Thailand Statistician
January 2016; 14(1): 93-115
http://statassoc.or.th
Contributed paper

Comparison of Some Confidence Intervals for Estimating the

Skewness Parameter of a Distribution

Sergio Perez-Meloand and B. M. Golam Kibria*

Department of Mathematics and Statistics, Florida International University, University Park
Miami FL, 33199, USA.

*Corresponding author; e-mail: kibriag@fiu.edu

Received: 30 January 2015
Accepted: 16 September 2015

Abstract

Several methods have been proposed to calculate interval estimators for estimating the skewness
of a distribution. Since they considered in different times and under different simulation conditions,
their performance are not comparable as a whole. In this paper an attempt has been made to review
some existing estimators and compare them under the same simulation condition. In particularly, we
consider and compare both classical (normality assumed) and non-parametric (bias-corrected
standard bootstrap, Efron’s percentile bootstrap, Hall’s percentile bootstrap and bias-corrected
percentile bootstrap) interval estimators for estimating the skewness of a distribution. A simulation
study has been made to compare the performance of the estimators under normal, right and left
skewed distributions. Both average widths and coverage probabilities are considered as a criterion of
the good estimators. We have found a significant difference in the performance of classical and
bootstrap estimators in all cases. Based on the simulation results we have found that both classical
estimators and bootstrap estimators work well in terms of coverage probability when data comes from
a normal distribution, although bootstrap methods tend to give smaller intervals in that case. When
data comes from skewed distributions, bootstrap methods perform better than classical methods in
terms of coverage. Amongst the bootstrap methods, the bias corrected percentile interval had the best
coverage consistently for skewed data. One real life data sets are analyzed to illustrate the findings
of the paper.

Keywords: Bootstrap methods, skewness, coverage probability, confidence interval, nonparametric
methods, parametric methods, skewed distributions.

1. Introduction
Skewness is a numerical measure that helps to summarize a distribution’s departure from
symmetry about the mean. It is defined as the ratio of the third central moment of the distribution and

the cube of the standard deviation (7, = u, /). A symmetric distribution has a skewness of zero.
Positive values of the skewness parameter indicate a distribution with a longer or heavier tail on the
right than on the left, while negative values indicate the opposite. A general guideline to classify a

distribution according to the severity of its skewness is given by Zieffler et al. (2011).
According to the aforementioned authors:
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e If y =0, the distribution is symmetric
o |If |7/1| < 1, the skewness of the distribution is slight
o Ifl< |;/1| < 2, the skewness of the distribution is moderate

e If |7,|>2, the skewness of the distribution is high

Several sample statistics have been proposed as point estimators for the skewness parameter since
Pearson (1895). Three of the most commonly used estimators computed by statistical packages are
the following:

R
Hzin_l(xi _i)z:l
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The first estimator g, is called Fisher-Pearson coefficient of skewness, while G, is called adjusted

9%

Fisher-Pearson standardized third moment coefficient. Both G, and b, are modified versions of g,

that adjust for bias in the estimation of the skewness parameter. For large sample sizes, these three
statistics converge to a common value.

There are two major branches in inferential statistics: estimation theory and hypothesis testing.
Estimation method includes confidence interval (indicate that the population parameter (e.g. u, o, 7,

etc.) will be within this interval with a certain level of confidence) as estimates for population
parameters, while the hypothesis testing focuses on the use of statistical tests to accept or reject
hypotheses concerning these parameters. A convenient way to perform hypothesis testing is to
compute a confidence interval for the parameter and then reject the null hypothesis if the hypothesized
parameter value is not in the confidence interval. The confidence level is the probability that the
interval estimate will include the true parameter in repeated sampling. In this article we will focus on
comparing the performance of different confidence intervals estimators for the skewness parameter
of normal, right skewed and left skewed populations.

Several researchers have studied the properties of various interval and point estimators of
skewness through empirical studies. To mention a few, Arnold and Groenveld (1995), Rayner et al.
(1995), Joanes and Gill (1998), Tabor (2010), Wright and Herrington (2011), Doane and Seward
(2011). Since the aforementioned studies compared at different times and under different simulation
conditions, they are not comparable as a whole. The objective of this paper is to compare several
confidence intervals for skewness and find some good ones for estimating the skewness of normal,
positively skewed and negatively skewed distributions within the classical and bootstrap approaches.
Since a theoretical comparison is not possible, a simulation study has been made to compare the
performance of the parametric estimators (classical confidence intervals with normality assumption)
and bootstrap (bias-corrected standard bootstrap, Efron’s percentile, Hall’s percentile and bias-
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corrected percentile). Both average widths and coverage probabilities are considered as a criterion of
the good estimators.

The organization of this paper is as follows: In Section 2, we presented various interval
estimators. A simulation study has been conducted in Section 3. One real life data are analyzed in
Section 4. Finally, some concluding remarks are given in Section 5.

2. Methods for Computing Confidence Interval for y, (Skewness Parameter)
Suppose X,, X,, ..., X, beaiid random sample from a population with mean , and standard
deviation o. Our target is to find an interval estimate for y, (skewness parameter) with a specific

level of confidence. We will take two main approaches to this problem. These are (a) the parametric
approach and (b) the bootstrap approach. The (1-a)100% CI for y, by different approaches are

presented below.

2.1. Parametric approach (assuming normality)
Three parametric confidence intervals for skewness are proposed in the literature, one for each

of the previously defined point estimators g,, G, and b,. They follow the general pattern:
estimatezcritical value xSE (estimate )
6(n-2)

6n(n-1)

Gliza/z\/(n+1)(n+3)(n_2)7
N ) (”ﬂz,

“\(n+1)(n+3) n

where g,, G, and b, are the previously defined point estimators for skewness, n is the sample size,

and z,,, isthe upper % percentile of the standard normal distribution (see Joanes and Gill 1998).

2.2. Bootstrap approach

Bootstrap is a commonly used computer-based non-parametric tool (introduced by Efron 1979),
which requires no assumptions regarding the underlying population and can be applied to a variety
of situations. The accuracy of the bootstrap CI depends on the number of bootstrap samples. If the
number of bootstrap samples is large enough, Cl may be very accurate. An extensive array of different

bootstrap methods is summarized as follows: Let X ©= X", X{?, ..., X7, where the i sample is

denoted X ®for i=1,2 ,...,B, and B is the number of bootstrap samples. Efron (1979) showed
reducing B to 400 causes the conditional CV to become too large so he recommended using larger
values such as 1,000. The number of bootstrap samples is typically between 1,000 and 2,000; because,
the accuracy of the confidence interval depends on the size of the samples (Efron and Tibshirani
1993).
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2.2.1. Bias-corrected standard bootstrap approach
Let T be any of the three point estimators for skewness previously defined. The corresponding
bias-corrected standard bootstrap confidence interval is

T - Bias(T)+z,,,0,

B

B [ [
where &, = \/BLZ(T, —T)2 is the bootstrap standard deviation, T =%ZT is the bootstrap

-1 i=1 I

mean and Bias(T)=T -T is the estimated bias (see Manly 1997).

2.2.2. Efron’s percentile bootstrap approach
This method was introduced by Efron (1987). Order the sample skewness of each bootstrap
samples as follows:

Ty =T

Then, the confidence interval will be given by

<T,

()S...ST

(B)

L=T *[(a/2)><B] and U =T *[(l—(aIZ))xB]
Percentile bootstrap approach is simpler and easy to implement as it does not require to compute &,
compare to Bias-corrected standard Bootstrap approach.

2.2.3. Hall’s percentile bootstrap approach
This method was proposed by Hall (1992). Order the errors & =T T as follows:

€u) < ) < &) <...< )
Then, the confidence interval will be given by:
L=T-¢ =2T-T and U =T-¢ =2T-T

2=] )] ()]

2.2.4. Bias-corrected percentile bootstrap approach
This method was introduced by Efron (1987). The calculations are slightly more complicated
than for the previous methods, but can be summarized as follows:

(2) Generate values T, . Find the proportion of times that T, exceeds T. This proportion can

#T >T
be computed as p = %

(b) Find z, such that 1-®(z,)=p where ®(.) is the cumulative distribution function of the

standard normal random variable.
(c) Then the lower and upper confidence limits will be given by:

L=T" and U =T~

[@(229-21 42)¥B] [@(229+21 412)%B]

Bias-corrected percentile bootstrap performed better than both bias-corrected standard Bootstrap
and percentile bootstrap Approaches. For an overview of the calculations of different type of
bootstrap type confidence intervals we refer our readers to Thomas and Joseph (1998) and Carpenter
and Bithell (2000) among others.
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3. Simulation Study

A theoretical comparison of the estimators is not possible, therefore a simulation study has been
conducted to compare the performance of the estimators. Our goal is to compare them in terms of
coverage probability and mean width for normal, right skewed and left skewed distributions.

3.1. Simulation technique
The main objective of this paper is to compare the performance of the interval estimators, which
have been considered in Section 2. The flowchart of our simulation is as follows:
(i) Weused n =30, 50, 100, 300, 700 and 1,500.
(if) Random samples are generated:
a) Normal distribution with mean 0 and SD 1 (, = 0) (Figure 1.1)

b) Gamma distribution with shape parameters 4, 1 and 0.25 and scale parameter 1 (, =1,

2, 4) (Figure 1.2)
c) Betadistribution with alpha parameters 1, 1 and 3 and beta parameters 0.35181, 0.15470
and 0.10958841 respectively (y, =-1,-2,—4) (Figure 1.3)

N(,1) Positively Skewed Negatively Skewed

10

05

0.0
0.0

Figure 1.1 Figure 1.2 Figure 1.3

3,000 simulation replications are used for each case and 1,000 bootstrap samples for each n. For more
on simulation techniques we refer our readers to Kibria and Banik (2013) and Banik and Kibria (2011)
among others. The most common 95% confidence interval (« = 0.05) for the confidence coefficient
is used. It is well known that if the data are from a symmetric distribution (or n is large), the coverage
probability will be exact or close to (1—« ). So the coverage probability is a useful criterion for
evaluating the confidence interval. Another criterion is the width of the confidence interval. A smaller
width gives a better confidence interval. It is obvious that when coverage probability is the same, a
smaller width indicates that the method is appropriate for the specific sample. In order to compare
the performance of the various intervals, the following criteria are considered: coverage probabilities
and mean widths of the resulting confidence intervals. The coverage probability is found as the
proportion of times in the 3,000 simulations that the true value of the skewness parameter falls within
the confidence interval. The mean width of the intervals is computed as the average of the widths
over the 3,000 simulations. The results are shown in Tables 1-7.

3.2. Results discussion
Our main objective is to compare the performance of the previously discussed interval estimators
under different distributions: normal, right skewed and left skewed with different values of skewness
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ranging from slight to severely skewed. From the results we will be able to find out which interval
estimators work best in terms of coverage and width under the different conditions.

To compare the performance of the estimators under the normal distribution, we generated
random samples from the normal distribution with mean 0 and SD 1 i.e. N(0,1) and the simulated
results are reported in Table 1. It is observed that the average width decreases as the sample size
increases in all instances. Also the parametric confidence intervals tend to be longer in width than the
bootstrap interval estimators, although the difference seems to decrease with sample size. As for the
coverage probability, the classical parametric confidence intervals attained the nominal level 0.95
fairly quickly (50 < n <100). Among the bootstrap estimators, Efron’s percentile showed a coverage
of 95% starting at n = 30. All the other bootstrap estimators increased their coverage probability
steadily with sample size, starting around 89%-90% (n = 30) until achieving 95% at large sample
sizes (n = 700 and 1,500). From these results we can conclude that if the normality of the data at
hand is not in question, the classical parametric confidence intervals are a good choice. Efron’s
percentile method also converges fast to the nominal 95% level and it has the advantage of having a
smaller width compared to the parametric confidence intervals.

To see the performance of the estimators under the positively skewed distributions, we generated
random samples from three different positively skewed Gamma distributions with a range of
skewness, ranging from 1 to 4. The results are reported in Table 2 to 4. In all cases the widths were
similar amongst all the bootstrap confidence intervals, while the parametric estimators tended to be
shorter. Also all intervals tended to become longer as we moved from slightly skewed to larger values
of skewness, for the same sample sizes. As for the coverage probability the parametric confidence
intervals performed poorly compared to the bootstrap estimators since their coverage probability was
not only significantly lower in most cases, but also tended to become smaller as sample size increased.
In the case of the slightly skewed distribution, the classical methods were still robust, even though
their coverage deteriorates with increasing sample size. On the other hand, bootstrap estimators
showed a steady, but not so fast, convergence towards the marginal 95% level. For large sample sizes
(n =1,500) the best coverage probabilities were about 91%, 87 % and 80% for skewness values of
1, 2 and 4 respectively. Comparing amongst all the estimators the Bias corrected percentile bootstrap
method achieved the best coverage probability, followed closely by the Bias corrected standard
bootstrap method. Amongst the point estimators used, G, produced a better coverage in all instances.

Therefore, when dealing with positively skewed data the best pick for confidence interval estimation
would be the Bias corrected percentile method using G, . Still we should keep in mind that the

coverage of such method is significantly lower than the marginal 95% level, even for sample sizes as
big as n =300.

To assess the performance of the estimators under the negatively skewed distributions, we
generated random samples from three different negatively skewed Beta distributions with a range of
skewness, ranging from -1 to -4. The results are reported in Table 5 to 7. In all cases the widths were
similar amongst all the bootstrap confidence intervals, while the parametric estimators tended to be
shorter. Also, intervals tended to become longer as we moved from slightly skewed to larger values
of skewness, for the same sample sizes. As for the coverage probability the parametric confidence
intervals performed poorly compared to the bootstrap estimators since their coverage probability was
either higher than the 95% nominal level, for slightly skewed, or significantly lower for moderately
and severely skewed (as low as 37 % for highly skewed and large sample sizes) . On the other hand
bootstrap estimators showed a steady convergence towards the marginal 95% level, faster than for
the positively skewed distributions. For large sample sizes the best coverage probabilities were about
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95%, 94 % and 93% for skewness values of —1,—2 and —4 respectively. Comparing amongst all the
estimators, the Bias corrected percentile bootstrap method again achieved the best coverage
probability. Therefore, when dealing with negatively skewed data, the best pick for confidence
interval estimation would be the Bias corrected percentile method, although all the other bootstrap
methods discussed perform rather well too in terms of coverage and width compared to the classical
parametric intervals.

Table 1 Coverage and mean width properties for N(0, 1)
with skewness = 0 and for different sample sizes

n =30 n =50 n =100
Method Estimator
Coverage Coverage Coverage
Probability Mean width Probability Mean width Probability Mean width
Classical g, 0.962 1.589 0.964 1.280 0953 0932
G, 0.962 1.673 0.964 1.319 0953  0.946
b, 0.962 1,510 0.964 1.241 0953 0918
Bias-corrected g, 0.898 1.234 0.900 1.039 0.910 0.811
standard bootstrap
G, 0.896 1.299 0.898 1.071 0912 0822
b, 0.893 1.174 0.899 1.006 0907 0799
Efron’s percentile g, 0.950 1223 0941 1.026 0934  0.803
bootstrap
G, 0.947 1.288 0.945 1.059 093 0815
b, 0.949 1.163 0.943 0.996 0933 0790
Hall’s percentile g, 0.880 1.223 0.886 1.026 0.904  0.803
bootstrap
G, 0.879 1.288 0.884 1.059 0906 0815
b, 0.882 1.162 0.889 0.997 0907 0790
Bias-corrected g, 0.901 1.222 0.913 1.025 0.916 0.804
percentile bootstrap
G, 0.902 1.287 0.915 1.059 0917 0816

b, 0.905 1.162 0.917 0.996 0.917 0.792
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Table 1 (Continued)

n =300 n =700 n =1,500
Method Estimator
Coverage Coverage Coverage
Probability Mean width Probability Mean width Probability Mean width
Classical g, 0953 0549 0949 0361 0957  0.247
G, 0953 0552 0949 0362 0957  0.248
b, 0953 0546 0949 0361 0957  0.247
Bias-corrected g, 0.929 0.515 0.938 0.353 0.949 0.242
standard bootstrap
G, 0931 0519 0938 0354 0950  0.243
b, 0931 0514 0935 0352 0948  0.242
Efron’s percentile g, 093 0513 0938 0351 0950  0.242
bootstrap
G, 0937 0516 0939 0352 0949 0242
b, 0937 0510 0940 0351 0950  0.242
Hall’s percentile g, 0927 0513 0942 0352 0951 0242
bootstrap
G, 0925 0515 0939 0351 0951 0242
b, 0929 0511 0940 0351 0947 0241
Bias-corrected g, 0.926 0.514 0.932 0.352 0.945 0.242
percentile bootstrap
G, 0926 0517 0934 0352 0945 0242
b, 0925 0512 0932 0351 0948 0242
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Table 2 Coverage and mean width properties for Gamma(4, 1)
with skewness = 1 and for different sample sizes

n =30 n =50 n =100
Method Estimator
Coverage Coverage Coverage
Probability Mean width Probability Mean width Probability Mean width
Classical g, 0.875 1.589 0.854 1.280 0.831 0.932
G, 0.899 1.673 0.872 1.319 0.841 0.946
by 0.851 1.510 0.836 1.241 0.821 0.918
Bias-corrected g 0.708 1.347 0.739 1.170 0.798 0.986
standard bootstrap ! : ' ' ' ' :
G, 0.744 1.420 0.757 1.209 0.809 0.998
b, 0.677 1.281 0.712 1.138 0.784 0.969
Efron’s percentile

b 9, 0.682 1.322 0.708 1.140 0.781 0.953

ootstrap
G, 0.726 1.395 0.736 1.175 0.790 0.966
b, 0.636 1.258 0.680 1.106 0.764 0.939

Hall’s percentile

9, 0.696 1.323 0.715 1.139 0.771 0.954

bootstrap
G, 0.727 1.394 0.735 1.176 0.780 0.967
by 0.668 1.258 0.694 1.106 0.759 0.938

Bias-corrected
. 0, 0.723 1.323 0.749 1.138 0.811 0.951
percentile bootstrap

G, 0.762 1.393 0.774 1.174 0.818 0.965

b, 0.696 1.257 0.728 1.103 0.799 0.937
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Table 2 (Continued)

n =300 n =700 n =1,500
Method Estimator
Coverage Coverage Coverage
Probability Mean width Probability Mean width Probability Mean width
Classical 0, 0.796 0.549 0.797 0.361 0.777 0.247
G, 0.798 0.552 0.800 0.362 0.778 0.248
b, 0.788 0.546 0.795 0.361 0.776 0.247
Bias-corrected g 0.844 0.706 0.898 0.519 0.912 0.375
standard bootstrap ! ' ' ' ' ' '
G, 0.846 0.710 0.899 0.519 0.911 0.376
b 0.839 0.702 0.893 0.517 0.907 0.375
Efron’s percentile
b 0, 0.836 0.689 0.891 0.510 0.907 0.371
ootstrap
G, 0.841 0.692 0.895 0.511 0.907 0.372
b 0.830 0.684 0.889 0.509 0.904 0.371
Hall’s percentile
b 9, 0.835 0.688 0.897 0.510 0.906 0.371
ootstrap
G, 0.842 0.692 0.897 0.511 0.909 0.371
b 0.832 0.685 0.893 0.509 0.905 0.371
Bias-corrected
. 9, 0.851 0.692 0.901 0.515 0.909 0.375
percentile bootstrap
G, 0.853 0.696 0.901 0.517 0.910 0.376

b 0.848 0.689 0.898 0.515 0.910 0.375
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Table 3 Coverage and mean width properties for Gamma (1, 1)
with skewness = 2 and for different sample sizes

n =30 n =50 n =100
Method Estimator
Coverage Coverage Coverage
Probability Mean width Probability Mean width Probability Mean width
Classical g, 0.508 1.589 0.520 1.280 0.508 0.932
G, 0.585 1.673 0.567 1.319 0.539 0.946
by 0.435 1.510 0.471 1.241 0.490 0.918
Bias-corrected g 0.533 1.710 0.590 1.590 0.653 1.389
standard bootstrap ! : ' ' ' ' :
G, 0.581 1.801 0.621 1.641 0.671 1.409
b, 0.487 1.626 0.561 1.543 0.641 1.370
Efron’s percentile
b 9, 0.467 1.671 0.537 1.530 0.619 1.323
ootstrap
G, 0.535 1.760 0.573 1.577 0.642 1.343
b, 0.408 1.589 0.495 1.485 0.600 1.303
Hall’s percentile
9, 0.494 1.670 0.563 1.532 0.626 1.322
bootstrap
G, 0.539 1.760 0.591 1.578 0.640 1.345
by 0.448 1.588 0.535 1.486 0.610 1.304
Bias-corrected
. 9, 0.607 1.689 0.635 1.568 0.682 1.338
percentile bootstrap

G, 0.653 1.778 0.666 1.613 0.698 1.357

b, 0.561 1.603 0.605 1.517 0.665 1.318
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Table 3 (Continued)

n =300 n =700 n =1,500
Method Estimator
Coverage Coverage Coverage
Probability Mean width Probability Mean width Probability Mean width
Classical 0, 0.484 0.549 0.471 0.361 0.457 0.247
G, 0.489 0.552 0.477 0.362 0.459 0.248
b, 0.471 0.546 0.468 0.361 0.457 0.247
Bias-corrected g 0.748 1.093 0.828 0.865 0.862 0.682
standard bootstrap ! ' ' ' ' ' '
G, 0.755 1.099 0.833 0.869 0.865 0.684
b 0.743 1.088 0.829 0.863 0.862 0.683
Efron’s percentile
b 0, 0.726 1.044 0.820 0.839 0.853 0.667
ootstrap
G, 0.734 1.050 0.822 0.842 0.857 0.669
b 0.715 1.039 0.814 0.837 0.850 0.667
Hall’s percentile
b 9, 0.720 1.045 0.815 0.840 0.854 0.668
ootstrap
G, 0.724 1.050 0.819 0.841 0.856 0.669
b 0.711 1.039 0.811 0.838 0.854 0.666
Bias-corrected
. 9, 0.767 1.051 0.843 0.848 0.867 0.678
percentile bootstrap
G, 0.775 1.055 0.845 0.852 0.868 0.678

b 0.758 1.044 0.841 0.847 0.868 0.677
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Table 4 Coverage and mean width properties for Gamma (1/4, 1)
with skewness = 4 and for different sample sizes

n =30 n =50 n =100
Method Estimator
Coverage Coverage Coverage
Probability Mean width Probability Mean width Probability Mean width
Classical 0, 0.110 1.589 0.168 1.280 0.187 0.932
G, 0.159 1.673 0.189 1.319 0.203 0.946
b 0.081 1.510 0.141 1.241 0.171 0.918
Bias-corrected g 0.339 2.478 0.463 2.586 0.542 2.458
standard bootstrap ! ' ' ' ' ' '
G, 0.389 2.613 0.492 2.663 0.566 2.500
b 0.295 2.355 0.437 2.506 0.523 2.424
Efron’s percentile
b 0, 0.209 2.401 0.407 2.511 0.515 2.378
ootstrap
G, 0.293 2.531 0.451 2.584 0.532 2.414
b 0.119 2.286 0.365 2.434 0.488 2.342
Hall’s percentile
9, 0.296 2.402 0.403 2.509 0.497 2.379
bootstrap
G, 0.338 2.530 0.425 2.586 0.512 2.415
b 0.256 2.285 0.368 2.435 0.482 2.345
Bias-corrected
. 9, 0.453 2.346 0.609 2.566 0.636 2.530
percentile bootstrap

G, 0.541 2.472 0.639 2.654 0.651 2.567

b 0.338 2.226 0.574 2.487 0.617 2.494
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Table 4 (Continued)
n =300 n =700 n =1,500
Method Estimator
Coverage Coverage Coverage
Probability Mean width Probability Mean width Probability Mean width
Classical 9, 0.187 0.549 0.177 0.361 0.183 0.247
G, 0.195 0.552 0.180 0.362 0.182 0.248
b, 0.181 0.546 0.174 0.361 0.184 0.247
Bias-corrected g 0.645 2.138 0.707 1.795 0.779 1.542
standard bootstrap ! ' ' ' ' ' '
G, 0.651 2.148 0.708 1.801 0.782 1.544
b 0.639 2.127 0.704 1.792 0.775 1.544
Efron’s percentile
b 0, 0.621 2.015 0.687 1.699 0.767 1.471
ootstrap
G, 0.628 2.024 0.686 1.702 0.771 1.473
b 0.609 2.006 0.681 1.694 0.767 1.470
Hall’s percentile
b 9, 0.606 2.016 0.676 1.698 0.758 1.471
ootstrap
G, 0.612 2.025 0.680 1.701 0.762 1.474
b 0.598 2.004 0.672 1.694 0.758 1.471
Bias-corrected
. 9, 0.688 2.074 0.734 1.725 0.800 1.492
percentile bootstrap
G, 0.704 2.089 0.738 1.727 0.800 1.495

b 0.685 2.067 0.729 1.720 0.798 1.491
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Table 5 Coverage and mean width properties for Beta (1, 0.35181)
with skewness = -1 and for different sample sizes

n =30 n =50 n =100
Method Estimator
Coverage Coverage Coverage
Probability Mean width Probability Mean width Probability Mean width
Classical 0, 0.977 1.589 0.983 1.280 0.987 0.932
G, 0.979 1.673 0.982 1.319 0.987 0.946
b 0.973 1.510 0.982 1.241 0.987 0.918
Bias-corrected g 0.921 1.329 0.928 1.048 0.945 0.745
standard bootstrap ! ' ' ' ' ' '
G, 0.939 1.400 0.937 1.080 0.944 0.756
b 0.895 1.263 0.915 1.017 0.935 0.732
Efron’s percentile

0, 0.936 1.329 0.935 1.047 0.943 0.743

bootstrap
G, 0.951 1.399 0.941 1.079 0.943 0.754
b 0.917 1.263 0.924 1.015 0.940 0.732

Hall’s percentile

9, 0.908 1.329 0.922 1.047 0.942 0.743

bootstrap
G, 0.932 1.401 0.937 1.079 0.950 0.755
b 0.875 1.263 0.905 1.015 0.933 0.732

Bias-corrected
. 9, 0.934 1.370 0.935 1.066 0.940 0.749
percentile bootstrap

G, 0.939 1.446 0.936 1.097 0.942 0.761

b 0.919 1.304 0.925 1.034 0.938 0.739
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Table 5 (Continued)

n =300 n =700 n =1,500
Method Estimator
Coverage Coverage Coverage
Probability Mean width Probability Mean width Probability Mean width
Classical 0, 0.989 0.549 0.987 0.361 0.986 0.247
G, 0.988 0.552 0.987 0.362 0.987 0.248
b, 0.990 0.546 0.987 0.361 0.986 0.247
Bias-corrected g 0.945 0.432 0.957 0.285 0.947 0.195
standard bootstrap ! ' ' ' ' ' '
G, 0.951 0.434 0.956 0.285 0.947 0.194
b 0.944 0.430 0.954 0.284 0.949 0.194
Efron’s percentile
b 0, 0.946 0.431 0.956 0.284 0.948 0.193
ootstrap
G, 0.944 0.433 0.954 0.284 0.949 0.194
b 0.945 0.428 0.953 0.283 0.950 0.193
Hall’s percentile
b 9, 0.945 0.430 0.955 0.284 0.951 0.194
ootstrap
G, 0.946 0.433 0.956 0.284 0.949 0.194
b 0.940 0.429 0.954 0.283 0.946 0.193
Bias-corrected
. 9, 0.946 0.432 0.954 0.284 0.948 0.194
percentile bootstrap
G, 0.946 0.434 0.954 0.284 0.948 0.194

b 0.943 0.430 0.954 0.283 0.949 0.193
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Table 6 Coverage and mean width properties for Beta (1, 0.15470)
with skewness = -2 and for different sample sizes

n =30 n =50 n =100
Method Estimator
Coverage Coverage Coverage
Probability Mean width Probability Mean width Probability Mean width
Classical 0, 0.846 1.589 0.852 1.280 0.855 0.932
G, 0.882 1.673 0.869 1.319 0.864 0.946
b 0.792 1.510 0.831 1.241 0.841 0.918
Bias-corrected g 0.871 2.113 0.909 1.782 0.929 1.266
standard bootstrap ! ' ' ' ' ' '
G, 0.900 2.224 0.930 1.839 0.940 1.286
b 0.830 2.007 0.889 1.728 0.914 1.250
Efron’s percentile

b 0, 0.931 2.117 0.951 1.778 0.947 1.263

ootstrap
G, 0.955 2.227 0.962 1.834 0.953 1.281
b 0.899 2.011 0.929 1.726 0.935 1.244

Hall’s percentile

9, 0.807 2.116 0.882 1.779 0.910 1.263

bootstrap
G, 0.856 2.227 0.904 1.834 0.920 1.282
b 0.754 2.009 0.848 1.724 0.891 1.244

Bias-corrected
. 9, 0.930 2.221 0.943 1.887 0.946 1.304
percentile bootstrap

G, 0.942 2.321 0.948 1.948 0.952 1.321

b 0.913 2.209 0.941 1.829 0.943 1.283
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Table 6 (Continued)

n =300 n =700 n =1,500
Method Estimator
Coverage Coverage Coverage
Probability Mean width Probability Mean width Probability Mean width
Classical 0, 0.864 0.549 0.880 0.361 0.863 0.247
G, 0.867 0.552 0.880 0.362 0.862 0.248
b, 0.859 0.546 0.879 0.361 0.862 0.247
Bias-corrected g 0.938 0.725 0.950 0.473 0.942 0.323
standard bootstrap ! ' ' ' ' ' '
G, 0.944 0.728 0.956 0.474 0.939 0.323
b 0.935 0.722 0.952 0.473 0.941 0.322
Efron’s percentile
b 0, 0.942 0.723 0.953 0.472 0.943 0.321
ootstrap
G, 0.945 0.727 0.952 0.472 0.942 0.322
b 0.941 0.718 0.953 0.470 0.941 0.321
Hall’s percentile
b 9, 0.932 0.723 0.948 0.472 0.943 0.321
ootstrap
G, 0.937 0.725 0.951 0.473 0.939 0.322
b 0.925 0.719 0.948 0.471 0.942 0.321
Bias-corrected
. 9, 0.942 0.729 0.955 0.473 0.942 0.322
percentile bootstrap
G, 0.943 0.733 0.954 0.474 0.940 0.322

b 0.945 0.725 0.951 0.473 0.940 0.322
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Table 7 Coverage and mean width properties for Beta (3, 0.10958841)
with skewness = -4 and for different sample sizes

n =30 n =50 n =100
Method Estimator
Coverage Coverage Coverage
Probability Mean width Probability Mean width Probability Mean width
Classical 0, 0.241 1.589 0.297 1.280 0.335 0.932
G, 0.299 1.673 0.343 1.319 0.346 0.946
b, 0.184 1510 0.257 1.241 0.318 0.918
Bias-corrected g 0.558 2.914 0.682 3.019 0.772 2.756
standard bootstrap ! ' ' ' ' ' '
G, 0.637 3.074 0.718 3.110 0.792 2.798
b 0.487 2.769 0.651 2.925 0.752 2.719
Efron’s percentile

0, 0.591 2.782 0.753 2971 0.828 2.727

bootstrap
G, 0.677 2.928 0.795 3.066 0.846 2.772
b 0.466 2.643 0.710 2.882 0.806 2.687

Hall’s percentile

9, 0.443 2.780 0.581 2.971 0.703 2.725

bootstrap
G, 0.492 2.930 0.622 3.064 0.725 2.774
b 0.394 2.643 0.542 2.879 0.681 2.688

Bias-corrected
. 9, 0.774 2.610 0.862 3.048 0.878 3.026
percentile bootstrap

G, 0.838 2.747 0.882 3.147 0.884 3.072

b 0.693 2.476 0.835 2.961 0.868 2.987
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Table 7 (Continued)

n =300 n =700 n =1,500
Method Estimator
Coverage Coverage Coverage
Probability Mean width Probability Mean width Probability Mean width
Classical 0, 0.369 0.549 0.384 0.361 0.368 0.247
G, 0.371 0.552 0.384 0.362 0.368 0.248
b, 0.366 0.546 0.377 0.361 0.367 0.247
Bias-corrected g 0.883 1.900 0.917 1.318 0.922 0.924
standard bootstrap ! ' ' ' ' ' '
G, 0.887 1.907 0.920 1.323 0.921 0.926
b 0.876 1.890 0.912 1.315 0.918 0.923
Efron’s percentile
b 0, 0.903 1.883 0.928 1.310 0.925 0.918
ootstrap
G, 0.908 1.890 0.932 1.313 0.926 0.919
b 0.894 1.871 0.924 1.308 0.922 0.918
Hall’s percentile
b 9, 0.853 1.881 0.902 1.311 0.910 0.918
ootstrap
G, 0.865 1.891 0.905 1.314 0.909 0.920
b 0.847 1.873 0.897 1.308 0.907 0.920
Bias-corrected
. 9, 0.920 1.997 0.934 1.350 0.932 0.934
percentile bootstrap
G, 0.924 2.004 0.937 1.352 0.930 0.934
b 0.916 1.983 0.932 1.345 0.931 0.933

4. Application

To illustrate the performance of the proposed confidence intervals for population skewness, a
real life data (Postmortem interval) are analyzed in this Section. The postmortem interval (PMI) is
defined as the elapsed time between death and an autopsy. Knowledge of PMI is considered essential
when conducting medical research on human cadavers. The following data are PMIs of 22 human
brain specimens obtained at autopsy in a recent study (Data Source: Hayes and Lewis 1995). We
want to find the skewness of the PMI.

55,145,6.0,55,53,58,11.0,6.1, 7.0, 14.5, 10.4,
4.6,4.3,7.2,105,6.5,3.3,7.0,4.1,6.2,104,4.9

The mean and SD of the data are 7.3 and 3.18 respectively. The sample skewness is 1.06 and the
following histogram (Figure 2) that the data are right skewed and are not normally distributed. We
assume that PMI data are from a gamma distribution with shape parameter, « =5.25, and scale
parameter, B =1.39. Using a Kolmogorov-Smirnov (ks) goodness of fit test, we obtain ks = 0.18

with p-value = 0.41, which indicates that PMI data are from a gamma distribution with shape
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parameter, o =5.25, and scale parameter, 8 =1.39. The population skewness =

113

2 0.88. The

Ja

95% resulting confidence intervals and the corresponding confidence width are given in Table 8.
From this Table, we see that all proposed estimators cover the hypothesized true skewness 0.88.
However, Efron’s percentile bootstrap has the shortest width followed by bias corrected standard
bootstrap and classical ( g, ) interval has the widest width.
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Postmortem Interval

Figure 2 Histogram

Table 8 95% confidence intervals and widths for postmortem interval data

Methods Confidence Width

Interval
Classical (g,) (0.027, 1.818) 1.791
Classical (G,) (0.029, 1.696) 1.667
Classical (b,) (0.026, 1.696) 1.670
Bias-corrected standard bootstrap (g,) (0.168, 1.672) 1.504
Bias-corrected standard bootstrap (G, ) (0.209, 1.790) 1.581
Bias-corrected standard bootstrap (b, ) (0.249, 1.597) 1.348
Efron’s percentile bootstrap (g, ) (0.255, 1.707) 1.452
Efron’s percentile bootstrap (G, ) (0.261, 1.816) 1.555
Efron’s percentile bootstrap (b, ) (0.254, 1.484) 1.230
Hall’s percentile bootstrap (g, ) (0.145, 1.577) 1.432
Hall’s percentile bootstrap (G, ) (0.101, 1.722) 1.621
Hall’s percentile bootstrap (b,) (0.103, 1.485) 1.382
Bias-corrected percentile bootstrap (g, ) (0.333, 1.818) 1.485
Bias-corrected percentile bootstrap (G, ) (0.414, 2.022) 1.608
Bias-corrected percentile bootstrap (b,) (0.325, 1.805) 1.480
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5. Conclusions

This paper reviews various interval estimators for estimating the skewness parameter of a
distribution. Since a theoretical comparison is not possible, a simulation study has been conducted to
compare the performance of the estimators. We have compared both classical (normality assumed)
and non-parametric (bias-corrected standard bootstrap, Efron’s percentile bootstrap, Hall’s percentile
bootstrap and bias-corrected percentile bootstrap) intervals, where the data are generated from various
distributions such as normal (symmetric), gamma (right skewed) and beta (left skewed) distributions.
Coverage probability and average width are considered as a criterion of a good estimator. Our
simulation results indicate that the performance of the classical estimators and non-parametric
estimators differs significantly across sample sizes and type of skewness. For normal data, the
classical estimators perform well in terms of coverage. For small sample size, the classical methods
have better coverage than most bootstrap methods, although the later have a smaller width for small
sample size. For large sample sizes, the coverage and widths of both types of methods don’t differ
greatly when data comes from a normal distribution. For positively skewed distributions, bootstrap
methods had better coverage than classical, being the best the Bias Corrected Percentile Bootstrap
estimator. Classical methods were still robust for slightly right skewed data, although their coverage
deteriorated with increasing sample size. It should also be noted that no method achieved the 95%
nominal level even for a big sample size of n =1,500. For negatively skewed distributions, bootstrap
methods worked better than classical estimators in all instances in terms of coverage and shorter
width for all left skewed distributions considered. The best coverage amongst the bootstrap methods
was achieved by the Bias Corrected Percentile Bootstrap. Also the rate of convergence towards the
95% nominal level for bootstrap estimators was faster than for positively skewed distributions. To
illustrate the findings of the paper, a real data set are studied and the results supported the simulation
study to some extent. We believe that the findings of this paper will be helpful for different applied
researchers/practitioners in the field of science and social sciences.
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