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Abstract 

Bayesian estimators of the scale parameter of Pareto type I model have been obtained by direct 

method and Lindley’s approach. Further, the expressions for posterior expected loss under squared 

error loss function (SELF) and asymmetric precautionary loss function (APLF) are obtained. The 

calculations have been illustrated with the help of numerical example. 

______________________________ 
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1. Introduction 

Bayesian statistics, named after the Revd. Thomas Bayes (1702-1761), represents a different 

approach to statistical inference. Bayesians consider unknown parameters to be random variables and 

assign prior distributions for the parameters. After this the prior distribution is multiplied by the 

likelihood to give the posterior distribution of the parameter. 

The Pareto distribution was first known as a model for the distribution of income. Later on, it 

was applied in various other fields such as biological, demographic, economic, linguistic, and 

sociological etc. 

The probability density function of Pareto type I distribution is given by, 
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where p  is the shape parameter and   is the scale parameter of the distribution. 
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Ashour et al. (1994) used the quasi-likelihood function to derive Bayesian and non-

Bayesian estimates for the unknown parameters of the Pareto distribution. Bodhisuwan and 

Nanuwong (2014) developed a new four-parameter beta length-biased Pareto distribution, studied 

various properties of this distribution and obtained estimates of the parameters of the distribution. 

Finally, the new distribution was applied to Norwegian fire claims data. 

Ertefaie and Parsian (2005) dealt with Bayes estimation of the parameters of interest under an 

asymmetric LINEX loss function, using suitable choice of priors when the scale parameter was 

known and unknown. Hosking and Wallis (1987) explained that the generalized Pareto distribution 

is a two-parameter distribution that contains uniform, exponential and Pareto distributions as special 

cases. It has applications in a number of fields, including reliability studies and the analysis of 

environmental extreme events. 

Howlader and Hossain (2002) presented Bayesian estimation of the survival function of the 

Pareto distribution of the second kind using the methods of Lindley (1980) and Tierney and Kadane 

(1986). Kifayat et al. (2012) performed Bayesian analysis of the power distribution using two 

informative (gamma and Rayleigh) priors and two non-informative (Jeffreys and uniform) priors.  

Liang (1993) studied the Pareto distribution with known shape parameter and unknown scale 

parameter. He studied the problem of estimating the scale parameter under a squared-error loss 

through the nonparametric empirical Bayes approach. 

Lindley (1980) concluded that the Bayes estimators are often obtained as a ratio of two integrals 

which cannot be expressed in closed forms, consequently numerical approximation are needed. He 

developed an asymptotic approximation to such ratios, which is of paramount importance in finding 

out the Bayes estimators of parameters and their functions in such situation. Preda and Ciumara 

(2007) studied the problem of estimating the scale parameter θ for a Pareto distribution under a 

weighted squared-error loss through the empirical Bayes approach, proposed an empirical Bayes 

estimator and gave some asymptotic optimality properties. 

Setiya and Kumar (2013) obtained the Bayes estimators of the shape parameters of a Pareto type-

I model for different priors using Square Error and Asymmetric Precautionary Error Loss Functions 

through direct method and Lindley’s approach. Bayes estimators of reliability and hazard rate 

functions have also been obtained. Comparison between Squared Error and Asymmetric 

Precautionary Error Loss Functions have also been shown with the help of a numerical example. 

Tierney and Kadane (1986) described approximations to posterior means and variances of positive 

functions of a real or vector-valued parameter and to the marginal posterior densities of arbitrary 

parameters. Wang (2005) proposed a criterion of choosing which tells us how to choose a loss 

function in Bayesian analysis. 

In this paper we have obtained Bayes estimates of the scale parameter of Pareto type I model 

under different priors by using direct method (Section 2.2) and Lindley’s approach (Section 2.3).  The 

expressions for posterior expected loss under squared error loss function (SELF) and asymmetric 

precautionary loss function (APLF) have also been obtained. The comparative study reveals that 

Mukherjee-Islam’s prior with increasing value of its shape parameter α is more suitable prior for 

estimating scale parameter of Pareto type I distribution for a fixed value of its shape parameter under 

both methods. This has been illustrated with the help of an example in a simpler manner, which may 

encourage the researchers carrying out the research work in the relevant field in future. 

 

  

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A(Hosking%2C+J+R)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A(Wallis%2C+J+R)
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1.1. Moments 
thr  moment of X  about origin is  
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1.2. Karl Pearson’s coefficients of skewness and kurtosis 

Karl Pearson’s Coefficients of Skewness ( 1 ) and Kurtosis ( 2 ) are given by- 
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Here, 1  and 2  both are positive, showing that the distribution is positively skewed and 

leptokurtic. 

 

1.3. Loss function 

A loss function shows the associated risk with an event. The estimator having the least expected 

loss is preferable compared to others. There are different forms of loss function. From Bayesian point 

of view, selection of loss function is very crucial part in the estimation problems, since there is not 

any definite methodology to identify the appropriate loss function to be used. In most of the cases, in 

estimation problems authors for convenience consider the underlying loss function to be squared error 

which is symmetric in nature. Squared error loss function gives equal weightage to over estimation 

and under estimation.  The squared error loss function is most suited when the loss is symmetric. One 

advantage of SELF is that it is simple to calculate. But in many situations the loss occurred is not 

always symmetric, in these cases, it is reasonable to use an alternative asymmetric precautionary loss 

function, which approaches infinity near the origin to prevent underestimation, thus giving 

conservative estimators especially when underestimation may lead to serious consequence. In this 

paper, we have used squared error loss function (SELF) and asymmetric precautionary loss function 

(APLF). 
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Squared Error Loss Function (SELF) 

A commonly used loss function is the squared error loss function (SELF)  

    
2

, .B BL       (2) 

Asymmetric Precautionary Error Loss Function (APLF) 

A very useful and simple asymmetric precautionary loss function is 
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2. Bayes Estimators of   Given p  under Different Priors 

In this section, we have obtained Bayes estimators of   given p  under different priors using 

direct method and Lindley’s approach. It is always comfortable to use direct method if the integrals 

used for finding posterior distribution and Bayes estimators can be evaluated and may be reduced to 

closed form. In situation, where these integrals cannot be evaluated, Lindley’s or some other 

approximate method is more useful. 

 

3. Estimation of Parameters (Direct Method) 

Likelihood function of the above said distribution is given by 
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Then the posterior distribution of   is 
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Bayes estimator of   give p  is 
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(i) Jeffrey’s prior 

       Jeffrey’s prior for the parameter   is given by
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B  of   given p  under Jeffrey’s prior is 
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(ii) Uniform prior 

       Uniform prior for the parameter   is given by 

      0,1
.g I 
 

Then the posterior distribution of   is 
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(iii) Exponential prior 

       Exponential prior for the parameter   is given by 
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             Hence the Bayes estimator ( E

B ) of   under exponential prior is given by  
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(iv) Mukherjee-Islam prior 

        Mukherjee-Islam prior for the parameter   is given by 

   1 ; 0 ; 0; 0,g 




     



      

  is shape parameter and   is scale parameter. This prior appears as inverse distribution of 

Pareto distribution. It is used for appropriate representation of the lower tail of the distribution 

of random variable having fixed lower bound. 

Then the posterior distribution of  is
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(v) Gamma prior 

       Gamma prior for the parameter   is given by 
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        Hence the Bayes estimator ( G

B ) of   under gamma prior is   
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3.1. Posterior expected loss under SELF 

In this section, posterior expected losses of Bayes estimator  B  of    under SELF for different 

priors using direct method are obtained. 

Posterior expected loss of Bayes estimator  B of   is  
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(ii) Uniform prior 
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(iii) Exponential prior 

       We have 
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(iv) Mukherjee-Islam prior 

       We have 
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(v) Gamma prior 

        We have 
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3.2. Posterior expected loss under APLF 

In this section, posterior expected losses of Bayes estimator  B  of   under APLF for different 

priors using direct method are obtained. 

Posterior expected loss of Bayes estimator  B of   is   
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       Then posterior expected loss of J

B  under Jeffrey’s prior is 
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(ii) Uniform prior 

       We have 
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(iii) Exponential prior 

        We have 
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(iv)  Mukherjee-Islam prior 

        We have 
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(v) Gamma prior 

       We have 
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3.3. Numerical illustration 

To illustrate the calculations of Bayes estimates of   given p  under different priors, we have 

generated a random sample of size 100 from Pareto type-I model  5, 2p    with the help of Easy 

Fit Professional 5.5 software. The generated data are given below: 

 

Table 1 A random sample of size 100 from Pareto type-I model  5, 2p    

4.156719 2.021115 2.109158 3.066756 2.114712 2.766589 

3.473910 2.152002 2.542979 2.096120 2.201036 2.800347 

2.015538 3.345991 3.276592 2.523002 2.650161 2.200958 

4.848990 2.399167 2.426388 2.765243 2.765476 3.788056 

2.028549 3.248302 2.000721 2.853407 2.337706 2.330772 

2.641111 2.775974 3.377225 2.377766 2.081900 2.043091 

2.965438 2.402384 2.123957 2.037887 2.061429 2.100764 

3.483411 2.037199 2.132553 2.021792 2.256790 2.523617 

2.065490 2.033151 2.030786 2.252590 2.058568 2.330980 

2.357053 2.229088 2.498827 2.610020 2.377580 2.909833 

2.391189 2.032895 2.241154 2.107714 2.588603 2.367690 

2.176588 2.461960 2.647930 3.594695 2.059533 3.254610 

2.896456 3.083592 2.724975 2.093613 2.632570 2.174417 

2.173150 2.474922 2.120280 2.913333 3.539938 3.520238 

2.476360 3.053889 2.662606 2.453834 2.157306 2.008749 

2.645826 2.039337 2.078516 2.234017 3.423581  

2.074963 4.111654 2.289557 3.166326 2.125210  

 

3.4.   Comparison and conclusions 

To compare the results numerically, we have calculated the values of posterior expected loss 

under SELF and APLF by using the estimates of   by direct method under different priors. The 

calculations are shown in Table 2. The above said values could not be calculated under exponential 

and gamma priors due to complexity of corresponding expressions. It is revealed from the Table 2 

that the value of APLF is smallest under uniform as well as under Mukherjee-Islam prior and as the 

value of   increases under Mukherjee-Islam prior the value of APLF decreases. 
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Table 2 The values of ,B  and the corresponding posterior expected losses under SELF and APLF 

by using direct method

 

Prior 

 

 

B  

Posterior expected loss under 

Squared Error Loss 

Function 

Asymmetric Precautionary 

Loss Function 

Jeffrey’s 1.996727 1.58841E-05 7.95509E-06 

Uniform 1.996735 1.58211E-05 7.92346E-06 

Exponential 1.999398 1.59899E-05 7.99735E-06 

Mukherjee-Islam    

  1   1.996735 1.58211E-05 7.92346E-06 

  2   1.996743 1.57584E-05 7.89205E-06 

  3   1.996751 1.56962E-05 7.86089E-06 

Gamma      

  1, 1    1.999398 1.59899E-05 7.99735E-06 

  2, 1    1.999406 1.59263E-05 7.96549E-06 

  3, 1    1.999414 1.5863E-05 7.93382E-06 

 

4. Estimation of Parameters (Lindley’s Approach) 

Lindley (1980) developed an asymptotic approximation to the ratio 
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Here, we have  
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(i) Jeffrey’s prior 

       Jeffrey’s prior for the parameter   is 
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(iii) Exponential prior 

       Exponential prior for the parameter   is 

 

   ; 0.g e       

       Hence the Bayes estimator  E

B  of   given p  under exponential prior is  
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(iv) Mukherjee-Islam prior 

       Mukherjee-Islam prior for the parameter   is 
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(v) Gamma prior 

       Gamma prior for the parameter   is given by
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4.1.   Posterior expected loss under SELF 

In this section, posterior expected losses of Bayes estimator  B  of   under SELF for different 

priors using Lindley’s Approach are obtained. 

Posterior expected loss of Bayes estimator  B  of    is   E h x where 
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(ii) Uniform prior 

       Here 
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(iii) Exponential prior 
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(iv) Mukherjee-Islam prior 
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(v) Gamma prior 
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4.2.   Posterior expected loss of B  under APLF 

In this section, posterior expected losses of Bayes estimator  B  of   under APLF for different 

priors using Lindley’s Approach are obtained. 

Posterior expected loss of Bayes estimator  B  of   is   E h x  where
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(i) Jeffrey’s prior 
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              Then posterior expected loss of J

B  under Jeffrey’s prior is 

   

            

  
  2

2
* *

.

J

B

J J

B B

E h x
np

  


 


                                                  (41)

 
(ii) Uniform prior 

       Here 
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       Then posterior expected loss of U

B  under uniform prior is 
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(iii) Exponential prior 

       Here 
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       Then posterior expected loss of E

B  under exponential prior is  
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(iv) Mukherjee-Islam prior 

       Here 
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       Then posterior expected loss of M

B  under Mukherjee-Islam prior is  
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(v) Gamma prior 

       Here 

   11
; , 0, 0.g e  


    

 

     

              Then posterior expected loss of G

B  under gamma prior is 

 

     

 

  
   2

2
* * ** *

2 .

G G

B B

G G G

B B B

E h x
np np

     
 

  

   
       

 
                      (45) 

                                                                  

 

 

 

 



Parul Setiya et al. 61 

4.3.   Numerical illustration 

To illustrate the calculations of Bayes estimators of   given p  under different priors, we have 

used the data given in Table 1. 

 

4.4.   Comparison and conclusions 

To compare the results numerically, we have calculated the values of posterior expected loss 

under SELF and APLF by using the estimates of   by Lindley’s approach under different priors. The 

calculations are shown in Table 3. It is revealed from the table that the value of APLF is smallest 

under uniform as well as under Mukherjee-Islam prior. 

It can also be concluded that the results obtained by direct method are better than that of Lindley’s 

approach, as the values of posterior expected losses under SELF and APLF are small in direct method.  

 

Table 3 The values of B , and the corresponding posterior expected losses under SELF and APLF 

by using Lindley’s approach 

Prior 

 

B  

Posterior expected loss under 

Squared Error Loss 

Function 

Asymmetric Precautionary 

Loss Function 

Uniform 2.004722 0.007990 0.003985 

Jeffrey’s 2.000721 0.008006 0.004001 

Exponential 1.996716 0.007990 0.004001 

Mukherjee-Islam 

  α=1 2.004722 0.007990 0.003985 

  α=2 2.008724 0.007958 0.003962 

  α=3 2.012725 0.007926 0.003938 

Gamma 

  α=1 σ=1 1.996716 0.007990 0.004001 

  α=2  σ=1 2.000718 0.008022 0.004009 

  α=3  σ=1 2.004719 0.008054 0.004017 
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