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Abstract

The beta exponentiated Weibull Poisson (BEWP) distribution is introduced by Insuk et al. in
2015, some properties of this distribution are discussed therein. In this paper, we applied the BEWP
in reliability analysis. Derivation of reliability functions, e.g. survival function, hazard function,
moment, mean and variance of residual life function are presented. Finally, we apply the BEWP’s
mean residual life (MRL) function to find the optimal burn-in time for real data with the bathtub
failure shape.

Keywords: Beta exponentiated Weibull Poisson distribution, reliability, hazard function, mean
residual life.

1. Introduction

Modeling the lifetime data with failure distribution is intrinsic component of lifetime study.
The Weibull distribution was one of the earliest and most accepted model for failure time. The
Weibull distribution will also be the initial choice for modeling lifetime data. However, many
researchers have utilized Weibull distribution as the baseline for developing the new distribution
that can provide greater flexibility and accommodate more complicated data. Almalki and
Nadarajah (2014) reviewed the modifications of the Weibull distribution for both discrete and
continuous Weibull distributions encompassing discrete modified Weibull (Nooghabi et al. 2011),
discrete additive Weibull (Bebbington et al. 2012), Inverse Weibull (Drapella 1993), exponentiated
Weibull (Mudholkar and Srivastava 1993), Weibull geometric (Barreto-Souza 2011), Weibull
Poisson (Lu and Shi 2012), Weibull Power Series (Morais and Barreto-Souza 2011), Flexible
Weibull extension (Bebbington 2007), beta Weibull (Lee et al. 2007), Kumaraswamy Weibull
(Cordeiro et al. 2010) and etc.

More recently, Insuk et al. (2015) introduced the generalized class of lifetime distribution,
namely beta exponentiated Weibull Poisson (BEWP) distribution. The BEWP distribution has been
developed by mixing exponentiated Weibull Poisson (Mahmoudi and Sepahdar 2013) distribution
and the beta distribution.
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Let X be a random variable of the BEWP distribution. Then the cumulative distribution
function (cdf) and probability density function (pdf) of X respectively are given by

F(x)= I[J(”)“J/(efq) (a,b), x>0,

+ 1,,(a,b) is the regularized incomplete beta function and
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The intriguing feature of this class is it is the generalized class of the modified Weibull
distributions and also contains the sub-model up to 32 distributions including Weibull distribution.
One advantage of generalized distribution is it can enhance the flexibility of probability distribution
and increases their applicability in distribution fitting.

In addition to the probability density function for lifetime distributions, most distributions are
characterized with respect to aging by the behavior of their hazard (h(t)) or mean residual life

where a, 5,0,4,a,b>0,u= o (o

(MRL or m(t)). Both functions have an inverse relationship (Ahmed et al. 2011), that is
m'(t)+1
h(t)= m(t)+1
m(t)
where m’(t) > —1 and m'(t) is the first derivative of the MRL function.

Furthermore, the hazard function which is the traditional reliability measurement. The MRL
also plays the crucial role in various applications, for instance in engineering study where MRL is a
useful tool when conducting burn-in analysis (Lai and Xie 2006). For insurance, it is use for setting
the life insurance rates and benefits and, etc. Tang et al. (1999) analyzed the characteristic of the
general behaviors of the MRL for both continuous & discrete lifetime distributions, with respect to
their failure rates.

In this paper, we extend the structural properties of a new class of Beta-G named beta
exponentiated Weibull Poisson (BEWP) distribution. Beta-G distribution was introduced by Eugene
et al. (2002) which is the class of generalized beta distribution where G be the continuous
cumulative distribution function. The purpose of this study is to introduce more structural properties
of BEWP distribution by focusing on the reliability application based on its hazard and mean
residual life function.

The remainder of this paper has been arranged in the following sequence. Section 2 discusses
about the survival (reliability) and hazard (failure rate) function and of BEWP distribution. Its mean
residual life is introduced in Section 3, and the application to real data set is presented in Section 4.
Some concluding remarks are given in Section 5.

2. Survival (Reliability) and Hazard (Failure rate) Function

In the field of reliability studies, the survival function and hazard function plays an important
role. In particular, the shape of the hazard plot provides meaningful guidance in recognizing the
status of failure rate. There are three particular types of patterns; a decreasing failure rate pattern
indicates influence of poor design, mainly manufacturing or assembly variables, a constant failure
rate pattern indicates effect of random causes, and increasing failure rate pattern indicates wearing-
out failures (Rai and Singh 2009). When all three patterns aforementioned patterns combine there
will be a bathtub pattern. Nadarajah (2009) reviewed the known distributions that exhibit this shape.



Tipagorn Insuk et al. 131

Moreover, to describe the characteristics of distribution, the hazard function is a more precise tool
when identifying individuals from each distribution, rather than either cdf or pdf. In this section, we
present the survival and hazard function of BEWP distribution.

Let X be a random variable of the BEWP distribution. Then the survival function and hazard
(failure rate) function of X respectively are given by

S(x)=1- I{emu)a _1]/(e7~_1) (ab), x>0,

where @, 5,0, 2,a,b>0 ,u=e® and

Aafo’xPHu(1-u)" et e 1 N | "
h(x) = - I )
(e’ _1)B(a,b)[l—l s (a,b)]

@ —1)/(e*-1)

We obtain the cumulative hazard (failure rate) function of X, that is

H(x) =

O e <

h(t)dt

= —logR(x)

= —log|1-1 (a,b) |,
@ g ety

Vi
where u =g ™",

To identify the hazard shape of BEWP by using Glaser’s approach (Glaser 1980) we find that

g (x) and G(x) denote the pdf and cdf of the generalized class of distribution respectively. We

regard them to be the baseline for creating the Beta-G distribution. The pdf of Beta-G distribution is
given by

9(x)6 (%)™ (1-6(x))""

()= B(a,b)
and
, 9'(x) (a-1g(x) (b-1)g(x)
f(x):f(x)(g(x)+ G(x) 1—G(X)J
then
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That deal with only baseline distribution. For BEWP that g(x) and G(x) are

A o
g(x):—laﬁe X u(1-u) e x>0
(e°-1)
e -
G(x)=——=,
( ) el _1
where u=e"®". We can rewrite g(x)and G(x) in term of pdf q(x) and cdf Q(x)of Weibull
distribution
q(x)=po" e @ x50
Q(x)=1-¢",
that are easier for derivation. Hence, we obtain

9( ):(effl)q(X)Q(X)a1e*Q(*)“, x>0
g™ 1
G(x)= e’ -1
Then
oo d(9(x) (a-1)g(x) (b-1)g(x)
n'(x)= dx[g(x) Gx)  1-6(x) J
where

ol G6(x) [6(0]
d((b-0g(9))_ . [BoI[1-6()]-[g(x)]
dx[ 1-6(x) J ¢ 1)[ [1-G(x)] J
where A=L(5-1-p(6x)’) and B=A+ («-1)a(x) + Aaq(x) .
here A=—(p-1-p(0x)") and B=A [ 0) ] {(Q(X))l-a}

For »'(x) equation, it is rather complex to completely characterize for possible values of each
parameter in this study, however we can present the overall of shapes of the survival S(x) and

hazard functions h(x) in Figure 1 that can be increasing, decreasing, upside-down and bathtub

shape depending on its parameter values.
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Figure 1 (a) The survival S(x) (b) hazard functions h(x) function of the BEWP distribution
For general case of Beta-G distribution,
S(x) = 1-F(x)

=
—_
>
~—
1
(]
—_
>
~—
@
—~
7 >
~—
®
N
1
T
@
—_~
>
~—
| I—
=4
N

where B(a,b) and B(.) (a,b) are the beta function and the incomplete beta function respectively.

From above equation, we can see that hazard function depend on the form of baseline
distribution function that are g(x), G(x) and the value of a and b so we propose S(x), h(x)

and 5(x) of BEWP distribution to 3 categories in Table 1 that are when a>0 and b>0, this

category is Beta-G distribution, for a>0 and b =1, this category is Exponentiated-G distribution
and for a=1 and b =1 in the last category, this is the base line distribution.
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Table 1 The survival, hazard and 7(x) functions of BEWP distribution

Category S(x) h(x) n(x)
faopae B g(x)6()[1-6(9]" {g'(x)+<a—1)g<x>_<b—1>g<x>]
e (a.b) B o) (0] 60 600 [16(x
. . wke()” (90 (-5 (x)
2.a>0,b=1 1-G(x) l—G(X)a {g(x) G(x) }

9(x) 9
d.a=1b=1 1-G(x) l—G(X) g(x)

We apply these 3 categories in Table 1 to BEWP’s sub-model in Table 2. For example, in case
of beta Weibull distribution, when a=1 and b=1, beta Weibull distribution will be transformed to
Weibull distribution or baseline distribution (category 3). S(x) and h(x) of Weibull distribution

are respectively given by

S(x) =e_(gx)ﬁ

(ox)B
s (0x)
(0x)

.-
When a>0 and b=1, beta Weibull distribution will be transformed to exponentiated Weibull
distribution or Exponentiated-G distribution (category 2). S(x) and h(x) of exponentiated Weibull

distribution are respectively given by

s(x)=1—£1—e_(‘9x)ﬂ] ,

_alpors @ Jy_ oY I

_(ox)P )a
e (9

For a>0 and b>0, it is the beta Weibull distribution or Beta-G distribution (category 1).
S(x) and h(x)of beta Weibull distribution are respectively given by

B{(Hx)ﬁ (b,a)
S0 —5@n)

( 80" 1 @ )(1_ o @ jal (e—(ex)ﬁ jbl

()= 3, ()

h(x)




Tipagorn Insuk et al.

135

Hence in reliability analysis, we can create the S(x), h(x) and (x) of Exponentiated-G and

Beta-G distribution from any base line distribution without starting at its pdf or cdf.

Table 2 The sub-model table of BEWP distribution

Category

Distribution

Parameters

Base line distribution

N]

B0

G(x)

9(x)

1

beta exponentiated
Weibull

Poisson (BEWP)
exponentiated
Weibull Poisson
(EWP)

a

J

e&(l—u)“ 1

s «
—Mjﬂ 91 Xy (1-u) et
e —

beta exponentiated
Rayleigh Poisson
(BERP)
exponentiated
Rayleigh Poisson
(ERP)

beta exponentiated
exponential
Poisson (BEEP)
exponentiated
exponential
Poisson (EEP)

beta Weibull
Poisson (BWP)
generalized
Weibull Poisson
(GWP)

Weibull Poisson
(WP)

beta Rayleigh
Poisson (BRP)
generalized
Rayleigh Poisson
(GRP)

Rayleigh Poisson
(RP)

2
270 L)
A

beta exponential
Poisson (BEP)
generalized
exponential
Poisson (GEP)
exponential
Poisson (EP)

10 A(1-u)
et -1
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Table 2 (Continued)
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Category Distribution

Parameters

Base line distribution

0

G(X)

9(x)

1

beta exponentiated Weibull
(BEW)

generalized exponentiated
Weibull (GEW)
exponentiated Weibull
(EW)

0

-y,

u=e

~(ox)

1

apo’x’u(1-u)"

beta exponentiated Rayleigh

(BER)

generalized exponentiated
Rayleigh (GER)
exponentiated Rayleigh
(ER)

N

(L-u)",

u=e

(0%’

200" xu(1-u )“71

beta exponentiated
exponential (BEE)
generalized exponentiated
exponential (GEE)
exponentiated exponential
(EE)

abu(l- u)“fl

beta Weibull (BW)

generalized Weibull (GW)
Weibull (W)

4 A1)

beta Rayleigh (BR)
generalized Rayleigh (GR)
Rayleigh (R)

20%xe @

N RPIWN RPWN -

w

beta exponential (BE)

generalized exponential
(GE)
exponential (E)

By definition of hazard function, it can be defined based on the concept of conditional

probability. In addition to the hazard function, this concept has also been applied to define the other
interesting reliability measurements, for instance, the MRL function. This function characterizes the
random variable in the total remaining interval of time after a fixed time point t (Jeong 2014),
whereas the failure rate provides a description of it in an infinitesimal interval of time. Both are
complementary of each other functions. The MRL function will be presented in the next section.
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3. Mean Residual Life Function of the BEWP Distribution

Guess and Proschan (as cited in (Krishnaiah and Rao 1988)) defined the MRL function is like
the density function, the moment generating function, or the characteristic function. It greatly
impacts the functionality of many applications such as engineering, insurance and etc. We
introduced the interpretation of MRL in the previous section, by definition, given that a unit is of
age t, the remaining life after time t is random so that the mean residual life at time t is the

expected value of this random residual life or E[X —t|X >t] In this section we present the r™

moment, mean and second moment of residual life function.

Theorem 1 Let X be a random variable of the BEWP distribution with parameters «, 5,0, 4,a

andb. The r™ moment of residual life function of X is

RCEE e R Ol GO (R L)

e —l) k=0

w
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= — -1 t u —dX
sz (e 27 L 5
1 &d Sjyiljviaﬂg’g 4 rk[rJ ek P lri n{a(m+l)lj K+B-1, n+l
= -1 t -1 X u™dx.
SOZ (o) 20 L) IR,
Since ka+ﬁ‘1u”+1dx =I XK+ A1~ ()" gy ang
t t
.
J'Xk+ﬁ—1un+ldX: A ek —
t (n+1)(91)ﬂ ﬁ(n +1)E+19
F[;+1,(n+1)(9t)ﬂ]
pln+n)ite”
We obtain
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Theorem 2 Let X be a random variable of the BEWP distribution with parameters
a, 3,0, 2,a and b. The MRL function of X is

m(t) - zﬁzzﬂl (-1 (“(m;”‘lj(nﬂ)(é“)r(%u,(nu)(et)ﬂ}_t

(x—t) f(x)dx

o ]
We refer f(x)= ZZs“g(x a,3,0,4,;) from Insuk et al. (2015) where
j=

i=0

2A,aBO" X" u(l-u) et Sj(j+1)(—1)i(ij](e“ -1)
g, B.0,4,,) =2 y S = L A, =A(j-i+1),
(eml —1) (_l _i+1)(e4 _1)

b-1

o )
_ Mia 3 (1)'”1"(0(4—1) ( ! ]
s"_B(a, K r.(a,b) = Zc(ab)d (a+i), d;(a)= Z a0 - )] and c,(a,b) = W
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To show more variety of the hazard functions and MRL function shapes, some specified
parameters of the BEWP distribution are provided in Figure 2.
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Figure 2 Hazard function and mean residual life function shapes of the BEWP distribution
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Hazard function MRL
(c) Bathtub

(c) Upside-down
,B=235,6=0008,2=0.003 & a=3,b=3 0=0058=35 6=0008, 7=0003
,B=3,6=0009 2=0002 ---- a=5b=50=005p=3 8=0009,=0002
L B=4,6=0009,2=0001 | || a=50b=7 =002 =4 0=0009 =0001
S - &
E -
=
/ o
o™~
o
o 4
g o
T T T T T T T T T T T T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120
X t
(d) Upside-down (d) Bathtub
2 A — a=35b=7.0=3p=056=067=04 € — a=35Db=7,0=3p=050=067=04
---- af 5,b7=5,n17=5,[5=705 9:}5,&—2 “ ---- af 5,ti=5,01=5,ﬁi0.5,Bi1.53?:=2
,,,,,,,, a=5b=50=25p=046=21=-03 \ www @a=5b=50=25pB=0406=21=03
a ® ‘1
\
]
1
S - e
= ]
E \
Z =4
(8]
o 7 &~
(=]
(=] S A
T T T T T T T T T T T T T T T T
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

Figure 2 (Continued)
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Theorem 3 Let X be a random variable of the BEWP distribution with parameters «, 3,0, 4,a

and b. The second moment of the residual life function of X is

RIS i S i D& A e e(m+]) -1 a9 £+ . 5
Ul e () R R s

S By [ e {2 aa ey o

n

Proof:

o ]
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We can find variance of the residual life of the BEWP distribution by using the relationship of each
moment in Theorems 2 and 3.

4. Application

In this section, we illustrate the application of BEWP’s failure rate and MRL function as a
means for undertaking the burn-in analysis. Because of the high failure rate in the infant mortality
period of bathtub model and to reduce the product population failure rate, burn-in is the desired
method for detecting and eliminating the failure in this period before the product is released to
customer. Cheng (2006) also examined data to identify and critically discuss the practical methods
to quantify and eliminate failure in each part of the bathtub curve. In this study, to eliminate failures
in the first period of bathtub model, MRL function is the useful tool to determine the optimal burn-
in time. Mi (1995) applied the simple idea to reveal maximized mean life without cost constrain by
using the MRL function to find the optimal burn-in time. It means that Mi (1995) determined t that
causes the maximized MRL.

For application with real data, we provide the lifetime failure data of an electronic from Wang
(2000) as displayed in Table 3.
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Table 3 Time to failure of 18 electronic devices
Time to failure of 18 electronic devices
5 11 21 31 46 75 98 122 145
165 195 224 245 293 321 330 350 420

To examine that this data set is bathtub shape failure rate we can show by the total time on test
(TTT) plot (Aarset 1987) in Figure 3 (a) with p-value of Barlow-Proschan's test is 0.32. We fit the
BEWP distribution to this data set by using the maximum likelihood (ML) method that Insuk et al.
(2015) have shown in details. The ML estimates of the parameters are @ =1.6053, 3= 4.0597, 4=

0.0029, i= 3.5905, 4= 0.1093 and b=1.9903 the Kolmogorov-Smirnov (K-S) statistic and the
corresponding p-value for the fitted models are 0.0708 and 0.9999 respectively. To show the
graphical goodness of the fit by probability plot. We also plot the data against the BEWP
distribution. In Figure 3 (b), the data closely forms a straight line. It indicates this data set follows
the BEWP distribution.
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Figure 3 TTT plot and probability plot of the time to failure of 18 electronic devices

In order to make decisions to determine the optimal burn-in time under Mi (1995) approach, a
burn-in test can be terminated at the time point of t” = 11 with m(t*) = 177.3229. Shen et al. (2009)

illustrated the optimum time by the other criterion.

5. Conclusions

For this paper, we present the structural properties in term of reliability a Beta class
distribution, namely BEWP. We introduce its basic reliability properties such as reliability function,
hazard function including its MRL function. For the application, we apply the MRL function of
BEWP distribution for the purpose of discovering the optimal burn-in time for real failure data with
the bathtub failure shape. Next research will discuss the details of the parameter that related to
failure shape.
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