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Abstract 

The beta exponentiated Weibull Poisson (BEWP) distribution is introduced by Insuk et al. in 
2015, some properties of this distribution are discussed therein. In this paper, we applied the BEWP 
in reliability analysis. Derivation of reliability functions, e.g. survival function, hazard function, 
moment, mean and variance of residual life function are presented. Finally, we apply the BEWP’s 
mean residual life (MRL) function to find the optimal burn-in time for real data with the bathtub 
failure shape. 
______________________________ 
Keywords: Beta exponentiated Weibull Poisson distribution, reliability, hazard function, mean 
residual life. 

1. Introduction 
Modeling the lifetime data with failure distribution is intrinsic component of lifetime study. 

The Weibull distribution was one of the earliest and most accepted model for failure time. The 
Weibull distribution will also be the initial choice for modeling lifetime data. However, many 
researchers have utilized Weibull distribution as the baseline for developing the new distribution 
that can provide greater flexibility and accommodate more complicated data. Almalki and 
Nadarajah (2014) reviewed the modifications of the Weibull distribution for both discrete and 
continuous Weibull distributions encompassing discrete modified Weibull (Nooghabi et al. 2011), 
discrete additive Weibull (Bebbington et al. 2012), Inverse Weibull (Drapella 1993), exponentiated 
Weibull (Mudholkar and Srivastava 1993), Weibull geometric (Barreto-Souza 2011), Weibull 
Poisson (Lu and Shi 2012), Weibull Power Series (Morais and Barreto-Souza 2011), Flexible 
Weibull extension (Bebbington 2007), beta Weibull (Lee et al. 2007), Kumaraswamy Weibull 
(Cordeiro et al. 2010) and etc. 

More recently, Insuk et al. (2015) introduced the generalized class of lifetime distribution, 
namely beta exponentiated Weibull Poisson (BEWP) distribution. The BEWP distribution has been 
developed by mixing exponentiated Weibull Poisson (Mahmoudi and Sepahdar 2013) distribution 
and the beta distribution.  
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Let X  be a random variable of the BEWP distribution. Then the cumulative distribution 
function (cdf) and probability density function (pdf) of X respectively are given by 
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The intriguing feature of this class is it is the generalized class of the modified Weibull 
distributions and also contains the sub-model up to 32 distributions including Weibull distribution. 
One advantage of generalized distribution is it can enhance the flexibility of probability distribution 
and increases their applicability in distribution fitting. 

In addition to the probability density function for lifetime distributions, most distributions are 
characterized with respect to aging by the behavior of their hazard ( ( )h t ) or mean residual life 

(MRL or ( )m t ). Both functions have an inverse relationship (Ahmed et al. 2011), that is 

( ) ( )
( )

1m t
h t

m t
′ +

=  

where ( ) 1m t′ ≥ −  and ( )m t′ is the first derivative of the MRL function. 

Furthermore, the hazard function which is the traditional reliability measurement. The MRL 
also plays the crucial role in various applications, for instance in engineering study where MRL is a 
useful tool when conducting burn-in analysis (Lai and Xie 2006). For insurance, it is use for setting 
the life insurance rates and benefits and, etc. Tang et al. (1999) analyzed the characteristic of the 
general behaviors of the MRL for both continuous & discrete lifetime distributions, with respect to 
their failure rates.  

In this paper, we extend the structural properties of a new class of Beta-G named beta 
exponentiated Weibull Poisson (BEWP) distribution. Beta-G distribution was introduced by Eugene 
et al. (2002) which is the class of generalized beta distribution where G be the continuous 
cumulative distribution function. The purpose of this study is to introduce more structural properties 
of BEWP distribution by focusing on the reliability application based on its hazard and mean 
residual life function. 

The remainder of this paper has been arranged in the following sequence. Section 2 discusses 
about the survival (reliability) and hazard (failure rate) function and of BEWP distribution. Its mean 
residual life is introduced in Section 3, and the application to real data set is presented in Section 4. 
Some concluding remarks are given in Section 5. 

 
2. Survival (Reliability) and Hazard (Failure rate) Function 

In the field of reliability studies, the survival function and hazard function plays an important 
role. In particular, the shape of the hazard plot provides meaningful guidance in recognizing the 
status of failure rate. There are three particular types of patterns; a decreasing failure rate pattern 
indicates influence of poor design, mainly manufacturing or assembly variables, a constant failure 
rate pattern indicates effect of random causes, and increasing failure rate pattern indicates wearing-
out failures (Rai and Singh 2009). When all three patterns aforementioned patterns combine there 
will be a bathtub pattern. Nadarajah (2009) reviewed the known distributions that exhibit this shape. 
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Moreover, to describe the characteristics of distribution, the hazard function is a more precise tool 
when identifying individuals from each distribution, rather than either cdf or pdf. In this section, we 
present the survival and hazard function of BEWP distribution. 
 Let X be a random variable of the BEWP distribution. Then the survival function and hazard 
(failure rate) function of X respectively are given by 
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We obtain the cumulative hazard (failure rate) function of ,X  that is 

( )H x  = ( )
0
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where ( ) .xu e
βθ−=   

 To identify the hazard shape of BEWP by using Glaser’s approach (Glaser 1980) we find that 
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( )g x  and ( )G x  denote the pdf and cdf of the generalized class of distribution respectively. We 

regard them to be the baseline for creating the Beta-G distribution. The pdf of Beta-G distribution is 
given by 
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That deal with only baseline distribution. For BEWP that ( )g x  and ( )G x  are 
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where ( ) .xu e
βθ−=  We can rewrite ( )g x and ( )G x  in term of pdf ( )q x  and cdf ( )Q x of Weibull 

distribution 
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For ( )xη′   equation, it is rather complex to completely characterize for possible values of each 

parameter in this study, however we can present the overall of shapes of the survival ( )S x  and 

hazard functions ( )h x  in Figure 1 that can be increasing, decreasing, upside-down and bathtub 

shape depending on its parameter values. 
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          (a)        (b) 

  
Figure 1 (a) The survival ( )S x  (b) hazard functions ( )h x  function of the BEWP distribution 

For general case of Beta-G distribution, 
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where ( ),B a b   and ( ) ( ),B a b•  are the beta function and the incomplete beta function respectively. 

From above equation, we can see that hazard function depend on the form of baseline 
distribution function that are ( ) ,g x  ( )G x  and the value of a   and b   so we propose ( ) ,S x  ( )h x  

and ( )xη   of BEWP distribution to 3 categories in Table 1 that are when 0a >   and 0b > , this 

category is Beta-G distribution, for 0a >  and 1,b =  this category is Exponentiated-G distribution 
and for 1a =  and 1b =  in the last category, this is the base line distribution.  
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Table 1 The survival, hazard and ( )xη  functions of BEWP distribution 

Category ( )S x  ( )h x  ( )xη  
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We apply these 3 categories in Table 1 to BEWP’s sub-model in Table 2. For example, in case 

of beta Weibull distribution, when 1a =  and 1b = , beta Weibull distribution will be transformed to 
Weibull distribution or baseline distribution (category 3). ( )S x  and ( )h x  of Weibull distribution 

are respectively given by 
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When 0a >  and 1b = , beta Weibull distribution will be transformed to exponentiated Weibull 
distribution or Exponentiated-G distribution (category 2). ( )S x  and ( )h x  of exponentiated Weibull 

distribution are respectively given by 
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For 0a >  and 0b > , it is the beta Weibull distribution or Beta-G distribution (category 1). 
( )S x  and ( )h x of beta Weibull distribution are respectively given by 
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Hence in reliability analysis, we can create the ( ) ,S x ( )h x  and ( )xη  of Exponentiated-G and 

Beta-G distribution from any base line distribution without starting at its pdf or cdf.  
 

Table 2 The sub-model table of BEWP distribution 
 

Category 
 
Distribution  

Parameters Base line distribution 
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exponential 
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Table 2 (Continued) 

 
Category 

 
Distribution  

Parameters Base line distribution 
α  β  θ  λ  )G(x  )g(x  

1 beta exponentiated Weibull 
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(GE) 
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 By definition of hazard function, it can be defined based on the concept of conditional 
probability. In addition to the hazard function, this concept has also been applied to define the other 
interesting reliability measurements, for instance, the MRL function. This function characterizes the 
random variable in the total remaining interval of time after a fixed time point t (Jeong 2014), 
whereas the failure rate provides a description of it in an infinitesimal interval of time. Both are 
complementary of each other functions. The MRL function will be presented in the next section.  
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3. Mean Residual Life Function of the BEWP Distribution 
Guess and Proschan (as cited in (Krishnaiah and Rao 1988)) defined the MRL function is like 

the density function, the moment generating function, or the characteristic function. It greatly 
impacts the functionality of many applications such as engineering, insurance and etc. We 
introduced the interpretation of MRL in the previous section, by definition, given that a unit is of 
age t, the remaining life after time t  is random so that the mean residual life at time t  is the 
expected value of this random residual life or .E X t X t − >    In this section we present the thr  

moment, mean and second moment of residual life function. 
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To show more variety of the hazard functions and MRL function shapes, some specified 
parameters of the BEWP distribution are provided in Figure 2. 
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Hazard function                         MRL 
(a) Increasing 

 

(a) Decreasing 

 
(b) Decreasing 

 

(b) Increasing 

 
 

Figure 2 Hazard function and mean residual life function shapes of the BEWP distribution 
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Hazard function                         MRL 
(c) Bathtub 

 

(c) Upside-down 

 
(d) Upside-down 

 

(d) Bathtub 

 
Figure 2 (Continued) 
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Theorem 3 Let X be a random variable of the BEWP distribution with parameters , , , ,aα β θ λ  
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We can find variance of the residual life of the BEWP distribution by using the relationship of each 
moment in Theorems 2 and 3.  
 

4. Application 
In this section, we illustrate the application of BEWP’s failure rate and MRL function as a 

means for undertaking the burn-in analysis. Because of the high failure rate in the infant mortality 
period of bathtub model and to reduce the product population failure rate, burn-in is the desired 
method for detecting and eliminating the failure in this period before the product is released to 
customer. Cheng (2006) also examined data to identify and critically discuss the practical methods 
to quantify and eliminate failure in each part of the bathtub curve. In this study, to eliminate failures 
in the first period of bathtub model, MRL function is the useful tool to determine the optimal burn-
in time. Mi (1995) applied the simple idea to reveal maximized mean life without cost constrain by 
using the MRL function to find the optimal burn-in time. It means that Mi (1995) determined t that 
causes the maximized MRL. 

For application with real data, we provide the lifetime failure data of an electronic from Wang 
(2000) as displayed in Table 3. 
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Table 3 Time to failure of 18 electronic devices 
Time to failure of 18 electronic devices 

5 11 21 31 46 75 98 122 145 
165 195 224 245 293 321 330 350 420 
 
To examine that this data set is bathtub shape failure rate we can show by the total time on test 

(TTT) plot (Aarset 1987) in Figure 3 (a) with p-value of Barlow-Proschan's test is 0.32. We fit the 
BEWP distribution to this data set by using the maximum likelihood (ML) method that Insuk et al. 
(2015) have shown in details. The ML estimates of the parameters are α̂ = 1.6053, β̂ =  4.0597, θ̂ =

0.0029, λ̂ =  3.5905, â =  0.1093 and b̂ = 1.9903 the Kolmogorov-Smirnov (K-S) statistic and the 
corresponding p-value for the fitted models are 0.0708 and 0.9999 respectively. To show the 
graphical goodness of the fit by probability plot. We also plot the data against the BEWP 
distribution. In Figure 3 (b), the data closely forms a straight line. It indicates this data set follows 
the BEWP distribution. 

 
(a) 

 

(b) 

 
Figure 3 TTT plot and probability plot of the time to failure of 18 electronic devices 

 

In order to make decisions to determine the optimal burn-in time under Mi (1995) approach, a 
burn-in test can be terminated at the time point of *t = 11 with ( )*m t  = 177.3229. Shen et al. (2009) 

illustrated the optimum time by the other criterion. 
 

5. Conclusions 
For this paper, we present the structural properties in term of reliability a Beta class 

distribution, namely BEWP. We introduce its basic reliability properties such as reliability function, 
hazard function including its MRL function. For the application, we apply the MRL function of 
BEWP distribution for the purpose of discovering the optimal burn-in time for real failure data with 
the bathtub failure shape. Next research will discuss the details of the parameter that related to 
failure shape. 
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