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Abstract 

This paper aims at deriving the explicit expressions of the Average Run Length (ARL) for a 

negative Cumulative Sum (CUSUM) chart for a lower-sided case when observations are from 

exponential distribution. ARL is found using two approaches; Integral Equation (IE) and Numerical 

Integral Equation (NI). The comparison for accuracy of results for explicit expression have been 

solved with the Integral Equation approach, while, the numerical approximations have been solved 

with the Numerical Integral equation, which both tend to an acceptable agreement. The computational 

time obtained from the NI approach is significantly longer than that obtained from the IE approach.  

______________________________ 
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1.    Introduction 

Statistical process control (SPC) is a statistical procedure aiming at improving the quality and 

productivity in areas such as industry, manufacturing, health care and epidemiology, clinical 

chemistry, finance and economics, environment science, and computer intrusion detection. The 

cornerstone of SPC is control charts. Clearly, there are various things to detect in a, say, production 

process, and there are various statistical ways to build control charts for detection. For detecting small 

shifts in a process mean, the CUSUM, first proposed by Page (1954), has produced many follow-up 

works. In particular, Ducan (1974), Hawkins and Olwell (1998) and Vargas et al. (2004) showed that 

CUSUM is much more efficient than the usual Shewhart control chart, as far as small variations in 

the mean are concerned. 

The quality characteristic which is widely used to measure the performance of the CUSUM chart 

is the ARL, which is the expected number of runs to an alarm and is context dependent. The ARL is 

classified according to some stopping time scheme: the ARL0 value (measuring the time before a 

process that is on target is falsely signaled as being out of control), and the ARL1 (measuring the time, 

before a process that has gone out of control, which is signaled as being out of control). 

In the literature, there are many methods able to calculate the ARL of CUSUM charts, primarily: 

the ‘Monte Carlo Simulation’ (Fu et al. 2002), ‘Markov Chain Approach’ (MCA) by Brook and 

Evans (1972), the ‘Martingale Approach’ (Sukparungsee and Novikov 2006, 2008), and the ‘Integral 

Equations Approach’ (IE) by Champ and Rigdon (1991)). The three former approaches have 
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limitations and are complicated. They are able only to approximate ARL, and cannot achieve explicit 

expressions. It turns out that the IE approach can provide explicit expressions.   

Recently, Busaba et al., (2012) derived an explicit expression of ARL for CUSUM chart using 

observations from negative exponential distribution for the upper-sided case. The contributions of 

our present study consist of deriving and analyzing explicit expressions of ARL for negative CUSUM 

charts when observations are exponentially distributed, for the lower-sided case. 

This paper is organized as follows. In the next section, we evaluate the explicit expression of 

ARL for a negative CUSUM chart when observations are exponentially distributed, for the lower-

sided case, using the IE approach. In Section 3, ARLs for CUSUM charts are approximated using 

numerical integral approximations based on the Gauss-Legrendre quadrature rule. In Section 4, we 

compare ARLs using displayed error between explicit expressions and numerical approximations. 

Subsequently, we compare the computational times for both approaches. Finally, the conclusion is 

addressed in Section 5. 

 

2.    Theoretical Results 

We follow Vardeman (2001) setting. Let n  be a sequence of independent and identically 

distributed (i.i.d.) random variables with common density function  .f  on the real line. For the 

lower-sided case of negative CUSUM chart, consider 

    j x  the ARL of the lower sided CUSUM scheme using a head start of  .x  

The CUSUM process starts at ,x  there are three possibilities of an observed variable, 
1.  If 1  

is large 1( ),a b x     then there will be an immediate signal and the run length will be 1. If 
1

is small ( 1 a x    ), the CUSUM will “zero out”, one observation will have been “spent”, and on 

average  0j  more observations are to be faced in order to produce a signal. Finally, if 
1  is 

moderate 1( ),x a b x        then one observation will have been spent and the CUSUM will 

continue from 
1 ,x a   requiring on average additional  1j x a   observations to produce a 

signal. This reasoning leads to the equation for   ,j x  

             1 1( ) 1. 1 0 1

b x a

x a

j x P a b x j P a x j x y a f y d y 
  

 

                   

           
0

1 1 0 ( ) .
b

j x F x a j j y f y x a dy


        (1) 

We defined the CUSUM statistic nX  for an independently and identically distributed (i.i.d.) 

observed sequence of non-negative CUSUM chart with exponential distribution random variables. 

The recursive equation is  

  1 0max ,0 , 1,2, , ,n n nX X a n X x      (2) 

where  max 0,y y and  inf 0 :b kk X b     is the stopping time where a  is reference value 

and b  is control limit.  

           
0

1 1 0 ( ) .
b

j x F x a j j y f y x a dy


        (3) 
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We consider now the case where    0
1z

t
f t e  


  and hence      0

1 1 .t

t
F t e 


   Thus, the 

equation (3) becomes: 

          
0

1 0 ,
x a x a y

b

j x j e e j y e dy
  

   



     

noting that the solution  .j  of this integral equation is continuous since its right hand side is a 

continuous function of .x   

Now, consider the complete metric space   ,C I d  where I  is a compact subset of the real 

line   (e.g., a closed and bounded interval),  C I  denoting the space of all continuous functions 

: ,I g and the metric d  is generated by the sup-norm  sup ,x I xg g  i.e., 

  .d g,h g-h  Recall that, a mapping    :T C I C I  is called a contraction if there is 

 0,1q  such that       , ,d T T qdg h g,h for all  .C Ig,h  An element   C Ig is a fixed 

point of  .T if   .T g g  A useful device in numerical analysis is the Banach fixed point theorem 

which says that if      . : , ,T X d X d is a contraction, where  ,X d  is a complete metric space, 

then  .T has a unique fixed point x  which is the limit (as n ) of  1 ,n nx T x   where, for any 

arbitrary starting point      0 1 0 2 1 1, , , , ,n nx X x T x x T x x T x      and with error bound 

given by    0 11
, , .

nq

n q
d x x d x x


  See, e.g., Venkateshwara et al. (2001).  

Now, in view of 

          
0

1 0 ,
x a x a y

b

j x j e e j y e dy
  

   



     

we define an operator  .T on   ,C I  for ,x I  as 

           
0

1 0 .
x a x a y

b

T j x j e e j y e dy
  

   



     

Theorem 2.1 The operator  .T  so define on   ,C I d is a contraction. 

Proof:  

First, to prove that  T  is a contraction we may check that for any ,x I  and 1 2, ( ),j j C I  we 

have the inequality 1 2 1 1 2( ) ( ) ,T j T j q j j   where q  is a positive constant, 1q   

   
 

              

 

    

0

1 2 1 2 1 2
0,

0

1 2
0,

0 0

  

x a x a y

x a
b

x a x a y

x a
b

T j T j Sup j j e e j y j y e dy

j j Sup e e e dy

  

  





   






   






  
     

  

  
   

  





          

 

   

  

0

1 2
0,

1 2

1 1 2

2

,

x a x a y

x a
b

x a a x b

j j Sup e e e dy

e e j j

q j j

  

   


   






    





  
   

  

  

 


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where 
  10 2 1.
x a a x bq e e

              

In the proof, we have used the triangle inequality for norms and the fact that  

    
 

   1 2 1 2 1 2
0,

0 0 .
x a

j j Sup j x j x j j




        

In Theorem 2.2, we derive explicit expression of the integral equations Eq.(3). The uniqueness 

of solutions is guaranteed by Theorem 2.1. Next, we derive the explicit expression of the Fredholm 

integral equation Eq.(3). The solution is given in Theorem 2.2. 

 

Theorem 2.2 The solution of      =T j x j x  is 

  
    1 1

1 1 ,  .
1 1

a b ax a

a a a

e e bee
j x x a

e e be

  

  





   

  

   
    
   
 

 (5) 

Proof:  From Eq. (5), we have for  0,x a  that 

             
0

1 0 ,   0, ,   .
x a x a y

b

j x j e e j y e dy x a a b
  

   



      

Define  
0

.y

b

d j y e dy



   

So that,

 

we have  

         1 0 .
x a x a

j x e d j e
 


   

    (6) 

If 0x   then  
1

0 .
1

a

a

e d
j

e





 







 Substitute  0j  into Eq. (6), then

   

 

 
 

   
1

.
1

x a x aa

a

e e e d
j x

e

 




   



  



 (7) 

If x a  then,  

  
2 21

.
1

a a a

a

e e e d
j a

e

  



  



  



 

Next, we find the constant d  is following 

 

   

 
 

 

0

0

0 0 0 0

1

1

1

1

1 1

1

y a y aa
y

a

b

y a y a a

a
b

a
y y a a

b ba b b

e e e d
d e dy

e

e e e e d dy
e

e
e e e y de y

e

 




    




   








 

   





   





 

   

   
  

  

   


 
    

  



   

 
 

1 1
1 1

1

a
b b a a

a

e
d e e be bde

e


   




 


   



 
            

  
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  

 

1 1
.

1

a b a

a a

e e be
d

e be

  

 



 

  

 

  


 
 

Then, the constant d  is into Eq. (7)  

  
    

 
1 1

1 1 ,  0, ,  .
1 1

a b ax a

a a a

e e bee
j x x a a b

e e be

  

  





   

  

   
     
   
 

 (8) 

Thus, the explicit expressions for 0ARL  and 1ARL  follow as 

 
 

    
 

0 0 0
0

0 0 0 0

0

0

0

1 1
1 1 , ,

1 1

, ,1 0 1 0

a b ax a

L a a a

a a a

e e bee
ARL j x x a

e e be

a b e and e be

  

  





   



  

  

   
      
   
 

     

   (9) 

and  

 
 

    
 

11

1 1
1 1 , , ,

1 1

,1 0 1 0.

a b ax a

L a a a

a a a

e e bee
ARL j x x a a b

e e be

e and e be

  

  

  







   



  

  

   
       
   
 

    

 (10) 

 

3.    The Numerical Integral Approximation  

A numerical scheme evaluates solutions of the integral equations described in Section 2. Next, 

we evaluate this equation using the Gauss-Legendre quadrature rule, which is one of the Nystrom 

methods (Mititelu et al. 2010 and Busaba et al. 2011). Firstly, recall Eq. (1) as  

           
0

1 1 0 ( ) ,
b

j x F x a j j y f y x a dy


        

where    1 xF x e     and  
 

.x
dF x

f x e
dx

    

We approximate the integral by a sum of areas of rectangles with bases b m  with heights is 

chosen as the values of f at the midpoints of intervals of length b m  beginning at ,b i.e., on the 

interval  ,0b  with the division points 1 2 0mb a a a       and weights .kw  The integral of 

(y)j  can be approximated by summation following; 

    
0

1

m

k k

kb

j y dy w f a


   with  
1

, 1,2, , .
2

k

b
a b k k m

m

 
    

 
 

Represent to Eq. (1) so that, 

          
1

1 1 , 1,2, , .
m

i m i k k k i

k

j a j a F a a w j a f a a a i m


            

Therefore 

 
             

     

1 1 1 1 1 2 2 1 2 1 1 1 1

1 1

1

1

m m m

m m m

j a w f a a a j a w f a a a j a w f a a a j a

F a a w f a a a j a

            

         
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             

     

2 1 1 2 1 2 2 2 2 1 1 2 1

2 2

1

1

m m m

m m m

j a w f a a a j a w f a a a j a w f a a a j a

F a a w f a a a j a

            

                 

                

     

1 1 1 2 2 2 1 1 11

1

m m m m m m m

m m m m m

j a w f a a a j a w f a a a j a w f a a a j a

F a a w f a a a j a

            

       

 

where j   is a system of m linear equations in the m unknown      1 2, , , ,mj a j a j a  which can 

be written in the matrix form as  

  1 1 1 1 11 1 ,m m m n m m m m m mJ R J or I R J           (11) 

where 

         
         

         

1 2 2 1 1 1 1 1 1

1 1 2 1 1 1 2 2 2

1 1 2 2 1 1 1

1

1
,

1

m m

m m m m

m m m m

m m m m m m
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
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 

 



         
 

         
 
 
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 
 

 

1

2

1 1

1

1
, 1 ,

1

m m

m

j a

j a
J

j a

 

   
   
    
   
   
      

and  1,1, ,1mI diag  is the unit matrix of order .m  

From Eq. (11), we rearrange Eq. (10) as  

  
1

1 11 .m m m m mJ I R


     (12) 

If Eq. (11) exists  
1
,m m mI R



  then the solution of the Eq. (11) is Eq. (12). To solve this set of 

equations for the approximate values of      1 2, , , mj a j a j a can approximate the function 

 j x  as 

          
1

1 1 , 1,2, , ,
m

IE

m k k k

k

j x j a F a x w j a f a a x i m


                (13) 

where    
0

1

m

k k

kb

j y dy w f a


  with 
1

, 1,2, , .
2

k

b
a b k k m

m

 
    

 
 

 

4.    Comparisons with the Analytical Results  

In this section, the ARL of two methods are compared using the relative error and computational 

times. The relative error is a comparison of the explicit expression and the numerical approximation. 

We will implement real data in future research. Define the relative error as: 

  
( ) ( )

% 100%.
( )

IEj x j x
Diff

j x


   
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Table 1 Comparisons of the ARL using the relative error between the results obtained from ( )j x  

and ( )IEj x  when given 0.0007,  1a    and 800m   

x 

b = 0.0093  b = 0.002  b = 0.0013  

( )j x  Diff (%) ( )j x  Diff (%) ( )j x  Diff (%) 

( )IEj x  (Time Used) ( )IEj x  (Time Used) ( )IEj x  (Time Used) 

0 
100.063 0.056964 370.595 0.046142 500.288 0.040377 

100.006 (2,193.75) 370.424 (2,138.24) 500.086 (2,098.35) 

0.5 
61.0849 0.057134 225.171 0.046187 303.834 0.040483 

61.050 (2,193.75) 225.067 (2,138.24) 303.711 (2,098.35) 

1.0 
37.443 0.056352 136.967 0.045996 184.678 0.040611 

37.422 (2,193.75) 136.904 (2,138.24) 184.603 (2,098.35) 

1.5 
23.104 0.055402 83.468 0.045766 112.406 0.040033 

23.091 (2,193.75) 83.430 (2,138.24) 112.361 (2,098.35) 

2 
14.407 0.054141 51.019 0.045473 68.571 0.039958 

14.399 (2,193.75) 50.996 (2,138.24) 68.544 (2,098.35) 

 

Tables 1 and 2 show the relative error has less than 0.1% accuracy between the numerical 

approximation with for a typical run of approximately 800 iterations, and the explicit expression. The 

computational time for numerical approximation takes about 40 minutes, while our analytical explicit 

expression solution for computational time is less than 1 second. The two methods are in excellent 

agreement with the results of ARL. 

 

Table 2 Comparisons of the ARL using the relative error between the results obtained from ( )j x  

and ( )IEj x  when given 0.002,  1b    and 800m   

x 

a = 0.012 a = 0.004703 a = 0.004 

( )j x  Diff (%) ( )j x  Diff (%) ( )j x  Diff (%) 

( )IEj x  (Time Used) ( )IEj x  (Time Used) ( )IEj x  (Time Used) 

0 
100.481 0.011943 370.186 0.045923 500.000 0.0622 

100.493 (2,132.97) 370.356 (2,123.61) 500.311 (2,433.8) 

0.5 
61.338 0.012227 224.922 0.046238 303.659 0.062241 

61.346 (2,132.97) 225.026 (2,123.61) 303.848 (2,433.8) 

1.0 
37.597 0.011969 136.816 0.045316 184.572 0.061765 

37.601 (2,132.97) 136.878 (2,123.61) 184.686 (2,433.8) 

1.5 
23.197 0.012070 83.376 0.045576 112.342 0.06142 

23.200 (2,132.97) 83.414 (2,123.61) 112.411 (2,433.8) 

2 
14.463 0.011754 50.964 0.045326 68.532 0.061285 

14.465 (2,132.97) 50.987 (2,123.61) 68.574 (2,433.8) 
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Table 3 Comparisons of the ARL  using the relative error between the results obtained from ( )j x  

and ( )IEj x  when given 0.0007,  0.002a b    and 800m   

  

shifts 

x = 0 x = 0.5 

( )j x  Diff (%) ( )j x  Diff (%) 

( )IEj x  (Time Used) ( )IEj x  (Time Used) 

1.00 370.595 0.046142 225.171 0.046187 

 370.424 (2,138.24) 225.067 (2,138.24) 

1.01 366.921 0.044151 221.835 0.043726 

 366.759 (2,664.54) 221.738 (2,664.54) 

1.03 359.786 0.040024 215.375 0.039930 

 359.642 (2,649.71) 215.289 (2,649.71) 

1.05 352.923 0.035985 209.182 0.035854 

 352.796 (2,652.53) 209.107 (2,652.53) 

1.10 336.858 0.026124 194.773 0.026184 

 336.770 (2,656.84) 194.722 (2,656.84) 

2.00 185.039 0.154022 68.7043 0.152538 

 185.324 (2,647.12) 68.8091 (2,647.12) 

 

Table 3 shows the relative error between the numerical approximation and explicit values of 

.ARL  For fixed 0 370, 0.0007, 0.002ARL a b     in a typical run of approximately 800 

iterations. Note that 1   is the value assumed for in the control parameter, so that first row is the 

values of 0 .ARL  For 1   corresponds to values out of the control parameter, therefore these rows 

are the values of 1.ARL  The numerical approximation and explicit values give the good agreement 

results which the relative error accuracy is less than 0.2%. The computational time for numerical 

approximation about 40 minutes, while the result obtained from the explicit expression solution 

takes less than 1 second. 

 

5.    Conclusions 

We present ARL for CUSUM chart when observations are from negative CUSUM with 

exponential distribution for the lower-sided case by two methods based on the Integral Equation 

approach. First method, the explicit expression has been solved using the Integral Equation approach 

method. Second method, the numerical approximations have been solved using the Numerical 

Integral equation (NI approach) method based on Gauss-Legendre integration rules for 

approximation. Moreover, we compare the accuracy of the numerical results obtained from the 

integral equation and numerical integral equation. We conclude that the numerical results obtained 

from the two methods are in good agreement. However, computational time for numerical 

approximation (about 40 minutes) is significantly longer than for explicit expression (less than 1 

second).  
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In our present work, we have specified equation (3) to the case where f  is an exponential 

density function and carried out the analysis. The same method of analysis could be carried out for 

other types of distributions of the observations. This will clearly enlarge the domain of applications 

of out techniques.  Such general setting will be our future research.  
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