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Abstract  

The main concentration of the present paper is to analyze the impact of abnormal weather 
conditions on various reliability measures of a repairable system of single–unit. For this purpose, a 
reliability model is developed in which unit may fail totally either directly from normal mode or via 
partial failure. A single repair facility is available who plays the dual role of inspection and repair. 
The totally failed unit is first inspected by the server to examine the feasibility of its repair. If repair 
of the unit is not feasible, it is replaced by new one. The operation, inspection, replacement and repair 
of the unit are stopped in abnormal weather as a precautionary measure to avoid excessive damage 
to the system. Failure rates, repair rates, inspection rates, and rate of change of weather conditions 
follow general distribution like Weibull distribution. By using semi-Markov process and regenerative 
point technique some reliability and economic measures of system effectiveness are obtained. The 
graphical behavior of MTSF and profit with respect to abnormal weather rate has also been shown 
for a particular case. 
______________________________ 
Keywords: Reliability model, weather conditions, inspection, repairable system, semi-Markov 
process and cost-benefit analysis. 
 
1. Introduction 

It is very difficult to keep the environmental conditions under control which may fluctuate due 
to changing climate, voltage and other natural catastrophic. However, it becomes necessary to protect 
the operation of the system in abnormal weather for reducing the down time and maintaining the 
reliability of the system. Generally, the given controlled conditions reckon to normal weather; 
otherwise, weather is taken as abnormal. A number of reparable systems which operate under strict 
control of temperature, voltage, storm and moisture, etc. have been considered by the researchers 
including Osaki (1972), Goyal (1984), Naidu and Gopalan (1984) and Singh (1989) in the field of 
reliability theory. These conditions when satisfied correspond to normal weather; otherwise, it is 
supposed that the system is working under abnormal weather. Dhillon and Natesan (1983) and Goyal 
et al. (1985) have studied the stochastic behavior of systems operating under different weather 
conditions by assuming that repair of the unit is always possible and economical to the system. 
However, sometimes repair of the unit is not possible and beneficial due to excessive use and high 
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cost of maintenance. In such a situation, the unit may be replaced by new one in order to increase the 
availability of the system and hence profit. 

Many researchers such as Chander and Bansal (2005), Chander (2007) and Garg et al. (2010) in 
the field of reliability modeling of single-unit systems carried out reliability measures of these models 
under a common assumption that failure rate of these systems are constant distributed. But the failure 
rate of many systems such as shafts and valves are of linearly increased in nature due to wear out 
under mechanical stress and so their failure rates follows arbitrary distributions like Weibull 
distribution. Gupta et al. (2013) developed a reliability model for a two dissimilar cold standby system 
with Weibull failure and repair laws. Kumar and Saini (2014) carried out the cost-benefit analysis of 
a single-unit system with preventive maintenance and Weibull distribution for failure and repair 
activities. 

While incorporating the idea of weather conditions and Weibull (arbitrary) distribution, a 
reliability model of a single–unit repairable system is analyzed considering two weather 
conditions−normal and abnormal. For this purpose, a reliability model is developed in which unit 
may fail totally either directly from normal mode or via partial failure. A single repair facility is 
available who plays the dual role of inspection and repair. The totally failed unit is first inspected by 
the server to examine the feasibility of its repair. If repair of the unit is not feasible, it is replaced by 
new one. The operation, inspection, replacement and repair of the unit are stopped in abnormal 
weather as a precautionary measure to avoid excessive damage to the system.  It is assumed that the 
distribution of failure time and time to change in weather conditions, inspection and repair times are 
general distribution. The system is observed at suitable regenerative epochs by using regenerative 
point technique. Suppose random variable T denotes the failure time of the partial failure of an item/ 
device having Weibull distribution, its pdf will be: 
 1

1 1 1 1( ) exp( ); 0 and , 0.f t t t tη ηλη λ λ η−= − ≥ >  (1) 
The reliability/survival function and hazard (failure/repair/ maintenance) rate function for 

Weibull distribution are given by 1( ) exp( )R t tηλ= − and 1
1( )h t tηλη −=  0t ≥  and 1, 0.λ η >  It is 

important to note that 1λ  and η  are the scale and shape parameters, respectively. If we put η  = 1 in 
(1), Weibull distribution reduces to Exponential distribution and if η  = 2, it reduces to Rayleigh 
distribution. The hazard function of this distribution will be constant for η  = 1, linearly increasing 
for η  = 2, non-linearly increasing for η  > 2 and uniformly decreasing for η  < 1. Some economic-
related reliability characteristics such as mean sojourn times, mean time to system failure (MTSF), 
steady state availability, busy period and expected numbers of visits by the server are obtained. 
Finally, the profit is evaluated for the system to carry out the cost-benefit analysis. Numerical results 
are drawn to show the behavior of MTSF, availability and profit of the model for a particular case 
when all distributions are taken as Weibull distributed having different values of shape parameter. 

 
2. Notation 
O : Operative state             
E : Set of regenerative states for each model 
f1(t)/f2(t)/f(t) : pdf/cdf of failure rate from normal mode to partial failure 
F1(t)/ F2(t) /F(t) mode /partial failure mode to total failure mode/normal  
 mode to total failure mode. 
z(t)/Z(t)                : p.d.f./c.d.f. of time to change of weather conditions  form normal to   
                                           abnormal, 
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z1(t) /Z1(t)                          abnormal to normal  
p/q : Probability that repair is not feasible/feasible. 
g(t)/G(t)    : pdf/cdf  of repair times of completely failed unit  
h(t)/H(t) : pdf/cdf of inspection time. 
O/PF  :              Unit is operative and in normal mode/unit is partially failed  

PFO /                :              Unit is good / partially failed but not working due to abnormal weather 
FUi/FUr :              Unit is totally failed and under inspection/under repair. 

ir FWFW /  :             Unit is completely failed and waiting for repair/ inspection due to  
                                          abnormal weather.           
qij(t),Qij(t) :           pdf and cdf of direct transition time from a regenerative state i  to a  
                                          regenerative state j  or a failed state j without visiting any other  

                                           regenerative state in ( ]0, t  

φi(t) :            cdf of first passage time from regenerative state i  to a failed state. 
Ai(t) :              Probability that the system is up at epoch 0/ it E S E= ∈   

Bi(t) :             Probability that server is busy in the system at instant 0/ .it E S E= ∈  

Ni(t) : Expected number of visits by the server in ( ] 00, / it E S E= ∈  

Mi(t) : Probability that system initially in regenerative state iS  remains up till  
                                           time ‘ t ’ without  making any transition to any other regenerative state 
                                           or returning itself through one or more non-regenerative states. 
Wi(t) : Probability that the server is busy in the state iS up to time t  without                                
                                           making any transition to any other regenerative state or returning to 
                                          the same state via one or more non-regenerative state. 
mij : Contribution to mean sojourn time in state iS  when  
 system transits directly to state ( , )j i jS S S E∈  so that  

                                          i ij
i

mµ = ∑ , where ( )ij ijm q t dt= ∫   

                                         = *

0

( ) ( ( ))ij ij
s

ddQ t dt Q s
ds =

 = −   ∫  and iµ  is 

                                         the mean  sojourn  time in state Si∈E. 

Ⓢ\© : Symbols for Stieltjes convolution /Laplace convolution. 

∼/* :             Symbols for Laplace Stieltjes transform(L.S.T.)/Laplace transform L.T . 
L.S.T/L.T : Stand for Laplace Stieltjes transform(L.S.T.)/Laplace transform L.T . 
 ′ : Desh denote the derivative with respect to parameter. 
 
The possible transitions states of system models are respectively shown in the following table:        
                                     

Table 1 States Description 
S0 S1 S2 S3  S4 S5 S6 S7 

O PF FUi O   PF  iFW  FUr rFW  
                                            
All the transition states of the model are regenerative.  
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3. Transition Probabilities and Mean Sojourn Times 
It can be observed that the epochs of entry into any of the states iS E∈  are regenerative point. 

Let 0 1 2( 0), , ,...T T T≡  denote the epochs at which the system enter any state .iS E∈  Let nX   denote 

the state visited at epoch nT +  i.e just after transition at .nT  Then { },n nX T  is a Markov-renewal 

process with state space E and { }1 1( ) Pr ,ij n n n nQ t X j T T t X i+ += = − ≤ =  is the semi-Markov kernel 

over E. 
The transition probability matrix of embedded Markov-chain is ( )( ) ( ( ))ij ijp p Q Q= = ∞ = ∞  

with non-zero elements.      
By probabilistic arguments, the non-zero elements ijp  are 

1 1
0,1 1 1

10

exp( ) exp( ) exp( ) ,p t t t t dtη η η η λ
λη λ λ β

λ β λ

∞
−= − − − =

+ +∫  0,2
1

,p λ
λ β λ

=
+ +

0,3
1

,p β
λ β λ

=
+ +

 2
1,2

2

,p λ
λ β

=
+

 1,4
2

,p β
λ β

=
+

 2,5 ,p β
γ β

=
+

 2,0 ,pp γ
γ β

=
+

  2,6 ,qp γ
γ β

=
+

 

3,0 1,p =  4,1 1,p =  5,2 1,p =   7,6 1,p =  6,7 ,p β
α β

=
+

  6,0 .p α
α β

=
+   

Here ijp denotes the probability of the transition from iS  state to jS  state in state transition diagram. 

It can be easily verified that  
 30 52 41 76 01 02 03 14 12 20 25 26 60 67 1.p p p p p p p p p p p p p p= = = = + + = + = + + = + =   (2) 

The mean sojourn times iµ  in the state iS  are given by 

0 1 1
0

1

1(1 )
exp( ) exp( ) exp( ) ,

( )
t t t dtη η η

η

ηµ λ λ β
λ β λ

∞ Γ +
= − − − =

+ +
∫  1 1

2

1(1 )
,

( )η

ηµ
λ β

Γ +
=

+
 2 1

1(1 )
,

( )η

ηµ
β γ

Γ +
=

+
 

3 4 5 7 1

1

1(1 )
,

( )η

ηµ µ µ µ
β

Γ +
= = = =  6 1

1(1 )
.

( )η

ηµ
β α

Γ +
=

+

                             (3) 

 
4. Reliability and Mean Time to System Failure 

Let ( )i tφ  be the c.d.f. of first passage time from the regenerative state i to a failed state. 

Regarding the failed state as absorbing state, we have the following recursive relation for ( ) :i tφ  

 , j( ) ( )i i
j

t Q tφ = ∑ Ⓢ ( ) ( ),j kt Z tϕ +    (4) 

where j is an un-failed regenerative state to which the given regenerative state i can transit and k  is 
a failed state to which the state i can transit directly. Here ( )kZ t  denotes the direct first time transition 
from any operative state to failed state. Taking LST of above relations (4) and solving by Cramer’s 
Rule for **

0 ( )sφ , we have 

 
**

* 0

( )1
1 ( ) ( ) ( )( )( ) .

( )

N s
s D s N sD sR s

s s D s
ϕ

−
′ ′− −

= = =                                     (5) 
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The reliability of the system model can be obtained by taking inverse LT of (5). MTSF is given 
by  

 
**

* 0 1

0 0
1

1 ( )
lim ( ) lim ,
s s

s NMTSF R s
s D

ϕ
→ →

−
= = =                                              (6) 

where 

1 03 30 03 14 41 41 03 14 30 14 03 03 14 41 14 03 02

01 12 12 01 02 14 14 02 41 14 02

N m m p m p m p p p p p p p p p p m
m p m p p p p p p p p

′ ′ ′ ′= + + + + + + + +
′ ′ ′+ + + + +

 

1 14 41 03 30 03 30 41 14D p p p p p p p p= − − +  . 
 
5. Steady State Availability 

Let ( )iA t  be the probability that the system is in upstate at instant ‘t’ given that the system 

entered regenerative state i at t = 0. The recursive relations for ( )iA t  are given as  

 ,( ) ( ) ( )i i i j
j

A t M t q t= + ∑ © ( ),jA t  (7) 

where j is any successive regenerative state to which the regenerative state i can transit and Mi(t)’s 
obtained as 
 0 1 1 2exp( ) , exp( )M t M tη ηβ λ λ β λ= − + + = − + . (8) 

Taking LT of relations (7) and (8), solving by Cramer’s Rule for ( )*
0A s . The steady state availability 

can be determined as  

 ( ) ( )* 2
0 00

2

lim ,
s

NA sA s
D→

∞ = =   (9) 

where  
[ ]2 25 52 67 76 0 41 14 01 1(1 )(1 ) (1 )N p p p p p p pµ µ= − − − +                    

[ ] [ ]
[ ] [ ]

2 0 03 3 41 14 25 52 67 76 1 14 4 01 67 76 25 52

2 25 5 67 76 41 14 02 01 12 6 67 7 26 41 14 02 01 12

( p ) (1 )(1 )(1 ) ( p ) (1 ) (1

( p )(1 p p ) (1 ) ( ) ((1 p p ) p p p ) .

D p p p p p p p p p p p

p p p p p p p

µ µ µ µ

µ µ µ µ

= + − − − + + − × −

+ + − − + + + − +
 

         
6. Busy Period Analysis 

Let ( )iB t  be the probability that the server is busy in repairing the unit at an instant ‘t’ given 

that the system entered regenerative state i at t=0. The recursive relations for ( )iB t  are given as  

 ( ) ( ) ( ),t Wi i i j
j

B t q t= + ∑ © ( ) ,jB t  (10) 

where j is any successive regenerative state to which the regenerative state i can transit and  ( )iW t ’s 

obtained as 
 2 ( ) exp( ) ,W t tηβ γ= − +   6 ( ) exp( )W t tηβ α= − + .  (11) 

Taking LT of relations (10-11) and solving by Cramer’s Rule for ( )*
0B s . The busy period of the 

server can be determined as 

 ( )* 3
0 00

2

lim ,
s

N
B sB s

D→
= =  (12) 

where  
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 [ ] [ ]3 2 67 76 01 12 02 41 14 6 26 01 12 02 14 41(1 ) (1 p p ) (1 p p ) ,N W p p p p p W p p p p= − + − + + −         

and 2D  has already mentioned. 

 

7. Expected Number of Visits by the Server 
Let ( )iN t  be the expected number of visits by the server in ( ]0, t  given that the system entered 

the regenerative state i at t = 0, we have the following recurrence relations for ( ) :iN t  

 ( ) ( ),i i j
j

N t Q t= ∑ Ⓢ ( ) ,j jN tδ +   (13) 

where j is any regenerative state to which the given regenerative state i transits. 

 
1 is regenerative state

.
0 otherwisej

j
δ

 
=  

 
 

Taking LST of the relation (13) and solving by Cramer’s Rule for **
0 ( ).N s  The expression for 

expected number of visits per unit time is given by    

 ** 4
0 00

2

lim ( ) ,
s

NN sN s
D→

= =   (14) 

where  
 [ ]4 25 52 67 76 01 14 41 01 12(1 p p )(1 p p ) (1 p p ) p ,N p p= − − − +  

and 2D  has already mentioned. 
 

8. Profit Analysis 
Any manufacturing industry is basically a profit making organization and no organization can 

survive for long without minimum financial returns for its investment. There must be an optimal 
balance between the reliability aspect of a product and its cost. The major factors contributing to the 
total cost are availability, busy period of server and expected number of visits by the server. The cost 
of these individual items varies with reliability or mean time to system failure. In order to increase 
the reliability of the products, we would require a correspondingly high investment in the research 
and development activities. The production cost also would increase with the requirement of greater 
reliability. 

The revenue and cost function leads to the profit function of a firm/organization, as the profit is 
excess of revenue over the cost of production. The profit function in time t is given by 
 ( )P t  = Expected revenue in ( ]0, t – Expected total cost in ( ]0, .t  

In general, the optimal policies can more easily be derived for an infinite time span or compared to a 
finite time span. The profit per unit time, in infinite time span is expressed as 

 
( )lim ,

t

P t
t→∞

 

i.e. profit per unit time = total revenue per unit time – total cost per unit time. Considering the various 
costs, the profit equation is given as 
 0 0 1 0 2 0 ,P K A K B K N= − −  
where  

P   = Profit per unit time incurred to the system 
K0 = Revenue per unit up time of the system 
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A0 = Total fraction of time for which the system is operative 
K1 = Cost per unit time for which server is busy 
B0 = Total fraction of time for which the server is busy 
K2 = Cost per visit by the server 
N0 = Expected number of visits per unit time for the server. 

 
9. Results and Discussion 

To show the importance of results and characterize the behavior of MTSF, availability and profit 
of the system, here we assume that failure times of unit, time of change of weather conditions, 
inspection time and repair times of the unit are Weibull distributed.  Probability density function of 
Weibull distribution with two parameters is given by 

 1z( ) t , 0,tt e t
ηβηβη

 −−  = ≥  
where η  and β  are positive constants and are known as shape and scale parameters respectively. 
From the properties of Weibull distribution, If η = 1, it become the exponential distribution and for 
η = 2 Weibull is equivalent to Rayleigh distribution. The probability density function for time of 
change of weather conditions, repair time of the unit, failure times of the unit and inspection time are 
considered as: 

 1z( ) t ,tt e
ηβηβη

 −−  =  11
1 1z ( ) t ,tt e

ηβηβ η
 −−  =  1( ) ,tg t t e

ηαηαη
 −−  =  11

1 1( ) ,tf t t e
ηληλη

 −−  =  

 21
2 2( ) tf t t e

ηληλ η
 −−  = ,  1( ) tf t t e

ηληλη
 −−  =  and 1h( ) .tt t e

ηγηγη
 −−  =  

For particular values to various parameters and costs, the numerical results for MTSF, availability 
and profit function are obtained by considering the shape parameter η =  0.5, 1, 2 for all random 
variables associated with failure, weather conditions and repair times as shown in Tables 1, 2 and 3. 

 
10. Conclusions 

The numerical results of mean time to system failure (MTSF) with respect to abnormal weather 
rate ( β ) and shape parameter (η ) are shown in Table 1. It is observed that MTSF increase with the 
increase of β . It is also observed that MTSF decreases as direct failure rate ( λ ), shape parameter    
(η ) and normal weather rate ( 1β ) increase. Thus, we can say that life time of the system keeps on 
increasing with the increase of abnormal weather rate ( β ) due to the increase of non working period 
of the system. Tables 2 and 3 highlights the behavior of availability and profit of the model with 
respect to abnormal weather rate ( β ) and shape parameter (η ) respectively. It can be seen that 
availability and profit of the system decreases with the increase of abnormal weather rate ( β ) and 
shape parameter (η ). Further, when failure rate (λ) and normal weather rate ( 1β ) increase, the 
availability and profit of the system increase. Thus finally, we conclude that with the passes of time 
the availability and profit of the system decreases.  
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Table 2 MTSF vs. Abnormal Weather Rate ( β ) 
  1η =     2η =    0.5η =    
β   α  =1,

λ =.02

1λ
=.03,

1λ
=.05, 

1β  =.1, 
p =0.3, 
q =0.7, 

γ =2 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.1, 

p =0.3, 
q =0.7 

γ =4 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.2, 

p =0.3, 
q =0.7 

γ =2 

α =1, 
λ =.02, 

1λ =.03, 

1λ =.05, 

1β =.1, 
p =0.3, 
q =0.7 

γ =2 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.1, 

p =0.3, 
q =0.7 

γ =4 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.2, 

p =0.3, 
q =0.7 

γ =2 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.1, 

p =0.3, 
q =0.7 

γ =2 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.1, 

p =0.3, 
q =0.7 

γ =4 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.2, 

p =0.3, 
q =0.7 

γ =2 

0.01 35.2000 35.2000 33.6000 7.8434 7.8434 7.5807 0.0307 0.0307 0.0207 

0.02 38.4000 38.4000 35.2000 9.2968 9.2968 8.7714 0.5423 0.4230 0.3230 

0.03 41.6000 41.6000 36.8000 10.7116 10.7116 9.9236 0.9920 0.9920 0.9420 

0.04 44.8000 44.8000 38.4000 12.0950 12.0950 11.0443 0.9671 0.9671 0.9671 

0.05 48.0000 48.0000 40.0000 13.4520 13.4520 12.1386 0.9600 0.9600 0.9600 

0.06 51.2000 51.2000 41.6000 14.7865 14.7865 13.2105 0.9658 0.9658 0.9658 

0.07 54.4000 54.4000 43.2000 16.1015 16.1015 14.2629 0.9813 0.9813 0.9813 

0.08 57.6000 57.6000 44.8000 17.3995 17.3995 15.2981 1.0043 1.0043 1.0043 

0.09 60.8000 60.8000 46.4000 18.6823 18.6823 16.3183 1.0331 1.0331 1.0331 

0.10 64.0000 64.0000 48.0000 19.9515 19.9515 17.3248 1.0667 1.0667 1.0667 

0.11 67.2000 67.2000 49.6000 21.2085 21.2085 18.3192 1.1040 1.1040 1.1040 

0.12 70.4000 70.4000 51.2000 22.4544 22.4544 19.3024 1.1445 1.1445 1.1445 

0.13 73.6000 73.6000 52.8000 23.6902 23.6902 20.2755 1.1876 1.1876 1.1876 

0.14 76.8000 76.8000 54.4000 24.9167 24.9167 21.2394 1.2328 1.2328 1.2228 

0.15 80.0000 80.0000 56.0000 26.1346 26.1346 22.1946 1.2800 1.2800 1.2600 
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Table 3 Availability vs. Abnormal Weather Rate ( β ) 
  1η =     2η =    0.5η =    
β  α  =1,

λ =.02

1λ
=.03,

1λ
=.05, 

1β  =.1, 
p =0.3, 
q =0.7, 

γ =2 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.1, 

p =0.3, 
q =0.7 

γ =4 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.2, 

p =0.3, 
q =0.7 

γ =2 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.1, 

p =0.3, 
q =0.7 

γ =2 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.1, 

p =0.3, 
q =0.7 

γ =4 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.2, 

p =0.3, 
q =0.7 

γ =2 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.1, 

p =0.3, 
q =0.7 

γ =2 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.1, 

p =0.3, 
q =0.7 

γ =4 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.2, 

p =0.3, 
q =0.7 

γ =2 

0.01 0.8762 0.8637 0.9180 0.7610 0.7386 0.7844 0.9398 0.9278 0.9830 

0.02 0.8032 0.7918 0.8762 0.7065 0.6904 0.7447 0.8716 0.8515 0.9631 

0.03 0.7414 0.7309 0.8381 0.6644 0.6520 0.7126 0.7992 0.7738 0.9394 

0.04 0.6885 0.6787 0.8032 0.6304 0.6205 0.6858 0.7267 0.6985 0.9124 

0.05 0.6426 0.6334 0.7711 0.6023 0.5939 0.6629 0.6572 0.6282 0.8830 

0.06 0.6024 0.5938 0.7414 0.5784 0.5711 0.6430 0.5925 0.5639 0.8516 

0.07 0.5670 0.5589 0.7140 0.5577 0.5512 0.6254 0.5334 0.5061 0.8188 

0.08 0.5355 0.5278 0.6885 0.5395 0.5337 0.6096 0.4802 0.4546 0.7853 

0.09 0.5073 0.5001 0.6647 0.5234 0.5180 0.5954 0.4327 0.4091 0.7515 

0.10 0.4819 0.4751 0.6426 0.5090 0.5039 0.5825 0.3906 0.3690 0.7178 

0.11 0.4590 0.4524 0.6218 0.4959 0.4911 0.5707 0.3533 0.3336 0.6845 

0.12 0.4381 0.4319 0.6024 0.4840 0.4794 0.5597 0.3204 0.3026 0.6520 

0.13 0.4191 0.4131 0.5842 0.4731 0.4687 0.5496 0.2913 0.2752 0.6204 

0.14 0.4016 0.3959 0.5670 0.4630 0.4588 0.5402 0.2656 0.2510 0.5900 

0.15 0.3855 0.3800 0.5508 0.4537 0.4496 0.5314 0.2429 0.2296 0.5607 
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Table 4 Profit vs. Abnormal Weather Rate ( β ) 
  1η =     2η =    0.5η =    
β  α  =1,

λ =.02

1λ
=.03,

1λ
=.05, 

1β  =.1, 
p =0.3, 
q =0.7, 

γ =2 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.1, 

p =0.3, 
q =0.7 

γ =4 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.2, 

p =0.3, 
q =0.7 

γ =2 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.1, 

p =0.3, 
q =0.7 

γ =2 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.1, 

p =0.3, 
q =0.7 

γ =4 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.2, 

p =0.3, 
q =0.7 

γ =2 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.1, 

p =0.3, 
q =0.7 

γ =2 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.1, 

p =0.3, 
q =0.7 

γ =4 

α =1, 
λ =.02, 

1λ
=.03, 

1λ
=.05, 
1β =.2, 

p =0.3, 
q =0.7 

γ =2 

0.01 3749.3 3624.6 3864.7 4369.4 4302.5 4577.4 4698.7 4638.4 4914.3 

0.02 3484.8 3392.2 3673.3 4005.3 3944.1 4369.4 4357.5 4256.5 4814.7 

0.03 3279.9 3207.0 3518.2 3697.3 3640.8 4179.5 3995.2 3867.9 4696.1 

0.04 3114.7 3054.5 3388.4 3433.2 3380.9 4005.4 3632.9 3491.9 4561.5 

0.05 2977.4 2926.0 3277.3 3204.4 3155.6 3845.2 3285.5 3140.1 4414.1 

0.06 2860.7 2815.5 3180.5 3004.1 2958.4 3697.4 2961.8 2818.7 4257.1 

0.07 2759.7 2719.1 3094.8 2827.4 2784.4 3560.5 2666.3 2529.7 4093.4 

0.08 2671.0 2633.8 3018.1 2670.4 2629.8 3433.4 2400.3 2272.4 3925.8 

0.09 2592.1 2557.7 2948.9 2529.9 2491.4 3315.0 2163.0 2044.8 3756.7 

0.10 2521.4 2489.1 2885.8 2403.4 2366.9 3204.5 1952.4 1844.2 3588.1 

0.11 2457.4 2426.8 2828.0 2289.0 2254.2 3101.2 1766.1 1667.6 3421.8 

0.12 2399.0 2369.9 2774.6 2185.0 2151.8 3004.3 1601.6 1512.2 3259.2 

0.13 2345.5 2317.6 2725.1 2090.0 2058.3 2913.3 1456.2 1375.3 3101.4 

0.14 2296.2 2269.2 2679.0 2002.9 1972.5 2827.6 1327.7 1254.4 2949.1 

0.15 2250.5 2224.3 2635.9 1922.8 1893.7 2746.9 1213.9 1147.5 2802.8 
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