of @ given p under Jeffrey’s prior is

np
o) = Y,. 7
® np+lt )
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(if) Uniform prior
Uniform prior for the parameter @ is given by

g (‘9) = I(O,l) (9)

Then the posterior distribution of & is

0n
F(01x) = S (NP +1).

1

Hence the Bayes estimator (6?5) of @ given p under uniform prior is

p+ly ®)

6y =
. np+2*

(iii) Exponential prior
Exponential prior for the parameter @ is given by

g(0)=e’; 6>0.
Then the posterior distribution of @ is
enpe—ﬁ 4
f(0]x) = ————ow

Y np+i+1

,Z |! (np+i+1)

Hence the Bayes estimator (5 ) of @ under exponential prior is given by

0 Y|+1
H::Z;: |!I(np+:+2). ©)
; il (np+|+1)

(iv) Mukherjee-Islam prior
Mukherjee-Islam prior for the parameter @ is given by

9(0)=26"";, 0<b<c; a>0; o>0,
O

o is shape parameter and o is scale parameter. This prior appears as inverse distribution of
Pareto distribution. It is used for appropriate representation of the lower tail of the distribution
of random variable having fixed lower bound.
Then the posterior distribution of @is
np+a
f (0|)~() — ( p )gnpwz—l'

np+a
Yl

Hence the Bayes estimator (&' ) of @ under Mukherjee-Islam prior is
np+a)
oY =—( Y. 10
* (npta+l)’ (10)

(v) Gamma prior
Gamma prior for the parameter @ is given by

1
)= gaflefalo';
Ol

Then the posterior distribution of 4 is

a,0>0, 6>0.
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0np+a—le—¢9/o— | 4
(%)
f (9|X) == (_1)i y e
1

)

= ilo' (np+a+i)

Hence the Bayes estimator (&5 ) of & under gamma prior is

© (_l)i Yli+1
e — IZ:O: ilo' (np+a+i+1) 1)
B T - _1)i Yi )

3 |

ilo' (np+a+i)

3.1. Posterior expected loss under SELF

In this section, posterior expected losses of Bayes estimator (93) of & under SELF for different
priors using direct method are obtained.

Posterior expected loss of Bayes estimator (GB)of 0 is E(¢9B —9)2.
(i) Jeffrey’s prior

We have
1
9(0)= 11y (0),
np-1
f(0lx) =P

Then posterior expected loss of &3 under Jeffrey’s prior is

J
P _y2_ 2060y (12)
np+2 np+1

E(6-0) =07 +

(if) Uniform prior
We have

9 (9) = I(o,l) (9)'

f(9|g):9—np(np+1).

Ylnp+1
Then posterior expected loss of @5 under Uniform prior is
(np+1) y2 265 (np +1)Y
(np+3) " (np+2)

E(6F-6) =6 + (13)

(iii) Exponential prior

We have
g(0)=e"’; 6>0,
anpefﬁl 0
f (eh() — i (O’Yl).
i (_1) Ylnp+|+1
= il (np+i+1)

Then posterior expected loss of g5 under exponential prior is
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E(QBE_H)ZZGBEZ ; ! i npﬂ+3)—29§§ i! i(np+i+2)' 14)
i A pOL N
= il (np+i+1) = il (np+i+1)
(iv) Mukherjee-Islam prior
We have
9(0)=26"% 0<0<c; a>0; o>0,
O
f(ofx)= D2 oo
Y1 p+a
Then posterior expected loss of 8" under Mukherjee-Islam prior is
2 205" (np+a)
E() —0) =g +PEE y2_ Y,. 15
( ? ) ° +np+a+2 Yo (npta+l) t (15)
(v) Gamma prior
We have
1
0)=——==6""e""; a,0>0, 6>0,
10-7
gnp+a—leﬂ9/0 | [
f (‘9|)~() = i )
i(_l) Ylnp+a+|
= ilo' (np+a+i)
Then posterior expected loss of 45 under gamma prior is
i (_1)2 Y1i+2 i (_1)' Y, i1
E(96_9)2:9§ ~ ilo’ i(np+a+i+2)—26?e = ilo’ (np+a.+|+1)l (16)
i(_l)- Y, i A
= ilo' (np+o+i) = ilo' (np+a+i)

3.2.  Posterior expected loss under APLF
In this section, posterior expected losses of Bayes estimator (6’5) of & under APLF for different

priors using direct method are obtained.
Posterior expected loss of Bayes estimator (6, )of 6 is

E{(es—ef}.
0,

9(0) =7 144(0).

(i) Jeffrey’s prior
We have
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Then posterior expected loss of g under Jeffrey’s prior is

0 -0) 2
E ( : J ) :Hé"' P YLJ_ 2P A4
o3 np+2)6; np+1

(if) Uniform prior
We have
g ('9) = I(o,l) ('9)'

f(6]x)= en:pl (np+1).

1

Then posterior expected loss of g5 under Uniform prior is

o — o) > 2(np+l
E ( B ) :ekl;_,’_ np+1 YLU_ (np+ )Y1
6, (np+2)

i np+3

(iii) Exponential prior

We have
g(0)=e’ 6>0,
anpe—(i 0
(OY)
f(0|?”() i an+|+l

.Z;‘ |! (np+i+1)

Then posterior expected loss of g5 under exponential prior is

© (_1)2 Ylnz . ﬂ

E (65-0) | 1 +;:‘i!_(np+i+3) 2 i!

20E|0

gy v 3 (L

= il (np+i+i) s |!

(iv) Mukherjee-Islam prior
We have
[24

g(0)=—6"" 0<b<o; a>0;, c>0,

o
f (elz() — (np +O.’) 9np+a—1'

np+a
Yl

Then posterior expected loss of 8" under Mukherjee-1slam prior is

[ (e oy

(v) Gamma prior
We have
1

9(0)=—F+=0""%"; a,0>0; 6>0,

aw\/g

oM, _P+a ﬁ_ 2(np+oc)Y
M B M 1
on np+a+26 (np+a+l)

A7)

(18)

(19)

(20)
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0np+a—l -0/ | 4

f(glx): o (_1)i ani(:fi)
1

2

= ilo' (np+a+i)

Then posterior expected loss of 5 under gamma prior is

o (_1)i Ylnz i )I Y, i+1

c (0§_9)2 1 962+§‘ ilo' (np+a+i+2)_29 = ilo' (np+a+i+1) 21)
6° 0| ° i(—l)i A i A
= ilo' (np+a+i) = ilo' (np+a+i)

3.3, Numerical illustration
To illustrate the calculations of Bayes estimates of & given p under different priors, we have

generated a random sample of size 100 from Pareto type-1 model ( p=56= 2) with the help of Easy
Fit Professional 5.5 software. The generated data are given below:

Table 1 A random sample of size 100 from Pareto type-1 model ( p=56= 2)

4.156719 2.021115 2109158  3.066756  2.114712 2.766589
3.473910 2.152002  2.542979 2.096120 2.201036 2.800347
2.015538 3.345991  3.276592 2.523002  2.650161 2.200958
4.848990 2.399167  2.426388  2.765243  2.765476 3.788056
2.028549 3.248302  2.000721 2.853407  2.337706 2.330772
2.641111 2775974  3.377225  2.377766  2.081900 2.043091
2.965438 2402384  2.123957 2.037887  2.061429 2.100764
3.483411 2.037199 2132553  2.021792  2.256790 2.523617
2.065490 2.033151 2.030786  2.252590  2.058568 2.330980
2.357053 2.229088  2.498827 2.610020 2.377580 2.909833
2.391189 2.032895 2.241154  2.107714  2.588603 2.367690
2.176588 2461960 2.647930  3.594695  2.059533 3.254610
2.896456 3.083592  2.724975  2.093613  2.632570 2.174417
2.173150 2474922 2120280  2.913333  3.539938 3.520238
2.476360 3.053889 2.662606  2.453834  2.157306 2.008749
2.645826 2.039337 2.078516  2.234017  3.423581

2.074963 4111654  2.289557 3.166326  2.125210

3.4. Comparison and conclusions

To compare the results numerically, we have calculated the values of posterior expected loss
under SELF and APLF by using the estimates of @ by direct method under different priors. The
calculations are shown in Table 2. The above said values could not be calculated under exponential
and gamma priors due to complexity of corresponding expressions. It is revealed from the Table 2
that the value of APLF is smallest under uniform as well as under Mukherjee-Islam prior and as the
value of « increases under Mukherjee-Islam prior the value of APLF decreases.
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Table 2 The values of &,, and the corresponding posterior expected losses under SELF and APLF
by using direct method

Posterior expected loss under

Also

Prior 0, Squared Error Loss Asymmetric Precautionary
Function Loss Function
Jeffrey’s 1.996727 1.58841E-05 7.95509E-06
Uniform 1.996735 1.58211E-05 7.92346E-06
Exponential 1.999398 1.59899E-05 7.99735E-06
Mukherjee-Islam
a=1 1.996735 1.58211E-05 7.92346E-06
a=2 1.996743 1.57584E-05 7.89205E-06
a=3 1.996751 1.56962E-05 7.86089E-06
Gamma
a=lo=1 1.999398 1.59899E-05 7.99735E-06
a=2,0=1 1.999406 1.59263E-05 7.96549E-06
a=30=1 1.999414 1.5863E-05 7.93382E-06
Estimation of Parameters (Lindley’s Approach)
Lindley (1980) developed an asymptotic approximation to the ratio
[h(y(elx)a(0)de
9
= (22)
[1(61x)g(6)de
4
According to him
*4
o o o e O " o
L=h(07)+ =0y (07)+ 20 (0)u (07) [+ - L (0)m (@) ] (23)
where 6" is the MLE of .
L (07)= : (24)
0=6
h(67)=—= , (25)
*2 _ -1
o =-L (6)|9:9* ; (26)
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Here, we have

n pep
L= ( P+l JI(%,YJ’

i-1 \ X
L(8)=logL,
n Anp
L(6)=log Ee ,

H Xip +1

i=1

L(8) =nplog &+ constant,

np
Ll(g)zgv
np
L, (9):?'
2n
L (0)="
M.L.E. 6" of @ is
0 =Y,
O_*Z _ |:—|_2 (9)]717
_o
g

Here h(6)=6.
The Bayes estimator (HB) of @ given p isgiven by
*4

9, = E[@Mz(f +u, (0)o" +%[L3(6’*)]cr .

(i) Jeffrey’s prior
Jeffrey’s prior for the parameter @ is
1

9(6) =21, (0)

Hence the Bayes estimator (9;) of & given p under Jeffrey’s prior is

3

0, =0".

(if) Uniform prior
Uniform prior for the parameter 4 is
g (‘9) = I(o,l) (9)
Hence the Bayes estimator (49;) of @ given p under uniform prior is
1

oy =6 (1+—J.
np

57

(27)

(28)

(29)

(30)

31)
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(iii) Exponential prior
Exponential prior for the parameter @ is
g(0)=e’; 6>0.

Hence the Bayes estimator (HBE) of & given p under exponential prior is
Of =0" ——+—. (32)

(iv) Mukherjee-Islam prior
Mukherjee-Islam prior for the parameter @ is

9(0)=26""; 0<6<o; a>0 o>0. (33)
o
Hence the Bayes estimator (HQ") of & given p under Mukherjee-Islam prior is
o=+ 20 (34)
np

(v) Gamma prior
Gamma prior for the parameter @ is given by
1 a—1,—0/c
g(0)=——=6""";, a,0>0, 6>0.
0=

Hence the Bayes estimator (95) of & given p is given by

s :9*+(“—:1—1j‘9—+9—.
o o)np np

4.1. Posterior expected loss under SELF
In this section, posterior expected losses of Bayes estimator (HB) of & under SELF for different

priors using Lindley’s Approach are obtained.
Posterior expected loss of Bayes estimator (HB) of 9is E (h(6)| >~<) where
h(6)=(6;~0)",
h,(6)=-2(6; -9),

h,(6)=2
e[n(o)x|=n(0")+2[n(0')+ 20, (0"} (0")]o + [ (0 (07)]or" (35)
(i) Jeffrey’s prior
Here
1

9(0)= 21, (0)

Then posterior expected loss of &7 under Jeffrey’s prior is

%2

E[h(0)|x]=(6; -0) +‘Z—p. (36)
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(if) Uniform prior
Here
g (6) = I(o,l) ('9)
Then posterior expected loss of @5 under uniform prior is
< 0 (6) -6
E[h(0)x]=(8% &) L0 00
np np
(iii) Exponential prior
Here
g(0)=e’; 6>0.
Then posterior expected loss of &5 under exponential prior is
g (6 -1)(65 -0
E[h(o)] (o -0r) + LT INE0)
np np

(iv) Mukherjee-Islam prior
Here

9(0)=2%6°% 0<0<c; a>0; o>0.
o

2
Then posterior expected loss of 4} under Mukherjee-Islam prior is
“ af (6) -0
E[h(0)|x]=(a" -0") +‘9——2M.
np np
(v) Gamma prior
Here
1
a“\/;

Then posterior expected loss of g5 under gamma prior is

a(9) 0°'e’; a,0>0, 6>0.

E[h(6)|x]= (65 -0") +%—2M£a—£].

np

4.2. Posterior expected loss of 6, under APLF

59

@37)

(38)

(39)

(40)

In this section, posterior expected losses of Bayes estimator (HB) of @ under APLF for different

priors using Lindley’s Approach are obtained.

Posterior expected loss of Bayes estimator (HB) of 9 is E(h(0)|x) where

h(@):%,
n(o)-2%=2),
h2(9)=é,
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e[ (o) L
(i) Jeffrey’s prior
Here

1

9(9):5 '(m)(e)-

Then posterior expected loss of &; under Jeffrey’s prior is

o500, o
x| = + .
- 0y d3np

(if) Uniform prior
Here

9 (6) = I(o,l) ('9)
Then posterior expected loss of g5 under uniform prior is
(¢ -0) o 29*(0; -0)
+ - .
% g np g:np

E[h(6)[x]=

(iii) Exponential prior
Here

g(0)=e"; 6>0.
Then posterior expected loss of 65 under exponential prior is
< o (0 -1)(65 -6
o 0@E-7)
Gsnp Gsnp

clnioy- "

(iv) Mukherjee-Islam prior
Here

9(0)=26"% 0<0<o;, a>0;, o>0.
o

Then posterior expected loss of )" under Mukherjee-Islam prior is

P o (0" -6
E[h(e)lx]=(8 ; )+ﬁ 22 (MB )
HB eB np QB np
(v) Gamma prior
Here
1
0)=———0""%": a,06>0 0>0.
g( ) oo o

Then posterior expected loss of g5 under gamma prior is

(@&-0) & o@-0) o
L T .

J=0(0) 2020 (0 ) (0] 206

(41)

(42)

(43)

(44)

(45)
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4.3. Numerical illustration
To illustrate the calculations of Bayes estimators of @ given p under different priors, we have

used the data given in Table 1.

4.4. Comparison and conclusions

To compare the results numerically, we have calculated the values of posterior expected loss
under SELF and APLF by using the estimates of & by Lindley’s approach under different priors. The
calculations are shown in Table 3. It is revealed from the table that the value of APLF is smallest
under uniform as well as under Mukherjee-Islam prior.

It can also be concluded that the results obtained by direct method are better than that of Lindley’s
approach, as the values of posterior expected losses under SELF and APLF are small in direct method.

Table 3 The values of &, , and the corresponding posterior expected losses under SELF and APLF
by using Lindley’s approach

Posterior expected loss under

Prior Os Squared Error Loss Asymmetric Precautionary
Function Loss Function

Uniform 2.004722 0.007990 0.003985
Jeffrey’s 2.000721 0.008006 0.004001
Exponential 1.996716 0.007990 0.004001
Mukherjee-Islam

a=1 2.004722 0.007990 0.003985

a=2 2.008724 0.007958 0.003962

a=3 2.012725 0.007926 0.003938
Gamma

a=1 o=1 1.996716 0.007990 0.004001

a=2 o=1 2.000718 0.008022 0.004009

0=3 o=1 2.004719 0.008054 0.004017
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