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Abstract

The main concentration of the present paper is to analyze the impact of abnormal weather
conditions on various reliability measures of a repairable system of single—unit. For this purpose, a
reliability model is developed in which unit may fail totally either directly from normal mode or via
partial failure. A single repair facility is available who plays the dual role of inspection and repair.
The totally failed unit is first inspected by the server to examine the feasibility of its repair. If repair
of the unit is not feasible, it is replaced by new one. The operation, inspection, replacement and repair
of the unit are stopped in abnormal weather as a precautionary measure to avoid excessive damage
to the system. Failure rates, repair rates, inspection rates, and rate of change of weather conditions
follow general distribution like Weibull distribution. By using semi-Markov process and regenerative
point technique some reliability and economic measures of system effectiveness are obtained. The
graphical behavior of MTSF and profit with respect to abnormal weather rate has also been shown
for a particular case.

Keywords: Reliability model, weather conditions, inspection, repairable system, semi-Markov
process and cost-benefit analysis.

1. Introduction

It is very difficult to keep the environmental conditions under control which may fluctuate due
to changing climate, voltage and other natural catastrophic. However, it becomes necessary to protect
the operation of the system in abnormal weather for reducing the down time and maintaining the
reliability of the system. Generally, the given controlled conditions reckon to normal weather;
otherwise, weather is taken as abnormal. A number of reparable systems which operate under strict
control of temperature, voltage, storm and moisture, etc. have been considered by the researchers
including Osaki (1972), Goyal (1984), Naidu and Gopalan (1984) and Singh (1989) in the field of
reliability theory. These conditions when satisfied correspond to normal weather; otherwise, it is
supposed that the system is working under abnormal weather. Dhillon and Natesan (1983) and Goyal
et al. (1985) have studied the stochastic behavior of systems operating under different weather
conditions by assuming that repair of the unit is always possible and economical to the system.
However, sometimes repair of the unit is not possible and beneficial due to excessive use and high
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cost of maintenance. In such a situation, the unit may be replaced by new one in order to increase the
availability of the system and hence profit.

Many researchers such as Chander and Bansal (2005), Chander (2007) and Garg et al. (2010) in
the field of reliability modeling of single-unit systems carried out reliability measures of these models
under a common assumption that failure rate of these systems are constant distributed. But the failure
rate of many systems such as shafts and valves are of linearly increased in nature due to wear out
under mechanical stress and so their failure rates follows arbitrary distributions like Weibull
distribution. Gupta et al. (2013) developed a reliability model for a two dissimilar cold standby system
with Weibull failure and repair laws. Kumar and Saini (2014) carried out the cost-benefit analysis of
a single-unit system with preventive maintenance and Weibull distribution for failure and repair
activities.

While incorporating the idea of weather conditions and Weibull (arbitrary) distribution, a
reliability model of a single-unit repairable system is analyzed considering two weather
conditions—normal and abnormal. For this purpose, a reliability model is developed in which unit
may fail totally either directly from normal mode or via partial failure. A single repair facility is
available who plays the dual role of inspection and repair. The totally failed unit is first inspected by
the server to examine the feasibility of its repair. If repair of the unit is not feasible, it is replaced by
new one. The operation, inspection, replacement and repair of the unit are stopped in abnormal
weather as a precautionary measure to avoid excessive damage to the system. It is assumed that the
distribution of failure time and time to change in weather conditions, inspection and repair times are
general distribution. The system is observed at suitable regenerative epochs by using regenerative
point technique. Suppose random variable T denotes the failure time of the partial failure of an item/
device having Weibull distribution, its pdf will be:

f (t) = Ant" "exp(-At"); t>0 and A,7>0. 1)

The reliability/survival function and hazard (failure/repair/ maintenance) rate function for
Weibull distribution are given by R(t) =exp(-At")and h(t)=Ant""* t>0 and A,7>0. Itis
important to note that 4, and 5 are the scale and shape parameters, respectively. If we put » =1in
(1), Weibull distribution reduces to Exponential distribution and if 5 = 2, it reduces to Rayleigh
distribution. The hazard function of this distribution will be constant for » = 1, linearly increasing
for n =2, non-linearly increasing for » > 2 and uniformly decreasing for » < 1. Some economic-

related reliability characteristics such as mean sojourn times, mean time to system failure (MTSF),
steady state availability, busy period and expected numbers of visits by the server are obtained.
Finally, the profit is evaluated for the system to carry out the cost-benefit analysis. Numerical results
are drawn to show the behavior of MTSF, availability and profit of the model for a particular case
when all distributions are taken as Weibull distributed having different values of shape parameter.

2. Notation
@) : Operative state
E : Set of regenerative states for each model
f1 (D) (L)/1(T) : pdf/cdf of failure rate from normal mode to partial failure
Fa(t)/ Fa(t) /F(Y) mode /partial failure mode to total failure mode/normal
mode to total failure mode.
z(t)/Z(t) : p.d.f./c.d.f. of time to change of weather conditions form normal to

abnormal,
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71(t) /Za(t) abnormal to normal

p/q : Probability that repair is not feasible/feasible.

g(t)/G(t) : pdf/cdf of repair times of completely failed unit

h(t)/H(t) : pdf/cdf of inspection time.

O/PF : Unit is operative and in normal mode/unit is partially failed

O/PF : Unit is good / partially failed but not working due to abnormal weather
FUJ/FU, : Unit is totally failed and under inspection/under repair.

FW, /F_\/\/i : Unit is completely failed and waiting for repair/ inspection due to

abnormal weather.
ii(1), Qii(t) : pdf and cdf of direct transition time from a regenerative state i to a
regenerative state j or a failed state j without visiting any other

regenerative state in (0,t]

di(t) : cdf of first passage time from regenerative state i to a failed state.
Ai(t) : Probability that the system is up at epoch t/E, =S, e E

Bi(t) : Probability that server is busy in the system at instant t/E; =S, € E.
Ni(t) . Expected number of visits by the server in (0,t]/E, =S, € E

Mi(t) : Probability that system initially in regenerative state S, remains up till

time “t” without making any transition to any other regenerative state
or returning itself through one or more non-regenerative states.

Wi(t) : Probability that the server is busy in the state S, up to time t without
making any transition to any other regenerative state or returning to
the same state via one or more non-regenerative state.

mij : Contribution to mean sojourn time in state S, when

system transits directly to state S;(S;,S; € E) so that

# =Y m; , where m, =J'qij (t)dt

= deij (tdt = _[%(QJ (S)):| and g is

s=0

the mean sojourn time in state SieE.

®\© : Symbols for Stieltjes convolution /Laplace convolution.
~I* : Symbols for Laplace Stieltjes transform(L.S.T.)/Laplace transform L.T .
L.S.T/L.T : Stand for Laplace Stieltjes transform(L.S.T.)/Laplace transform L.T .

' : Desh denote the derivative with respect to parameter.
The possible transitions states of system models are respectively shown in the following table:

Table 1 States Description
Se S Sz Ss S4 Ss Se Sz

O PF FU O PE  FW, FU  FW,

r

All the transition states of the model are regenerative.

37
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3. Transition Probabilities and Mean Sojourn Times
It can be observed that the epochs of entry into any of the states S, € E are regenerative point.

Let T,(=0),T,,T,,... denote the epochs at which the system enter any state S, € E. Let X denote

the state visited at epoch T, i.e just after transition at T,. Then {X,,T,} is a Markov-renewal

process with state space E and Q, (t) = Pr{Xn+1 =T

ra—T, <t|X, =i} is the semi-Markov kernel
over E.

The transition probability matrix of embedded Markov-chain is p=(p;)=(Q; () =Q(0))
with non-zero elements.

By probabilistic arguments, the non-zero elements p; are

T p)
= t7 " exp(—A4t") exp(-At") exp(-pt" dtzL, =)
Doy !ﬂm XPAY) XA e ANt =TT o=
__ B _ b __B ) _ by _qy
p0,3 /11+ﬁ+/1, p1,2 /12+ﬁ, p1,4 /12+ﬁ7 p2,5_}/+ﬁ‘ p2,0_7+ﬂ’ p2,6_7+ﬂ’
a
Pso =1 Py =1, Ps.. =1 P76 =1 Ps,7 :m, Ps.o = a+[7"

Here p; denotes the probability of the transition from S; state to S; state in state transition diagram.
It can be easily verified that

Pso = Ps; = Pas = Prs = Poy + Pop + Pog = Pus + Pip = Pag + Pos + Pos = Peo + Per =1 )
The mean sojourn times g in the state S, are given by

= 1“(1+3) 1+ 1) i+ 3)
o= [xp(-AL") exp(-2t") exp(-pt )it =——T— p=—T, gy =T,
’ (h+B+A4) (4 + )" (B+7)"
ra+y ra+d)
My =ty = M5 =y = 27 , #s=—771- @)
(B)" (B+a)’

4. Reliability and Mean Time to System Failure
Let ¢ (t) be the c.d.f. of first passage time from the regenerative state i to a failed state.

Regarding the failed state as absorbing state, we have the following recursive relation for ¢ (t):
41 =2.Q,08¢,1)+Z,), (4)
j

where j is an un-failed regenerative state to which the given regenerative state i can transit and k is
a failed state to which the state i can transit directly. Here Z, (t) denotes the direct first time transition
from any operative state to failed state. Taking LST of above relations (4) and solving by Cramer’s
Rule for ¢,"(s), we have
o 1286
1-¢,'(s) ___D(s) _D'(8)=N'(s)
S S D(s)

R'(s) = ()
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The reliability of the system model can be obtained by taking inverse LT of (5). MTSF is given
by

MTSF =limR “(5) = limi=2 ) _Ni. (6)
s—0 S Dl

where
’ ! ’ r
Nl = m03 + m30 p03 + m14 p4l + m41 + p03 pl4 + p30 p14 p03 + p03 p14 + p41 p14 p03 + m02
’ ’ ’
+ mOl p12 + le pOl + p02 p14 + pl4 p02 + p41 pl4 p02

=~ Pus Paz = Pos P3g + Poz P3o Pay Pus -

5. Steady State Availability
Let A(t) be the probability that the system is in upstate at instant ‘t” given that the system

entered regenerative state i at t = 0. The recursive relations for A (t) are given as
A =M )+ a,;)OA ), (7)
j

where j is any successive regenerative state to which the regenerative state i can transit and Mi(t)’s
obtained as

M, =exp(=B+A+ )", M, =exp(-F+,)t". (8)
Taking LT of relations (7) and (8), solving by Cramer’s Rule for A (s) . The steady state availability
can be determined as

N
A, ()= lims#; (5)- 2= ©
where

N, = (- Pys psz)(l_ Pg; p7e)[,uo (- Py p14) + pOl/ul]

D, = (4o +Pos ) [(1= Py Pry )= Pos Ps )L = Py Pre) ]+ (£ +Puy 44)[ Por (L= Py Pr) X (L= Pis Py ]

+ (/Uz + Py /'15)(1_ Ps7 p?ﬁ)[(l_ P4 p14) Po2 + Poy Py, ] + (/ue + p67/u7)[ Pas (- p41p14) Pozt p01p12)]'

6. Busy Period Analysis
Let B, (t) be the probability that the server is busy in repairing the unit at an instant ‘t’ given

that the system entered regenerative state i at t=0. The recursive relations for B, (t) are given as
=W (1) + 2.0, (1) ©B, (1) (10)

where j is any successive regenerative state to which the regenerative state i can transit and W, (t) ’s
obtained as

W, (t) =exp(=B+)t", W, (t) =exp(-S+a)t”. (11)
Taking LT of relations (10-11) and solving by Cramer’s Rule for Bg(s). The busy period of the
server can be determined as

. . N
B, = IS'EJSBO(S)zEj’ (12)

where
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Ny =W, (1= Pe7 Pre) [ Pos Pro + Poz (1= PaaPsa) |+ We Pog [ Py Pio + Pz (1= PusPir)],
and D, has already mentioned.

7. Expected Number of Visits by the Server
Let N, (t) be the expected number of visits by the server in (O,t] given that the system entered

the regenerative state i at t = O, we have the following recurrence relations for N, (t):
Ni(t)=ZQi,;(t)©[5j +Nj(t)] (13)
j

where j is any regenerative state to which the given regenerative state i transits.
_ |1 j is regenerative state
7710 otherwise '

Taking LST of the relation (13) and solving by Cramer’s Rule for N, (s). The expression for
expected number of visits per unit time is given by

e N,
N, = limsNg'(s) 5. (14)
where

N4 = (1_ pzspsz)(l_ p67p76)[ p01(1_ p14p41) +Po P ] ’
and D, has already mentioned.

8. Profit Analysis

Any manufacturing industry is basically a profit making organization and no organization can
survive for long without minimum financial returns for its investment. There must be an optimal
balance between the reliability aspect of a product and its cost. The major factors contributing to the
total cost are availability, busy period of server and expected number of visits by the server. The cost
of these individual items varies with reliability or mean time to system failure. In order to increase
the reliability of the products, we would require a correspondingly high investment in the research
and development activities. The production cost also would increase with the requirement of greater
reliability.

The revenue and cost function leads to the profit function of a firm/organization, as the profit is
excess of revenue over the cost of production. The profit function in time t is given by

P(t) = Expected revenue in (0,t]— Expected total cost in (0,t].

In general, the optimal policies can more easily be derived for an infinite time span or compared to a
finite time span. The profit per unit time, in infinite time span is expressed as
. P(t
Ilmﬁ,
t—>w t
i.e. profit per unit time = total revenue per unit time — total cost per unit time. Considering the various
costs, the profit equation is given as
P=K,A —KB, —K,N,,
where
P = Profit per unit time incurred to the system
Ko = Revenue per unit up time of the system
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Ao = Total fraction of time for which the system is operative
K1 = Cost per unit time for which server is busy

By = Total fraction of time for which the server is busy

K> = Cost per visit by the server

No = Expected number of visits per unit time for the server.

9. Results and Discussion

To show the importance of results and characterize the behavior of MTSF, availability and profit
of the system, here we assume that failure times of unit, time of change of weather conditions,
inspection time and repair times of the unit are Weibull distributed. Probability density function of
Weibull distribution with two parameters is given by

2ty = pntrie ™ >0,

where » and g are positive constants and are known as shape and scale parameters respectively.
From the properties of Weibull distribution, If 7 =1, it become the exponential distribution and for
n =2 Weibull is equivalent to Rayleigh distribution. The probability density function for time of

change of weather conditions, repair time of the unit, failure times of the unit and inspection time are
considered as:

_ th”]

20=prte ™ 2@ =pnrte g =ante " @ =anee ),

£, =t £ )= aptrtel ™ and h(t) = el 7,
For particular values to various parameters and costs, the numerical results for MTSF, availability
and profit function are obtained by considering the shape parameter » = 0.5, 1, 2 for all random

variables associated with failure, weather conditions and repair times as shown in Tables 1, 2 and 3.

10. Conclusions
The numerical results of mean time to system failure (MTSF) with respect to abnormal weather
rate (£ ) and shape parameter () are shown in Table 1. It is observed that MTSF increase with the

increase of £ . It is also observed that MTSF decreases as direct failure rate (1), shape parameter
(77) and normal weather rate (4,) increase. Thus, we can say that life time of the system keeps on
increasing with the increase of abnormal weather rate ( 4 ) due to the increase of non working period

of the system. Tables 2 and 3 highlights the behavior of availability and profit of the model with
respect to abnormal weather rate (4) and shape parameter () respectively. It can be seen that

availability and profit of the system decreases with the increase of abnormal weather rate (8 ) and
shape parameter (7). Further, when failure rate (A) and normal weather rate (/) increase, the

availability and profit of the system increase. Thus finally, we conclude that with the passes of time
the availability and profit of the system decreases.
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Table 2 MTSF vs. Abnormal Weather Rate ( 8)
n=1 n=2 n=05
p a =1, a =1, a =1, a =1, a =1, a =1, a =1, a =1, a =1,
A=.02 1=.02, 21=02  41=02 1=.02 1=.02 A=.02 1=.02 1=.02
4 4 A A4=03 4 4 4 4 4
=.03, =.03, =03, 4,=.05, =.03, =.03, =.03, =.03, =.03,
A A A pea, A A A A A
=.05, =.05, =.05, p=0.3 =.05, =.05, =.05, =.05, =.05,
ﬁl =4 ﬁl ='1* ﬁl :'2* q =0.7 ﬁl ='1* ﬁl :'2* ﬁl ='1* ﬁl ='1* ﬁl :'2*
p=0.3, p=0.3, p=0.3, y=2 p=0.3, p=03, p=0.3, p=0.3, p=03
q=0.7, g=0.7 q=0.7 g=0.7 =07 q=0.7 g=0.7 g=0.7
7/:2 7:4 7/:2 7/:4 7:2 7:2 7/: 7/:2
0.01 35.2000 35.2000 33.6000 7.8434 7.8434 7.5807 0.0307 0.0307 0.0207
0.02 38.4000 38.4000 35.2000 9.2968 9.2968 8.7714 0.5423 0.4230 0.3230
0.03 41.6000 41.6000 36.8000 10.7116 10.7116 9.9236 0.9920 0.9920 0.9420
0.04 44.8000 44.8000 38.4000 12.0950 12.0950 11.0443 0.9671 0.9671 0.9671
0.05 48.0000 48.0000 40.0000 13.4520 13.4520 12.1386 0.9600 0.9600 0.9600
0.06 51.2000 51.2000 41.6000 14.7865 14.7865 13.2105 0.9658 0.9658 0.9658
0.07 54.4000 54.4000 43.2000 16.1015 16.1015 14.2629 0.9813 0.9813 0.9813
0.08 57.6000 57.6000 44.8000 17.3995 17.3995 15.2981 1.0043 1.0043 1.0043
0.09 60.8000 60.8000 46.4000 18.6823 18.6823 16.3183 1.0331 1.0331 1.0331
0.10 64.0000 64.0000 48.0000 19.9515 19.9515 17.3248 1.0667 1.0667 1.0667
0.11 67.2000 67.2000 49.6000 21.2085 21.2085 18.3192 1.1040 1.1040 1.1040
0.12 70.4000 70.4000 51.2000 22.4544 22.4544 19.3024 1.1445 1.1445 1.1445
0.13 73.6000 73.6000 52.8000 23.6902 23.6902 20.2755 1.1876 1.1876 1.1876
0.14 76.8000 76.8000 54.4000 24.9167 24.9167 21.2394 1.2328 1.2328 1.2228
0.15 80.0000 80.0000 56.0000 26.1346 26.1346 22.1946 1.2800 1.2800 1.2600
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Table 3 Availability vs. Abnormal Weather Rate ( 8)

n=1 n=2 n=05
p a =1, a =1, a =1, a =1, a =1, a =1, a =1, a =1, a =1,
A=02 21=02, 21=.02, 1=02, 21=.02 4=02 1=02 1=02 1=02
4 4 4 4 4 4 4 4 4
=.03, =.03, =.03, =.03, =.03, =.03, =.03, =.03, =.03,
4 4 4 4 4 4 4 4 4
=.05, =.05, =.05, =.05, =.05, =.05, =.05, =.05, =.05,
B=1  B=1 B=2 B=1 B=1  B=2 B=1 A=l B=2
p=0.3, p=03, p=03, p=03, p=03, p=03, p=03, p=0.3 p=03
q=0.7, g=0.7 ¢=0.7 =07 q=07 =07 =07 =07 q=0.7
y=2 y= y=2 y=2 7= y=2 y=2 7= y=2
0.01 0.8762 0.8637 0.9180 0.7610 0.7386 0.7844 0.9398 0.9278 0.9830
0.02 0.8032 0.7918 0.8762 0.7065 0.6904 0.7447 0.8716 0.8515 0.9631
0.03 0.7414 0.7309 0.8381 0.6644 0.6520 0.7126 0.7992 0.7738 0.9394
0.04 0.6885 0.6787 0.8032 0.6304 0.6205 0.6858 0.7267 0.6985 0.9124
0.05 0.6426 0.6334 0.7711 0.6023 0.5939 0.6629 0.6572 0.6282 0.8830
0.06 0.6024 0.5938 0.7414 0.5784 05711 0.6430 0.5925 0.5639 0.8516
0.07 05670 0.5589 0.7140 0.5577 0.5512 0.6254 0.5334 0.5061 0.8188
0.08 05355 0.5278 0.6885 0.5395 0.5337 0.6096 0.4802 0.4546 0.7853
0.09 0.5073 0.5001 0.6647 0.5234 0.5180 0.5954 0.4327 0.4091 0.7515
0.10 0.4819 0.4751 0.6426 0.5090 0.5039 0.5825 0.3906 0.3690 0.7178
0.11 0.4590 0.4524 0.6218 0.4959 0.4911 0.5707 0.3533 0.3336 0.6845
0.12 0.4381 0.4319 0.6024 0.4840 0.4794 0.5597 0.3204 0.3026 0.6520
0.13 0.4191 0.4131 05842 0.4731 0.4687 0.5496 0.2913 0.2752 0.6204
0.14 0.4016 0.3959 0.5670 0.4630 0.4588 0.5402 0.2656 0.2510 0.5900
0.15 0.3855 0.3800 0.5508 0.4537 0.4496 0.5314 0.2429 0.2296 0.5607
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Table 4 Profit vs. Abnormal Weather Rate ( 3)
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n=1 n=2 n=05
g a =1, a =1, a =1, a =1, a =1, a =1, a =1, a =1, a =1,
A=02 24=02 A=02, 1=02, A4=.02 A1=02, A1=02, A1=.02 4=.02
A A A A A A A A A
=.03, =.03, =.03, =.03, =.03, =.03, =.03, =.03, =.03,
A A A A A A A A A
=.05, =.05, =.05, =.05, =.05, =.05, =.05, =.05, =.05,
B =1 B=1  B=2 B=1 A=l B=2 A=l B=1  B=2
p=0.3, p=0.3, p=03, p=0.3, p=03, p=03, p=03, p=0.3, p=0.3,
q=0.7, g=0.7 ¢=0.7 =07 =07 =07 =07 =07 q=0.7
7/:2 7: 7/:2 7:2 7/: 7:2 7/:2 7/: 7/:2
0.01 3749.3 3624.6 3864.7 4369.4 43025 4577.4 4698.7 4638.4 4914.3
0.02 3484.8 3392.2 3673.3 4005.3 3944.1 4369.4 43575 4256.5 4814.7
0.03 3279.9 3207.0 3518.2 3697.3 3640.8 4179.5 3995.2 3867.9 4696.1
0.04 31147 30545 3388.4 3433.2 3380.9 4005.4 36329 34919 4561.5
0.05 29774 2926.0 3277.3 3204.4 3155.6 3845.2 32855 3140.1 4414.1
0.06 2860.7 2815.5 3180.5 3004.1 2958.4 3697.4 2961.8 2818.7 4257.1
0.07 2759.7 2719.1 3094.8 2827.4 27844 3560.5 2666.3 2529.7 4093.4
0.08 2671.0 2633.8 3018.1 2670.4 2629.8 3433.4 2400.3 22724 3925.8
0.09 2592.1 2557.7 2948.9 25299 2491.4 3315.0 2163.0 2044.8 3756.7
0.10 2521.4 2489.1 2885.8 2403.4 2366.9 3204.5 19524 1844.2 3588.1
0.11 24574 2426.8 2828.0 2289.0 22542 3101.2 1766.1 1667.6 3421.8
0.12 2399.0 2369.9 2774.6 21850 2151.8 3004.3 1601.6 1512.2 3259.2
0.13 23455 2317.6 2725.1 2090.0 2058.3 2913.3 1456.2 13753 31014
0.14 2296.2 2269.2 2679.0 20029 19725 2827.6 1327.7 12544 2949.1
0.15 2250.5 22243 2635.9 1922.8 1893.7 2746.9 12139 11475 2802.8
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