
Thailand Statistician 
January 2016; 14(1): 93-115 
http://statassoc.or.th 
Contributed paper 

 
Comparison of Some Confidence Intervals for Estimating the 
Skewness Parameter of a Distribution 
Sergio Perez-Meloand and B. M. Golam Kibria* 
Department of Mathematics and Statistics, Florida International University, University Park 
Miami FL, 33199, USA. 
*Corresponding author; e-mail:  kibriag@fiu.edu 
 

Received:  30 January 2015 
Accepted: 16 September 2015 

 
Abstract 

Several methods have been proposed to calculate interval estimators for estimating the skewness 
of a distribution. Since they considered in different times and under different simulation conditions, 
their performance are not comparable as a whole. In this paper an attempt has been made to review 
some existing estimators and compare them under the same simulation condition. In particularly, we 
consider and compare both classical (normality assumed) and non-parametric (bias-corrected 
standard bootstrap, Efron’s percentile bootstrap, Hall’s percentile bootstrap and bias-corrected 
percentile bootstrap) interval estimators for estimating the skewness of a distribution. A simulation 
study has been made to compare the performance of the estimators under normal, right and left 
skewed distributions. Both average widths and coverage probabilities are considered as a criterion of 
the good estimators. We have found a significant difference in the performance of classical and 
bootstrap estimators in all cases. Based on the simulation results we have found that both classical 
estimators and bootstrap estimators work well in terms of coverage probability when data comes from 
a normal distribution, although bootstrap methods tend to give smaller intervals in that case. When 
data comes from skewed distributions, bootstrap methods perform better than classical methods in 
terms of coverage. Amongst the bootstrap methods, the bias corrected percentile interval had the best 
coverage consistently for skewed data. One real life data sets are analyzed to illustrate the findings 
of the paper.  
______________________________ 
Keywords: Bootstrap methods, skewness, coverage probability, confidence interval, nonparametric 
methods, parametric methods, skewed distributions. 
 
1.    Introduction 

Skewness is a numerical measure that helps to summarize a distribution’s departure from 
symmetry about the mean. It is defined as the ratio of the third central moment of the distribution and 
the cube of the standard deviation ( 3

1 3 /γ µ σ= ). A symmetric distribution has a skewness of zero. 
Positive values of the skewness parameter indicate a distribution with a longer or heavier tail on the 
right than on the left, while negative values indicate the opposite. A general guideline to classify a 
distribution according to the severity of its skewness is given by Zieffler et al. (2011).  

According to the aforementioned authors: 
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• If  1γ  = 0 , the distribution is symmetric  

• If 1γ < 1 , the skewness of the distribution is slight 

• If  1 < 1γ < 2 , the skewness of the distribution is moderate 

• If 1γ > 2 , the skewness of the distribution is high 

Several sample statistics have been proposed as point estimators for the skewness parameter since 
Pearson (1895). Three of the most commonly used estimators computed by statistical packages are 
the following: 
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The first estimator 1g  is called Fisher-Pearson coefficient of skewness, while 1G  is called adjusted 

Fisher-Pearson standardized third moment coefficient. Both 1G  and 1b  are modified versions of 1g  
that adjust for bias in the estimation of the skewness parameter. For large sample sizes, these three 
statistics converge to a common value.  

There are two major branches in inferential statistics: estimation theory and hypothesis testing. 
Estimation method includes confidence interval (indicate that the population parameter (e.g. 1, ,µ σ γ
etc.) will be within this interval with a certain level of confidence) as estimates for population 
parameters, while the hypothesis testing focuses on the use of statistical tests to accept or reject 
hypotheses concerning these parameters. A convenient way to perform hypothesis testing is to 
compute a confidence interval for the parameter and then reject the null hypothesis if the hypothesized 
parameter value is not in the confidence interval. The confidence level is the probability that the 
interval estimate will include the true parameter in repeated sampling. In this article we will focus on 
comparing the performance of different confidence intervals estimators for the skewness parameter 
of normal, right skewed and left skewed populations. 

Several researchers have studied the properties of various interval and point estimators of 
skewness through empirical studies. To mention a few, Arnold and Groenveld (1995), Rayner et al.  
(1995), Joanes and Gill (1998), Tabor (2010), Wright and Herrington (2011), Doane and Seward 
(2011). Since the aforementioned studies compared at different times and under different simulation 
conditions, they are not comparable as a whole. The objective of this paper is to compare several 
confidence intervals for skewness and find some good ones for estimating the skewness of normal, 
positively skewed and negatively skewed distributions within the classical and bootstrap approaches. 
Since a theoretical comparison is not possible, a simulation study has been made to compare the 
performance of the parametric estimators (classical confidence intervals with normality assumption) 
and bootstrap (bias-corrected standard bootstrap, Efron’s percentile, Hall’s percentile and bias-
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corrected percentile). Both average widths and coverage probabilities are considered as a criterion of 
the good estimators.  

The organization of this paper is as follows: In Section 2, we presented various interval 
estimators. A simulation study has been conducted in Section 3. One real life data are analyzed in 
Section 4. Finally, some concluding remarks are given in Section 5. 
 
2.   Methods for Computing Confidence Interval for 1γ  (Skewness Parameter) 

Suppose 1 2,  ,  , nX X X…  be a iid random sample from a population with mean µ  and standard 

deviation .σ  Our target is to find an interval estimate for 1γ  (skewness parameter) with a specific 
level of confidence. We will take two main approaches to this problem. These are (a) the parametric 
approach and (b) the bootstrap approach. The (1-α)100% CI for 1γ  by different approaches are 
presented below. 
 
2.1.   Parametric approach (assuming normality) 

Three parametric confidence intervals for skewness are proposed in the literature, one for each 
of the previously defined point estimators 1,g  1G  and 1.b  They follow the general pattern: 
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where 1,g  1G  and 1b  are the previously defined point estimators for skewness, n  is the sample size, 

and /2zα  is the upper 
2
α  percentile of the standard normal distribution (see Joanes and Gill 1998). 

 
2.2.   Bootstrap approach 

Bootstrap is a commonly used computer-based non-parametric tool (introduced by Efron 1979), 
which requires no assumptions regarding the underlying population and can be applied to a variety 
of situations. The accuracy of the bootstrap CI depends on the number of bootstrap samples. If the 
number of bootstrap samples is large enough, CI may be very accurate. An extensive array of different 
bootstrap methods is summarized as follows: Let (*)X = (*)

1X , (*)
2X , …, (*) ,nX  where the ith sample is 

denoted ( )iX for i=1,2 ,…,B, and B is the number of bootstrap samples.  Efron (1979) showed 
reducing B to 400 causes the conditional CV to become too large so he recommended using larger 
values such as 1,000. The number of bootstrap samples is typically between 1,000 and 2,000; because, 
the accuracy of the confidence interval depends on the size of the samples (Efron and Tibshirani 
1993).  
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2.2.1.   Bias-corrected standard bootstrap approach 
Let T  be any of the three point estimators for skewness previously defined. The corresponding 

bias-corrected standard bootstrap confidence interval is 
 ( ) / 2 ˆBT Bias T zα σ− ±  

where ( )2*

1

1
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− ∑   is the bootstrap standard deviation, *
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= ∑  is the bootstrap 

mean  and ( )Bias T T T= −  is the estimated bias (see Manly 1997). 

 
2.2.2.   Efron’s percentile bootstrap approach 

This method was introduced by Efron (1987). Order the sample skewness of each bootstrap 
samples as follows: 

 ( ) ( ) ( ) ( )
* * * *
1 2 3 BT T T T≤ ≤ ≤…≤  

Then, the confidence interval will be given by 
 [( / 2) ]* BL T α ×=  and [(1 ( /2)) ]* BU T α− ×=   

Percentile bootstrap approach is simpler and easy to implement as it does not require to compute ˆBσ
compare to Bias-corrected standard Bootstrap approach.  
 
2.2.3.   Hall’s percentile bootstrap approach 

This method was proposed by Hall (1992).  Order the errors * *
i iT Tε = −  as follows: 

 ( ) ( ) ( ) ( )
* * * *
1 2 3 Bε ε ε ε≤ ≤ ≤…≤  

Then, the confidence interval will be given by: 
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2.2.4.   Bias-corrected percentile bootstrap approach 

This method was introduced by Efron (1987). The calculations are slightly more complicated 
than for the previous methods, but can be summarized as follows: 

(a) Generate values *
iT . Find the proportion of times that *

iT exceeds .T  This proportion can 

be computed as 
*#( )iT T

p
B
>

=  

(b) Find 0z  such that ( )01 Φ z p− =  where ( )Φ .  is the cumulative distribution function of the 

standard normal random variable.  
(c) Then the lower and upper confidence limits will be given by: 

( )0 1 /2

*
Φ 2z z BL T

α− − × 
=  and ( )0 1 /2

*
Φ 2z z BU T

α− + × 
=  

Bias-corrected percentile bootstrap performed better than both bias-corrected standard Bootstrap 
and percentile bootstrap Approaches. For an overview of the calculations of different type of 
bootstrap type confidence intervals we refer our readers to Thomas and Joseph (1998) and Carpenter 
and Bithell (2000) among others. 
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3. Simulation Study 
A theoretical comparison of the estimators is not possible, therefore a simulation study has been 

conducted to compare the performance of the estimators. Our goal is to compare them in terms of 
coverage probability and mean width for normal, right skewed and left skewed distributions.  
 
3.1.   Simulation technique  

The main objective of this paper is to compare the performance of the interval estimators, which 
have been considered in Section 2. The flowchart of our simulation is as follows:  

(i) We used n  = 30, 50, 100, 300, 700 and 1,500.  
(ii) Random samples are generated:  

a) Normal distribution with mean 0 and SD 1 ( 1γ = 0) (Figure 1.1) 

b) Gamma distribution with shape parameters 4, 1 and 0.25 and scale parameter 1 ( 1γ  = 1, 
2, 4) (Figure 1.2) 

c) Beta distribution with alpha parameters 1, 1 and 3 and beta parameters 0.35181, 0.15470 
and 0.10958841 respectively ( 1 1, 2, 4γ = − − − ) (Figure 1.3) 
 

 
Figure 1.1                                  Figure 1.2                                Figure 1.3 

 
3,000 simulation replications are used for each case and 1,000 bootstrap samples for each n. For more 
on simulation techniques we refer our readers to Kibria and Banik (2013) and Banik and Kibria (2011) 
among others. The most common 95% confidence interval ( 0.05α = ) for the confidence coefficient 
is used. It is well known that if the data are from a symmetric distribution (or n is large), the coverage 
probability will be exact or close to (1 α− ). So the coverage probability is a useful criterion for 
evaluating the confidence interval. Another criterion is the width of the confidence interval. A smaller 
width gives a better confidence interval. It is obvious that when coverage probability is the same, a 
smaller width indicates that the method is appropriate for the specific sample. In order to compare 
the performance of the various intervals, the following criteria are considered: coverage probabilities 
and mean widths of the resulting confidence intervals. The coverage probability is found as the 
proportion of times in the 3,000 simulations that the true value of the skewness parameter falls within 
the confidence interval. The mean width of the intervals is computed as the average of the widths 
over the 3,000 simulations. The results are shown in Tables 1-7. 
 
3.2.   Results discussion  

Our main objective is to compare the performance of the previously discussed interval estimators 
under different distributions: normal, right skewed and left skewed with different values of skewness 
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ranging from slight to severely skewed. From the results we will be able to find out which interval 
estimators work best in terms of coverage and width under the different conditions. 

To compare the performance of the estimators under the normal distribution, we generated 
random samples from the normal distribution with mean 0 and SD 1 i.e. N(0,1) and the simulated 
results are reported in Table 1. It is observed that the average width decreases as the sample size 
increases in all instances. Also the parametric confidence intervals tend to be longer in width than the 
bootstrap interval estimators, although the difference seems to decrease with sample size. As for the 
coverage probability, the classical parametric confidence intervals attained the nominal level 0.95 
fairly quickly (50 < n  < 100). Among the bootstrap estimators, Efron’s percentile showed a coverage 
of 95% starting at n  = 30. All the other bootstrap estimators increased their coverage probability 
steadily with sample size, starting around 89%-90% ( n  = 30) until achieving 95% at large sample 
sizes ( n  = 700 and 1,500). From these results we can conclude that if the normality of the data at 
hand is not in question, the classical parametric confidence intervals are a good choice. Efron’s 
percentile method also converges fast to the nominal 95% level and it has the advantage of having a 
smaller width compared to the parametric confidence intervals.  

To see the performance of the estimators under the positively skewed distributions, we generated 
random samples from three different positively skewed Gamma distributions with a range of 
skewness, ranging from 1 to 4. The results are reported in Table 2 to 4. In all cases the widths were 
similar amongst all the bootstrap confidence intervals, while the parametric estimators tended to be 
shorter. Also all intervals tended to become longer as we moved from slightly skewed to larger values 
of skewness, for the same sample sizes. As for the coverage probability the parametric confidence 
intervals performed poorly compared to the bootstrap estimators since their coverage probability was 
not only significantly lower in most cases, but also tended to become smaller as sample size increased. 
In the case of the slightly skewed distribution, the classical methods were still robust, even though 
their coverage deteriorates with increasing sample size. On the other hand, bootstrap estimators 
showed a steady, but not so fast, convergence towards the marginal 95% level. For large sample sizes 
( n  = 1,500) the best coverage probabilities were about 91%, 87 % and 80% for skewness values of 
1, 2 and 4 respectively. Comparing amongst all the estimators the Bias corrected percentile bootstrap 
method achieved the best coverage probability, followed closely by the Bias corrected standard 
bootstrap method. Amongst the point estimators used, 1G  produced a better coverage in all instances. 
Therefore, when dealing with positively skewed data the best pick for confidence interval estimation 
would be the Bias corrected percentile method using 1G . Still we should keep in mind that the 
coverage of such method is significantly lower than the marginal 95% level, even for sample sizes as 
big as n  = 300.  

To assess the performance of the estimators under the negatively skewed distributions, we 
generated random samples from three different negatively skewed Beta distributions with a range of 
skewness, ranging from -1 to -4.  The results are reported in Table 5 to 7. In all cases the widths were 
similar amongst all the bootstrap confidence intervals, while the parametric estimators tended to be 
shorter. Also, intervals tended to become longer as we moved from slightly skewed to larger values 
of skewness, for the same sample sizes. As for the coverage probability the parametric confidence 
intervals performed poorly compared to the bootstrap estimators since their coverage probability was 
either higher than the 95% nominal level, for slightly skewed, or significantly lower for moderately 
and severely skewed (as low as 37 % for highly skewed and large sample sizes) . On the other hand 
bootstrap estimators showed a steady convergence towards the marginal 95% level, faster than for 
the positively skewed distributions. For large sample sizes the best coverage probabilities were about 
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95%, 94 % and 93% for skewness values of 1, 2− −  and 4−  respectively. Comparing amongst all the 
estimators, the Bias corrected percentile bootstrap method again achieved the best coverage 
probability. Therefore, when dealing with negatively skewed data, the best pick for confidence 
interval estimation would be the Bias corrected percentile method, although all the other bootstrap 
methods discussed perform rather well too in terms of coverage and width compared to the classical 
parametric intervals. 
 

Table 1 Coverage and mean width properties for N(0, 1)  
with skewness = 0 and for different sample sizes 

Method Estimator 
n  = 30 n  = 50 n  = 100 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Classical 1g   0.962 1.589 0.964 1.280 0.953 0.932 

 1G   0.962 1.673 0.964 1.319 0.953 0.946 

 1b   0.962 1.510 0.964 1.241 0.953 0.918 
Bias-corrected 

standard bootstrap 1g   0.898 1.234 0.900 1.039 0.910 0.811 

 1G   0.896 1.299 0.898 1.071 0.912 0.822 

 1b   0.893 1.174 0.899 1.006 0.907 0.799 
Efron’s percentile 

bootstrap 1g   0.950 1.223 0.941 1.026 0.934 0.803 

 1G   0.947 1.288 0.945 1.059 0.936 0.815 

 1b   0.949 1.163 0.943 0.996 0.933 0.790 
Hall’s percentile 

bootstrap 1g   0.880 1.223 0.886 1.026 0.904 0.803 

 1G   0.879 1.288 0.884 1.059 0.906 0.815 

 1b   0.882 1.162 0.889 0.997 0.907 0.790 
Bias-corrected 

percentile bootstrap 1g   0.901 1.222 0.913 1.025 0.916 0.804 

 1G   0.902 1.287 0.915 1.059 0.917 0.816 

 1b   0.905 1.162 0.917 0.996 0.917 0.792 
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Table 1 (Continued) 

Method Estimator 

n  = 300 n  = 700 n  = 1,500 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Classical 1g   0.953 0.549 0.949 0.361 0.957 0.247 

 1G   0.953 0.552 0.949 0.362 0.957 0.248 

 1b   0.953 0.546 0.949 0.361 0.957 0.247 
Bias-corrected 

standard bootstrap 1g   0.929 0.515 0.938 0.353 0.949 0.242 

 1G   0.931 0.519 0.938 0.354 0.950 0.243 

 1b   0.931 0.514 0.935 0.352 0.948 0.242 
Efron’s percentile 

bootstrap 1g   0.936 0.513 0.938 0.351 0.950 0.242 

 1G   0.937 0.516 0.939 0.352 0.949 0.242 

 1b   0.937 0.510 0.940 0.351 0.950 0.242 
Hall’s percentile 

bootstrap 1g   0.927 0.513 0.942 0.352 0.951 0.242 

 1G   0.925 0.515 0.939 0.351 0.951 0.242 

 1b   0.929 0.511 0.940 0.351 0.947 0.241 
Bias-corrected 

percentile bootstrap 1g   0.926 0.514 0.932 0.352 0.945 0.242 

 1G   0.926 0.517 0.934 0.352 0.945 0.242 

 1b   0.925 0.512 0.932 0.351 0.948 0.242 
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Table 2 Coverage and mean width properties for Gamma(4, 1)  
with skewness = 1 and for different sample sizes 

Method Estimator 
n  = 30 n  = 50 n  = 100 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Classical 1g   0.875 1.589 0.854 1.280 0.831 0.932 

 1G   0.899 1.673 0.872 1.319 0.841 0.946 

 1b   0.851 1.510 0.836 1.241 0.821 0.918 
Bias-corrected 

standard bootstrap 1g   0.708 1.347 0.739 1.170 0.798 0.986 

 1G   0.744 1.420 0.757 1.209 0.809 0.998 

 1b   0.677 1.281 0.712 1.138 0.784 0.969 
Efron’s percentile 

bootstrap 1g   0.682 1.322 0.708 1.140 0.781 0.953 

 1G   0.726 1.395 0.736 1.175 0.790 0.966 

 1b   0.636 1.258 0.680 1.106 0.764 0.939 
Hall’s percentile 

bootstrap 1g   0.696 1.323 0.715 1.139 0.771 0.954 

 1G   0.727 1.394 0.735 1.176 0.780 0.967 

 1b   0.668 1.258 0.694 1.106 0.759 0.938 
Bias-corrected 

percentile bootstrap 1g   0.723 1.323 0.749 1.138 0.811 0.951 

 1G   0.762 1.393 0.774 1.174 0.818 0.965 

 1b   0.696 1.257 0.728 1.103 0.799 0.937 
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Table 2 (Continued) 

Method Estimator 

n  = 300 n  = 700 n  = 1,500 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Classical 1g   0.796 0.549 0.797 0.361 0.777 0.247 

 1G   0.798 0.552 0.800 0.362 0.778 0.248 

 1b   0.788 0.546 0.795 0.361 0.776 0.247 
Bias-corrected 

standard bootstrap 1g   0.844 0.706 0.898 0.519 0.912 0.375 

 1G   0.846 0.710 0.899 0.519 0.911 0.376 

 1b   0.839 0.702 0.893 0.517 0.907 0.375 
Efron’s percentile 

bootstrap 1g   0.836 0.689 0.891 0.510 0.907 0.371 

 1G   0.841 0.692 0.895 0.511 0.907 0.372 

 1b   0.830 0.684 0.889 0.509 0.904 0.371 
Hall’s percentile 

bootstrap 1g   0.835 0.688 0.897 0.510 0.906 0.371 

 1G   0.842 0.692 0.897 0.511 0.909 0.371 

 1b   0.832 0.685 0.893 0.509 0.905 0.371 
Bias-corrected 

percentile bootstrap 1g   0.851 0.692 0.901 0.515 0.909 0.375 

 1G   0.853 0.696 0.901 0.517 0.910 0.376 

 1b   0.848 0.689 0.898 0.515 0.910 0.375 
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Table 3 Coverage and mean width properties for Gamma (1, 1)  
with skewness = 2 and for different sample sizes 

Method Estimator 
n  = 30 n  = 50 n  = 100 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Classical 1g   0.508 1.589 0.520 1.280 0.508 0.932 

 1G   0.585 1.673 0.567 1.319 0.539 0.946 

 1b   0.435 1.510 0.471 1.241 0.490 0.918 
Bias-corrected 

standard bootstrap 1g   0.533 1.710 0.590 1.590 0.653 1.389 

 1G   0.581 1.801 0.621 1.641 0.671 1.409 

 1b   0.487 1.626 0.561 1.543 0.641 1.370 
Efron’s percentile 

bootstrap 1g   0.467 1.671 0.537 1.530 0.619 1.323 

 1G   0.535 1.760 0.573 1.577 0.642 1.343 

 1b   0.408 1.589 0.495 1.485 0.600 1.303 
Hall’s percentile 

bootstrap 1g   0.494 1.670 0.563 1.532 0.626 1.322 

 1G   0.539 1.760 0.591 1.578 0.640 1.345 

 1b   0.448 1.588 0.535 1.486 0.610 1.304 
Bias-corrected 

percentile bootstrap 1g   0.607 1.689 0.635 1.568 0.682 1.338 

 1G   0.653 1.778 0.666 1.613 0.698 1.357 

 1b   0.561 1.603 0.605 1.517 0.665 1.318 
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Table 3 (Continued) 

Method Estimator 

n  = 300 n  = 700 n  = 1,500 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Classical 1g   0.484 0.549 0.471 0.361 0.457 0.247 

 1G   0.489 0.552 0.477 0.362 0.459 0.248 

 1b   0.471 0.546 0.468 0.361 0.457 0.247 
Bias-corrected 

standard bootstrap 1g   0.748 1.093 0.828 0.865 0.862 0.682 

 1G   0.755 1.099 0.833 0.869 0.865 0.684 

 1b   0.743 1.088 0.829 0.863 0.862 0.683 
Efron’s percentile 

bootstrap 1g   0.726 1.044 0.820 0.839 0.853 0.667 

 1G   0.734 1.050 0.822 0.842 0.857 0.669 

 1b   0.715 1.039 0.814 0.837 0.850 0.667 
Hall’s percentile 

bootstrap 1g   0.720 1.045 0.815 0.840 0.854 0.668 

 1G   0.724 1.050 0.819 0.841 0.856 0.669 

 1b   0.711 1.039 0.811 0.838 0.854 0.666 
Bias-corrected 

percentile bootstrap 1g   0.767 1.051 0.843 0.848 0.867 0.678 

 1G   0.775 1.055 0.845 0.852 0.868 0.678 

 1b   0.758 1.044 0.841 0.847 0.868 0.677 
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Table 4 Coverage and mean width properties for Gamma (1/4, 1)  
with skewness = 4 and for different sample sizes 

Method Estimator 
n  = 30 n  = 50 n  = 100 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Classical 1g   0.110 1.589 0.168 1.280 0.187 0.932 

 1G   0.159 1.673 0.189 1.319 0.203 0.946 

 1b   0.081 1.510 0.141 1.241 0.171 0.918 
Bias-corrected 

standard bootstrap 1g   0.339 2.478 0.463 2.586 0.542 2.458 

 1G   0.389 2.613 0.492 2.663 0.566 2.500 

 1b   0.295 2.355 0.437 2.506 0.523 2.424 
Efron’s percentile 

bootstrap 1g   0.209 2.401 0.407 2.511 0.515 2.378 

 1G   0.293 2.531 0.451 2.584 0.532 2.414 

 1b   0.119 2.286 0.365 2.434 0.488 2.342 
Hall’s percentile 

bootstrap 1g   0.296 2.402 0.403 2.509 0.497 2.379 

 1G   0.338 2.530 0.425 2.586 0.512 2.415 

 1b   0.256 2.285 0.368 2.435 0.482 2.345 
Bias-corrected 

percentile bootstrap 1g   0.453 2.346 0.609 2.566 0.636 2.530 

 1G   0.541 2.472 0.639 2.654 0.651 2.567 

 1b   0.338 2.226 0.574 2.487 0.617 2.494 
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Table 4 (Continued) 

Method Estimator 

n  = 300 n  = 700 n  = 1,500 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Classical 1g   0.187 0.549 0.177 0.361 0.183 0.247 

 1G   0.195 0.552 0.180 0.362 0.182 0.248 

 1b   0.181 0.546 0.174 0.361 0.184 0.247 
Bias-corrected 

standard bootstrap 1g   0.645 2.138 0.707 1.795 0.779 1.542 

 1G   0.651 2.148 0.708 1.801 0.782 1.544 

 1b   0.639 2.127 0.704 1.792 0.775 1.544 
Efron’s percentile 

bootstrap 1g   0.621 2.015 0.687 1.699 0.767 1.471 

 1G   0.628 2.024 0.686 1.702 0.771 1.473 

 1b   0.609 2.006 0.681 1.694 0.767 1.470 
Hall’s percentile 

bootstrap 1g   0.606 2.016 0.676 1.698 0.758 1.471 

 1G   0.612 2.025 0.680 1.701 0.762 1.474 

 1b   0.598 2.004 0.672 1.694 0.758 1.471 
Bias-corrected 

percentile bootstrap 1g   0.688 2.074 0.734 1.725 0.800 1.492 

 1G   0.704 2.089 0.738 1.727 0.800 1.495 

 1b   0.685 2.067 0.729 1.720 0.798 1.491 
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Table 5 Coverage and mean width properties for Beta (1, 0.35181)  
with skewness = -1 and for different sample sizes 

Method Estimator 
n  = 30 n  = 50 n  = 100 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Classical 1g   0.977 1.589 0.983 1.280 0.987 0.932 

 1G   0.979 1.673 0.982 1.319 0.987 0.946 

 1b   0.973 1.510 0.982 1.241 0.987 0.918 
Bias-corrected 

standard bootstrap 1g   0.921 1.329 0.928 1.048 0.945 0.745 

 1G   0.939 1.400 0.937 1.080 0.944 0.756 

 1b   0.895 1.263 0.915 1.017 0.935 0.732 
Efron’s percentile 

bootstrap 1g   0.936 1.329 0.935 1.047 0.943 0.743 

 1G   0.951 1.399 0.941 1.079 0.943 0.754 

 1b   0.917 1.263 0.924 1.015 0.940 0.732 
Hall’s percentile 

bootstrap 1g   0.908 1.329 0.922 1.047 0.942 0.743 

 1G   0.932 1.401 0.937 1.079 0.950 0.755 

 1b   0.875 1.263 0.905 1.015 0.933 0.732 
Bias-corrected 

percentile bootstrap 1g   0.934 1.370 0.935 1.066 0.940 0.749 

 1G   0.939 1.446 0.936 1.097 0.942 0.761 

 1b   0.919 1.304 0.925 1.034 0.938 0.739 
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Table 5 (Continued) 

Method Estimator 

n  = 300 n  = 700 n  = 1,500 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Classical 1g   0.989 0.549 0.987 0.361 0.986 0.247 

 1G   0.988 0.552 0.987 0.362 0.987 0.248 

 1b   0.990 0.546 0.987 0.361 0.986 0.247 
Bias-corrected 

standard bootstrap 1g   0.945 0.432 0.957 0.285 0.947 0.195 

 1G   0.951 0.434 0.956 0.285 0.947 0.194 

 1b   0.944 0.430 0.954 0.284 0.949 0.194 
Efron’s percentile 

bootstrap 1g   0.946 0.431 0.956 0.284 0.948 0.193 

 1G   0.944 0.433 0.954 0.284 0.949 0.194 

 1b   0.945 0.428 0.953 0.283 0.950 0.193 
Hall’s percentile 

bootstrap 1g   0.945 0.430 0.955 0.284 0.951 0.194 

 1G   0.946 0.433 0.956 0.284 0.949 0.194 

 1b   0.940 0.429 0.954 0.283 0.946 0.193 
Bias-corrected 

percentile bootstrap 1g   0.946 0.432 0.954 0.284 0.948 0.194 

 1G   0.946 0.434 0.954 0.284 0.948 0.194 

 1b   0.943 0.430 0.954 0.283 0.949 0.193 
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Table 6 Coverage and mean width properties for Beta (1, 0.15470)  
with skewness = -2 and for different sample sizes 

Method Estimator 
n  = 30 n  = 50 n  = 100 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Classical 1g   0.846 1.589 0.852 1.280 0.855 0.932 

 1G   0.882 1.673 0.869 1.319 0.864 0.946 

 1b   0.792 1.510 0.831 1.241 0.841 0.918 
Bias-corrected 

standard bootstrap 1g   0.871 2.113 0.909 1.782 0.929 1.266 

 1G   0.900 2.224 0.930 1.839 0.940 1.286 

 1b   0.830 2.007 0.889 1.728 0.914 1.250 
Efron’s percentile 

bootstrap 1g   0.931 2.117 0.951 1.778 0.947 1.263 

 1G   0.955 2.227 0.962 1.834 0.953 1.281 

 1b   0.899 2.011 0.929 1.726 0.935 1.244 
Hall’s percentile 

bootstrap 1g   0.807 2.116 0.882 1.779 0.910 1.263 

 1G   0.856 2.227 0.904 1.834 0.920 1.282 

 1b   0.754 2.009 0.848 1.724 0.891 1.244 
Bias-corrected 

percentile bootstrap 1g   0.930 2.221 0.943 1.887 0.946 1.304 

 1G   0.942 2.321 0.948 1.948 0.952 1.321 

 1b   0.913 2.209 0.941 1.829 0.943 1.283 
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Table 6 (Continued) 

Method Estimator 

n  = 300 n  = 700 n  = 1,500 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Classical 1g   0.864 0.549 0.880 0.361 0.863 0.247 

 1G   0.867 0.552 0.880 0.362 0.862 0.248 

 1b   0.859 0.546 0.879 0.361 0.862 0.247 
Bias-corrected 

standard bootstrap 1g   0.938 0.725 0.950 0.473 0.942 0.323 

 1G   0.944 0.728 0.956 0.474 0.939 0.323 

 1b   0.935 0.722 0.952 0.473 0.941 0.322 
Efron’s percentile 

bootstrap 1g   0.942 0.723 0.953 0.472 0.943 0.321 

 1G   0.945 0.727 0.952 0.472 0.942 0.322 

 1b   0.941 0.718 0.953 0.470 0.941 0.321 
Hall’s percentile 

bootstrap 1g   0.932 0.723 0.948 0.472 0.943 0.321 

 1G   0.937 0.725 0.951 0.473 0.939 0.322 

 1b   0.925 0.719 0.948 0.471 0.942 0.321 
Bias-corrected 

percentile bootstrap 1g   0.942 0.729 0.955 0.473 0.942 0.322 

 1G   0.943 0.733 0.954 0.474 0.940 0.322 

 1b   0.945 0.725 0.951 0.473 0.940 0.322 
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Table 7 Coverage and mean width properties for Beta (3, 0.10958841)  
with skewness = -4 and for different sample sizes 

Method Estimator 
n  = 30 n  = 50 n  = 100 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Classical 1g   0.241 1.589 0.297 1.280 0.335 0.932 

 1G   0.299 1.673 0.343 1.319 0.346 0.946 

 1b   0.184 1.510 0.257 1.241 0.318 0.918 
Bias-corrected 

standard bootstrap 1g   0.558 2.914 0.682 3.019 0.772 2.756 

 1G   0.637 3.074 0.718 3.110 0.792 2.798 

 1b   0.487 2.769 0.651 2.925 0.752 2.719 
Efron’s percentile 

bootstrap 1g   0.591 2.782 0.753 2.971 0.828 2.727 

 1G   0.677 2.928 0.795 3.066 0.846 2.772 

 1b   0.466 2.643 0.710 2.882 0.806 2.687 
Hall’s percentile 

bootstrap 1g   0.443 2.780 0.581 2.971 0.703 2.725 

 1G   0.492 2.930 0.622 3.064 0.725 2.774 

 1b   0.394 2.643 0.542 2.879 0.681 2.688 
Bias-corrected 

percentile bootstrap 1g   0.774 2.610 0.862 3.048 0.878 3.026 

 1G   0.838 2.747 0.882 3.147 0.884 3.072 

 1b   0.693 2.476 0.835 2.961 0.868 2.987 
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Table 7 (Continued) 

Method Estimator 

n  = 300 n  = 700 n  = 1,500 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Coverage 
Probability Mean width 

Classical 1g   0.369 0.549 0.384 0.361 0.368 0.247 

 1G   0.371 0.552 0.384 0.362 0.368 0.248 

 1b   0.366 0.546 0.377 0.361 0.367 0.247 
Bias-corrected 

standard bootstrap 1g   0.883 1.900 0.917 1.318 0.922 0.924 

 1G   0.887 1.907 0.920 1.323 0.921 0.926 

 1b   0.876 1.890 0.912 1.315 0.918 0.923 
Efron’s percentile 

bootstrap 1g   0.903 1.883 0.928 1.310 0.925 0.918 

 1G   0.908 1.890 0.932 1.313 0.926 0.919 

 1b   0.894 1.871 0.924 1.308 0.922 0.918 
Hall’s percentile 

bootstrap 1g   0.853 1.881 0.902 1.311 0.910 0.918 

 1G   0.865 1.891 0.905 1.314 0.909 0.920 

 1b   0.847 1.873 0.897 1.308 0.907 0.920 
Bias-corrected 

percentile bootstrap 1g   0.920 1.997 0.934 1.350 0.932 0.934 

 1G   0.924 2.004 0.937 1.352 0.930 0.934 

 1b   0.916 1.983 0.932 1.345 0.931 0.933 

 
4.    Application 

To illustrate the performance of the proposed confidence intervals for population skewness, a 
real life data (Postmortem interval) are analyzed in this Section. The postmortem interval (PMI) is 
defined as the elapsed time between death and an autopsy. Knowledge of PMI is considered essential 
when conducting medical research on human cadavers. The following data are PMIs of 22 human 
brain specimens obtained at autopsy in a recent study (Data Source: Hayes and Lewis 1995). We 
want to find the skewness of the PMI. 
 

5.5, 14.5, 6.0, 5.5, 5.3, 5.8, 11.0, 6.1, 7.0, 14.5, 10.4, 
4.6, 4.3, 7.2, 10.5, 6.5, 3.3, 7.0, 4.1, 6.2, 10.4, 4.9 

 
The mean and SD of the data are 7.3 and 3.18 respectively. The sample skewness is 1.06 and the 
following histogram (Figure 2) that the data are right skewed and are not normally distributed. We 
assume that PMI data are from a gamma distribution with shape parameter, 5.25α = , and scale 
parameter, 1.39β = . Using a Kolmogorov-Smirnov (ks) goodness of fit test, we obtain ks = 0.18 
with p-value = 0.41, which indicates that PMI data are from a gamma distribution with shape 
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parameter, 5.25α = , and scale parameter, 1.39β = . The population 2 0.88.skewness
α

= =  The 

95% resulting confidence intervals and the corresponding confidence width are given in Table 8. 
From this Table, we see that all proposed estimators cover the hypothesized true skewness 0.88.  
However, Efron’s percentile bootstrap has the shortest width followed by bias corrected standard 
bootstrap and classical ( 1g ) interval has the widest width.  

 
Figure 2 Histogram 

 
Table 8 95% confidence intervals and widths for postmortem interval data 

Methods Confidence 
Interval 

Width 

Classical ( 1g ) (0.027, 1.818) 1.791 

Classical ( 1G ) (0.029, 1.696) 1.667 

Classical ( 1b ) (0.026, 1.696) 1.670 

Bias-corrected standard bootstrap ( 1g ) (0.168, 1.672) 1.504 

Bias-corrected standard bootstrap ( 1G ) (0.209, 1.790) 1.581 

Bias-corrected standard bootstrap ( 1b ) (0.249, 1.597) 1.348 

Efron’s percentile bootstrap ( 1g ) (0.255, 1.707) 1.452 

Efron’s percentile bootstrap ( 1G ) (0.261, 1.816) 1.555 

Efron’s percentile bootstrap ( 1b ) (0.254, 1.484) 1.230 

Hall’s percentile bootstrap ( 1g ) (0.145, 1.577) 1.432 

Hall’s percentile bootstrap ( 1G ) (0.101, 1.722) 1.621 

Hall’s percentile bootstrap ( 1b ) (0.103, 1.485) 1.382 

Bias-corrected percentile bootstrap ( 1g ) (0.333, 1.818) 1.485 

Bias-corrected percentile bootstrap ( 1G ) (0.414, 2.022) 1.608 

Bias-corrected percentile bootstrap ( 1b ) (0.325, 1.805) 1.480 
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5.    Conclusions 
This paper reviews various interval estimators for estimating the skewness parameter of a 

distribution. Since a theoretical comparison is not possible, a simulation study has been conducted to 
compare the performance of the estimators. We have compared both classical (normality assumed) 
and non-parametric (bias-corrected standard bootstrap, Efron’s percentile bootstrap, Hall’s percentile 
bootstrap and bias-corrected percentile bootstrap) intervals, where the data are generated from various 
distributions such as normal (symmetric), gamma (right skewed) and beta (left skewed) distributions. 
Coverage probability and average width are considered as a criterion of a good estimator. Our 
simulation results indicate that the performance of the classical estimators and non-parametric 
estimators differs significantly across sample sizes and type of skewness. For normal data, the 
classical estimators perform well in terms of coverage. For small sample size, the classical methods 
have better coverage than most bootstrap methods, although the later have a smaller width for small 
sample size. For large sample sizes, the coverage and widths of both types of methods don’t differ 
greatly when data comes from a normal distribution. For positively skewed distributions, bootstrap 
methods had better coverage than classical, being the best the Bias Corrected Percentile Bootstrap 
estimator. Classical methods were still robust for slightly right skewed data, although their coverage 
deteriorated with increasing sample size. It should also be noted that no method achieved the 95% 
nominal level even for a big sample size of n  = 1,500.  For negatively skewed distributions, bootstrap 
methods worked better than classical estimators in all instances in terms of coverage and shorter 
width for all left skewed distributions considered. The best coverage amongst the bootstrap methods 
was achieved by the Bias Corrected Percentile Bootstrap. Also the rate of convergence towards the 
95% nominal level for bootstrap estimators was faster than for positively skewed distributions. To 
illustrate the findings of the paper, a real data set are studied and the results supported the simulation 
study to some extent. We believe that the findings of this paper will be helpful for different applied 
researchers/practitioners in the field of science and social sciences.  
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