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Abstract

This paper aims at deriving the explicit expressions of the Average Run Length (ARL) for a
negative Cumulative Sum (CUSUM) chart for a lower-sided case when observations are from
exponential distribution. ARL is found using two approaches; Integral Equation (IE) and Numerical
Integral Equation (NI). The comparison for accuracy of results for explicit expression have been
solved with the Integral Equation approach, while, the numerical approximations have been solved
with the Numerical Integral equation, which both tend to an acceptable agreement. The computational
time obtained from the NI approach is significantly longer than that obtained from the IE approach.
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1. Introduction

Statistical process control (SPC) is a statistical procedure aiming at improving the quality and
productivity in areas such as industry, manufacturing, health care and epidemiology, clinical
chemistry, finance and economics, environment science, and computer intrusion detection. The
cornerstone of SPC is control charts. Clearly, there are various things to detect in a, say, production
process, and there are various statistical ways to build control charts for detection. For detecting small
shifts in a process mean, the CUSUM, first proposed by Page (1954), has produced many follow-up
works. In particular, Ducan (1974), Hawkins and Olwell (1998) and Vargas et al. (2004) showed that
CUSUM is much more efficient than the usual Shewhart control chart, as far as small variations in
the mean are concerned.

The quality characteristic which is widely used to measure the performance of the CUSUM chart
is the ARL, which is the expected number of runs to an alarm and is context dependent. The ARL is
classified according to some stopping time scheme: the ARL, value (measuring the time before a
process that is on target is falsely signaled as being out of control), and the ARL1 (measuring the time,
before a process that has gone out of control, which is signaled as being out of control).

In the literature, there are many methods able to calculate the ARL of CUSUM charts, primarily:
the ‘Monte Carlo Simulation’ (Fu et al. 2002), ‘Markov Chain Approach’ (MCA) by Brook and
Evans (1972), the ‘Martingale Approach’ (Sukparungsee and Novikov 2006, 2008), and the ‘Integral
Equations Approach’ (IE) by Champ and Rigdon (1991)). The three former approaches have
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limitations and are complicated. They are able only to approximate ARL, and cannot achieve explicit
expressions. It turns out that the IE approach can provide explicit expressions.

Recently, Busaba et al., (2012) derived an explicit expression of ARL for CUSUM chart using
observations from negative exponential distribution for the upper-sided case. The contributions of
our present study consist of deriving and analyzing explicit expressions of ARL for negative CUSUM
charts when observations are exponentially distributed, for the lower-sided case.

This paper is organized as follows. In the next section, we evaluate the explicit expression of
ARL for a negative CUSUM chart when observations are exponentially distributed, for the lower-
sided case, using the IE approach. In Section 3, ARLs for CUSUM charts are approximated using
numerical integral approximations based on the Gauss-Legrendre quadrature rule. In Section 4, we
compare ARLSs using displayed error between explicit expressions and numerical approximations.
Subsequently, we compare the computational times for both approaches. Finally, the conclusion is
addressed in Section 5.

2. Theoretical Results
We follow Vardeman (2001) setting. Let &, be a sequence of independent and identically
distributed (i.i.d.) random variables with common density function f() on the real line. For the
lower-sided case of negative CUSUM chart, consider
j(x)=the ARL of the lower sided CUSUM scheme using a head start of x.

The CUSUM process starts at X, there are three possibilities of an observed variable, & . If &

is large (—& +a=—-b—x), then there will be an immediate signal and the run length will be 1. If &

is small (& +a < —x), the CUSUM will “zero out”, one observation will have been “spent”, and on
average j(O) more observations are to be faced in order to produce a signal. Finally, if & is
moderate (—x <—-& +a<-b—x), then one observation will have been spent and the CUSUM will
continue from X—¢ +a, requiring on average additional j(x—é1 +a) observations to produce a

signal. This reasoning leads to the equation for j(x),

—b-x-a

j()=1P[-& +a=-b—x]+(1+j(0))P[-& +a<—x]+ j (1+j(x—y+a))f (-y)d(-y)

0

j(x):1+(1—F[x+a])j(0) +I i(y)f(y—(x+a))dy. €))

-b
We defined the CUSUM statistic X, for an independently and identically distributed (i.i.d.)
observed sequence of non-negative CUSUM chart with exponential distribution random variables.
The recursive equation is
X, =max(X,,-¢& +a0), n=12..., X, =X ®)

where y =max[0,y]and z, =inf (k >0: X, <-b)is the stopping time where a is reference value

and b is control limit.
0

j(x)=l+(1—F[x+a])j(O) +J i(y)f(y—(x+a))dy. (3)

-b
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We consider now the case where f (t)=1e ', and hence F (t)=(1-e )1, Thus, the

t>0)

equation (3) becomes:
0
() =1+§(0)(e ")+ 2 [j(y)eray,
-b

noting that the solution j() of this integral equation is continuous since its right hand side is a
continuous function of x.
Now, consider the complete metric space (C(I),d) where | is a compact subset of the real

line R (e.g., a closed and bounded interval), C(I) denoting the space of all continuous functions
g(x)|, ie.,
d(g,n)=|g-h|. Recall that, a mapping T:C(1)—C(l) is called a contraction if there is
qe(0,1) suchthat d(T(g),T(n))<qd(g,h), forall g,neC(l). Anelement geC(1)isafixed

g:l > R,and the metric d is generated by the sup-norm ||<_:f||=supXel

point of T (.)if T(g)=g. A useful device in numerical analysis is the Banach fixed point theorem
which says that if T(.):(X,d)— (X,d)is a contraction, where (X,d) is a complete metric space,
then T (.) has a unique fixed point x which is the limit (as n — oo ) of x, =T (X, ), where, for any

arbitrary starting point x, € X, x =T (%), X, =T(X),..., X, =T(x,), and with error bound

given by d(x,x,)< <Zd d (%% ). See, e.g., Venkateshwara et al. (2001).

1-q

Now, in view of
0

J(x) =1+ §(0)(e Y )+ 2 [ j(y)edy,

%
we define an operator T (.)on C(1), for xe|, as

0

T(j)(x):1+j(O)(e""(X+a))+ Je~ 0@ I i(ye~dy.

b
Theorem 2.1 The operator T (.) so define on (C (1 )d) is a contraction.

Proof:
First, to prove that T is a contraction we may check that forany x < I, and j,, j, € C(l), we

have the inequality [T (j,)—T(j,)|.<alj,— J,|, where g is a positive constant, g <1

(01O e (451

||T ( jl)_T ( j2 )||oc < xé[lzl)pa]{

<||J1_ Jz” Sup {( Hora )+ﬂe e J.e“dy}

=|i.- i, Sup{ (e 4 g X+aIe“dy}

(Ze o ‘eila%x*lb)"h‘ |

:q1||j1_ j2||ml
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where 0<q, = (2e'l(x*a) —g b ) <1
In the proof, we have used the triangle inequality for norms and the fact that
|j1 (0)- i (0)| < XS[%EJ (%)= (X)| =i~ |, -

In Theorem 2.2, we derive explicit expression of the integral equations Eq.(3). The uniqueness
of solutions is guaranteed by Theorem 2.1. Next, we derive the explicit expression of the Fredholm
integral equation Eq.(3). The solution is given in Theorem 2.2.

Theorem 2.2 The solution of T (j(x))=j(x) is

e (1-e7)(1-e™)+ Abe™
J(X) _1+1_e—/1a 1+ 1_e—ia_lbe—&a

, X<a (5)

Proof: From Eg. (5), we have for x e [0, a) that

0
j(x)=1+ j(O)(e"(“a))+ﬂe"(”a)j i(ye”dy, xe[0,a), a>b.
b

0
Define d = _[ i(y)e™dy.
“b

So that, we have

i(x) =1+ 2e " d + j(0)(e ). ()
Aa
If x=0 then j(0)= w Substitute j(0) into Eq. (6), then
. 1-e 7 4o a4 gea)y
= 7
J(X) 1_e—/1a ' ( )

If x=a then,

) 1-e*4e? +/1e’2;ad
i(a)= o

Next, we find the constant d is following
0 _aja Aly+a Ay+a)
d:J’[l e +e _}:/le d}”dy
* 1-e

—} —e M e e “"‘d)dy

0 e—Aa
R

0 _ 0 .,
|e‘y|_b +e4 |y|7b +Ade

y|°b]
—Aa

— [1— e ] +be™ + Abde j
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(1-e7)(1-e ™)+ Abe ™
A(l-e7* —abe ™)

Then, the constant d is into Eq. (7)

e—l(x+a) {14_ (1_e—la )(1_ e—lb ) + Abe 2

J (X) :1+ 1_ e—la 1_ e—la _ lbe—la

J,xa[o,a],a<b. (8)

Thus, the explicit expressions for ARL, and ARL, follow as

~ig(x+a) 1-e?)(1—e " be %*
€ - 1+( )(7 )Tﬁo ,Xe[oo,a]
1-e%® 1-e % —  be ™" 9)

,a>bl-e?#0 and 1-e?—-be?® %0

ARLy = ji_ (x)=1+

and

AR . ) e—l(X+a) . (1—efia)(l—eflb)+/1be*’~a b
Pl P i o i P R P

(10)
Jd-e* =0 and 1-e* - Abe ™™ = 0.
3. The Numerical Integral Approximation
A numerical scheme evaluates solutions of the integral equations described in Section 2. Next,

we evaluate this equation using the Gauss-Legendre quadrature rule, which is one of the Nystrom
methods (Mititelu et al. 2010 and Busaba et al. 2011). Firstly, recall Eq. (1) as

j(x):1+(1—F[x+a])j(0) +]1 i(y)f(y—(x+a))dy,

where F(x)=1-e™ and f(x)=

We approximate the integral by a sum of areas of rectangles with bases b/m with heights is
chosen as the values of f at the midpoints of intervals of length b/m beginning at —b, i.e., on the
interval [—b,O] with the division points -b<a, <a, <...<a, <0 and weights w,. The integral of

j(y) can be approximated by summation following;

0 m
[i(y)dy=> w,f(a) with a =—b+£(k—l}k=1,2,...,m.
b k=1 m 2
Represent to Eq. (1) so that,
i(a)~1+ j(am)[l—F(a+ai)]+ dwi(a)f(a —a-a),i=12...m
k=1
Therefore
i(a)=1+wf(a,—a-a)j(a)+w,f(a,—a-a)j(a)+...+w,,f(a,,—a—a)j(a,,)
+[1—F(a+a1)+wmf(am—a—al)]j(am)
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i(a)=1+wf(a,—a-a,)j(a)+w,f(a,—a-a,)j(a,)+...+w,,f(a,, —a-a,)j(a,,)
+[1-F(a+a,)+w,f(a,—a-3,)]j(a

i(ay)=1+wf(a,-a-a,)j(a)+w,f(a,—a-a,)j(a,)+...+w, ,f(a,,—a-a,)j(a,.)
+[1—F(a+am)+wmf(am—a—am)}j(am)
where j is asystem of m linear equations in the m unknown j(a,), j(&,),..-, j(a, ), which can

be written in the matrix form as

‘]mxl :]‘mxl + Rmanmxl or (Im - Rmxm)‘]mxl :]‘mxl' (ll)
where
Rmxm:
w, f (a) w,f(a,-a-a) ... w,_,f(a,,—a-a) 1-Fla+a]+w,f(a,-a-a)
wf(a,-a-a,) w, f (a) w,,f(a,,—a-a,) 1-F[a+a,]+w,f(a,-a-a,)
wf(a-a-a,) wf(a,-a-a,) w,,f(a,,—a-a,) 1-Fla+a]+w,f(a)

i(a,) 1
and |, =diag (1,1,...,1) is the unit matrix of order m.
From Eq. (11), we rearrange Eq. (10) as

‘]mxl = ( Im - Rmxm )71 1m><1' (12)
If Eq. (11) exists (1, —R,,.., )’1, then the solution of the Eq. (11) is Eq. (12). To solve this set of

equations for the approximate values of j(a,), j(a,).....j(a,) can approximate the function

j(x) as
i® (x)~1+ j(a,)[1-F (a+x)]+ iwkj(ak)f(ak—a—x),i=1,2,...,m, (13)

where j y)dy=~ Zwk (a,) with a, =—b+— (k—Ej  k=12,...,m

4. Comparisons with the Analytical Results

In this section, the ARL of two methods are compared using the relative error and computational
times. The relative error is a comparison of the explicit expression and the numerical approximation.
We will implement real data in future research. Define the relative error as:

100§ ()|
()

Diff (%) = x100%.
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Table 1 Comparisons of the ARL using the relative error between the results obtained from j(x)

and j'"(x) when given a=0.0007, 2 =1 and m =800

b= -0.0093 b= -0.002 b= -0.0013
X i(%) Diff (%) i(x) Diff (%) i) Diff (%)
i) (Time Used) i"®(x) (Time Used) i)  (Time Used)
100.063 0.056964  370.595 0.046142 500.288 0.040377
100.006 (2,193.75)  370.424  (2,138.24) 500.086 (2,098.35)
61.0849 0.057134  225.171 0.046187 303.834 0.040483
61.050 (2,193.75)  225.067  (2,138.24) 303.711 (2,098.35)
10 37.443 0.056352  136.967 0.045996 184.678 0.040611
37.422 (2,193.75)  136.904  (2,138.24) 184.603 (2,098.35)
15 23.104 0.055402 83.468 0.045766 112.406 0.040033
23.091 (2,193.75) 83.430  (2,138.24) 112.361 (2,098.35)
5 14.407 0.054141 51.019 0.045473 68.571 0.039958
14.399 (2,193.75) 50.996  (2,138.24) 68.544  (2,098.35)

Tables 1 and 2 show the relative error has less than 0.1% accuracy between the numerical
approximation with for a typical run of approximately 800 iterations, and the explicit expression. The
computational time for numerical approximation takes about 40 minutes, while our analytical explicit
expression solution for computational time is less than 1 second. The two methods are in excellent

agreement with the results of ARL.

Table 2 Comparisons of the ARL using the relative error between the results obtained from j(x)
and j'"®(x) whengiven b=0.002, 2 =1 and m =800

a=0.012 a=0.004703 a=0.004

X j(x) Diff (%) i(x) Diff (%) j(x) Diff (%)
ji®(x)  (Time Used) j®(x) (Time Used) j'®(x) (Time Used)
100.481 0.011943 370.186 0.045923 500.000 0.0622
100.493 (2,132.97) 370.356  (2,123.61) 500.311 (2,433.8)

05 61.338 0.012227 224.922 0.046238 303.659 0.062241
61.346 (2,132.97) 225.026  (2,123.61) 303.848 (2,433.8)

10 37.597 0.011969 136.816 0.045316 184.572 0.061765
37.601 (2,132.97) 136.878  (2,123.61) 184.686 (2,433.8)

15 23.197 0.012070 83.376 0.045576 112.342 0.06142
23.200 (2,132.97) 83.414 (2,123.61) 112.411 (2,433.8)

) 14.463 0.011754 50.964 0.045326 68.532 0.061285
14.465 (2,132.97) 50.987  (2,123.61) 68.574 (2,433.8)
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Table 3 Comparisons of the ARL using the relative error between the results obtained from j(x)
and j'®(x) when given a =0.0007, b=-0.002 and m=800

1 x=0 x=0.5
ifrs i(x) Diff (%) i) Diff (%)
i) (Time Used) i) (Time Used)
1.00 370.595 0.046142 225.171 0.046187
370.424 (2,138.24) 225.067 (2,138.24)
1.01 366.921 0.044151 221.835 0.043726
366.759 (2,664.54) 221.738 (2,664.54)
1.03 359.786 0.040024 215.375 0.039930
359.642 (2,649.71) 215.289 (2,649.71)
1.05 352.923 0.035985 209.182 0.035854
352.796 (2,652.53) 209.107 (2,652.53)
1.10 336.858 0.026124 194.773 0.026184
336.770 (2,656.84) 194.722 (2,656.84)
2.00 185.039 0.154022 68.7043 0.152538
185.324 (2,647.12) 68.8091 (2,647.12)

Table 3 shows the relative error between the numerical approximation and explicit values of
ARL. For fixed ARL, =370, a=0.0007,b=-0.002 in a typical run of approximately 800

iterations. Note that A4 =1 is the value assumed for in the control parameter, so that first row is the
values of ARL,. For A >1 corresponds to values out of the control parameter, therefore these rows

are the values of ARL,. The numerical approximation and explicit values give the good agreement

results which the relative error accuracy is less than 0.2%. The computational time for numerical
approximation about 40 minutes, while the result obtained from the explicit expression solution
takes less than 1 second.

5. Conclusions

We present ARL for CUSUM chart when observations are from negative CUSUM with
exponential distribution for the lower-sided case by two methods based on the Integral Equation
approach. First method, the explicit expression has been solved using the Integral Equation approach
method. Second method, the numerical approximations have been solved using the Numerical
Integral equation (NI approach) method based on Gauss-Legendre integration rules for
approximation. Moreover, we compare the accuracy of the numerical results obtained from the
integral equation and numerical integral equation. We conclude that the numerical results obtained
from the two methods are in good agreement. However, computational time for numerical
approximation (about 40 minutes) is significantly longer than for explicit expression (less than 1
second).
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In our present work, we have specified equation (3) to the case where f is an exponential

density function and carried out the analysis. The same method of analysis could be carried out for
other types of distributions of the observations. This will clearly enlarge the domain of applications
of out techniques. Such general setting will be our future research.
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