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Abstract

In this paper, given a left type 1l censored sample from a generalized logistic distribution, we
obtain the Bayes estimators and corresponding risks of the unknown parameter under different
asymmetric loss functions, assuming different informative and non-informative priors. Elicitation of
hyperparameter through prior predictive approach is also discussed. Also we derive the expression
for posterior predictive distributions and the credible Intervals. As an illustration, comparisons of
these estimators are made through simulation study as well as real life data example along graphical
results. The findings of the study indicate that the Bayes estimation under the gamma prior can be
preferred.
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1. Introduction

Balakrishnan and Leung (1988) defined the type | generalized logistic distribution (Type | GLD)
as one of the three generalized forms of the standard logistic distribution. Type I generalized logistic
distribution has got additional attention in estimating its parameters for practical usage (see
Balakrishnan (1992)). The skew logistic distribution with the skewness parameter & has been studied
by many others (see for example, Wahed and Ali (2001), Gupta et al. (2002), Nadrajah and Kotz
(2006 and 2007), Nadrajah (2009), Gupta and Kundu (2010), and Chakraborty et al. (2012)). The
cumulative distribution function (cdf), and the probability density function (pdf) of the type I
generalized logistic distribution with shape or skewness parameter >0 are respectively as follows,

1
F(x|0)=—————, 6>0, - , 1
(x|6) {1+exp(—x)}g > 0 < X< (1)
f(x10)=—22PY) o0, —mcx<on @

{1+ exp(—x)}‘9+1 ,
The use of a Bayesian approach allows both sample and prior information to be incorporated into

the statistical analysis, which will improve the quality of the inferences and permit a reduction in
sample size. The decision-theoretic viewpoint takes into account additional information concerning
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the possible consequences of our decisions (quantified by a loss function). The main aim of this is to
consider the statistical analysis of the unknown parameters when the data are left censored from the
generalized logistic distribution. There is a widespread application and use of left-censoring or left-
censored data in survival analysis and reliability theory. For example, in medical studies patients are
subject to regular examinations. Discovery of a condition only tells us that the onset of sickness fell
in the period since the previous examination and nothing about the exact date of the attack. Thus the
time elapsed since onset has been left censored. Similarly, we have to handle left-censored data when
estimating functions of exact policy duration without knowing the exact date of policy entry; or when
estimating functions of exact age without knowing the exact date of birth. A study on the “Patterns
of Health Insurance Coverage among Rural and Urban Children” (Coburn, McBride and Ziller 2001)
faces this problem due to the incidence of a higher proportion of rural children whose spells were
“left censored” in the sample (i.e., those children who entered the sample uninsured), and who
remained uninsured throughout the sample. A Job duration might be incomplete because the
beginning of the job spells is not observed, which is an incidence of left censoring (Bagger 2005).
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Figure 1 Density functions of type | generalized logistic distribution for different values of &
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Figure 2 Density functions of type | generalized logistic distribution for different values of 4
under left type-I1 censoring

The shapes of the density functions of type | generalized logistic distribution for different values
of @ are given in Figure 1 and shapes of the density functions of type | generalized logistic
distribution for different values of ¢ under left type-1l censoring are presented in Figure 2. It is
obvious from the figures that the shapes of the density function s of type | generalized logistic
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distribution are quite different for different values of @. It is positively skewed for #>1 and
negatively skewed 0 < @ <1. Because of this reason, the parameter 8 can also be termed as the

skewness parameter. For 8 =1 the type | generalized logistic distribution coincides the standard
logistic distribution and is symmetric. If the random variable X follows type I generalized logistic
distribution, then the moment generating function of X is

% _(1- _x\~(0+1)  T(1-t)(0+t
Mx(t)zE(etX):eje s t)x(1+e X) (041 L0009
i r(0)
Hence, the mean variance and different moments can be easily obtained. The mean and variance
of X can be obtained as

E(X) =y (0) -y (1), Var(X)=y'(6)-v" (1),
where w(x):%lnl‘(x) and y/(x):%w(x), known as digamma and polygamma functions

respectively. Third and fourth order moment are w"(8)—w' (1) and w'"(60)—yw'"(1),

respectively. The coefficient of variation is . The skewness and kurtosis are

v(0)-y" (1)

21

vI(O) V") g
w'(0)-y'@):  W(O)-v'Q
This paper is devoted to obtain and compare Bayesian estimation based on different loss
functions. The rest of the paper is organized as follows. In Section 2, we derive posterior distribution
under informative and non-informative priors in the presence of left censoring. In Section 3, we
provide the Bayes estimator and corresponding posterior risks under different loss functions. Credible
intervals are discussed in Section 4. Method of Elicitation of the hyper-parameters via prior predictive
approach is discussed in Section 5. Posterior predictive distributions are derived in Section 6.
Simulation study is conducted in Section 7. Data analysis with graphical results is discussions in
Section 8. Section 9 presents the conclusion of the study.

respectively.

2. Likelihood Function and Posterior Distribution

Let X pys--s X () bE the last n—r order statistics from a random sample of size n following
Type | generalized logistic distribution. Then the joint probability density function of X, ,),.... X,
is given by

! r
f (X(rm""' Xiny» 6’) = :_!(F(Xum)) f (X(r+1) )f (X(m)

= n_: [{1+ eXP(_X(r+1) )}76 }f ﬁ Hexp(—xm ){1+ exp(_xm )}f(em |

r: i=r+l

oc exp[—re In { 1+ exp (=X )}] o exp{—(9+1)[§;lln { 1+exp(—x;, )}ﬂ
o« O exp{—e{iilln { 1+ exp(—xg )} +rin { 1+ exp (— X )}H ?3)
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CA exp[—&g(x(i))]

where R=n-r, and ((x(i)): zn: In{1+ exp(—Xg, )}+r|n{l+ exp(—X; )}

i=r+l

2.1. Prior and posterior distributions

Uniform prior reflects the lack of prior information and the Bayesian methodology may still
work. Uniform prior may be proper or improper. Even if uniform prior is improper, we can still have
a proper posterior. Equation (4) presents an improper prior while the posterior given in Equation (5)
is proper one having total area under the curve equals to unity. The uniform prior for @ is defined
as:

p(6)ck, 6>0. 4
The posterior distribution under the uniform prior for the left censored data is:

R+1
{§(X<i))} a EXp{‘% (Xm)}
I(R+1)
Jeffreys prior is perhaps the most widely used non-informative prior in Bayesian analysis. The only
requirement is a likelihood function from which the prior is then derived using Jeffreys’ rule, which

is to take the prior distribution to be the determinant of the square root of the Fisher information
matrix.

p(0x)= , 8 >0. (5)

p(@)oc%, 0>0. (6)

The posterior distribution under the Jeffreys prior for the left censored data is:

{‘:(Xm )}R a8 EXp{“% (Xm)}

0|x)= , 6 >0. 7
p(01x) ') ()

The informative prior for the parameter ¢ is assumed to be exponential distribution:
p(@)=ce*, ¢>0, 6>0. (8)

The posterior distribution under the assumption of exponential prior is:

orctul“ooa]ofersl )]

g1x)= , 6>0. 9
P(1x) F(R+1) &

The informative prior for the parameter 8 is assumed to be gamma distribution:
p(0)= b 6* '™, ab,6>0. (10)

I'(a)

The posterior distribution under the assumption of gamma prior for the left censored data is:

R

1x)= , 0>0. 11
PO1) [(R+a) a
The informative prior for the parameter & is assumed to be inverse Levy distribution:
el
p(0)=,/-—07" ), h 6>0 (12)

27
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The posterior distribution under the inverse Levy prior for the left censored data is:
1
h B2 rela h
{2 + g(x(i) )} 6 % exp {—9{2 + g(x(i) )H
F(R + 1)
2

3. Bayes Estimators and Posterior Risks under Different Loss Functions

This section enlightens the derivation of the Bayes Estimator (BE) and corresponding Posterior
Risks (PR) under different loss functions. The Bayes estimators are evaluated under Squared Error
Loss Function (SELF), Precautionary Loss Function (PLF), Weighted Squared Error Loss Function
(WSELF), Quasi-Quadratic Loss Function (QQLF), and Squared-Log Error Loss Function (SLELF).
The Bayes Estimator (BE) and corresponding Posterior Risks (PR) under different loss functions are
given in the following Table.

p(Ox)=

0>0. (13)

Table 1 Bayes estimator and posterior risks under different loss functions

Loss Function= L(H, é) Bayes Estimator Posterior Risk
SELF: (0-6) E(0]x) Var (6]x)
. M E(6" Ix) 2{ E(92|x)-E(9|x)}
6
(0-0) (E(01x))" E(01x)-{E(0]%)}"
WSELF: ~—
QQLF:(e‘Cé-—e‘”)2 i}m{E(e*0|xﬂ E(e-w)—{E(e-W)}2
SLELF: (Ind~Ino)’ exp{E(In¢ |x)} E{(In6|x))" ~{E(In@|x)}’

The Bayes estimators and posterior risks under uniform prior are:
- n-r+1 - n-r+l1
) p( SELF ) =

Oueir = m W’

- \/(n—r+1)(n—r+2) R \/(n—r+1)(n—r+2) (n-r+1)

Oorr = v P\ Gpr =2 - '
¢ (%) () ¢ (%) ¢(x)
- (n—r) ~ 1
Ousere =———— Pl Ouserr | =—F
T
A ;(x. ) (n-r+1) A g(x. ) (n-r+1) {(x. ) 2(n-r+1)
Ooor = LOG SELASLY . ' p(eQQLF ) - S| '
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éSLELF ZW’ p(éSLELF):{l//'(n—I’+l)}.
(i)

The Bayes estimators and posterior risks under the rest of priors can be obtained in a similar manner.

4. Bayes Credible Interval for the Left Censored Data

The Bayesian credible intervals for type Il left censored data under informative and non-
informative priors, as discussed by Saleem and Aslam (2009) are presented in the following. The
credible intervals for type Il left censored data under all priors are:

2 sorafis) L ot oy
2 (x,) 2(x) 2% xy)

2 2 2
X 2(n—r+1)(l—%) X 2(n—r+a)(%) <0 < 4 2(n—r+a)(l—%)

xponential <2{C+§(X(i))}, 2{b+§(x(i))} Gamma m

2

X 2(n-r+1/2)(1-%)
2{h/2+§(x(i))}

2
X 2(n-r+1)(%)
2§(x(i))
2
4 Z(n—r+1)(ﬂ)

2

2{”4()‘(0)}

<6

Uniform !

e.leffreys

<6

2
x 2(n-r+1/2)(%)

2

In—-Levy <

5. Elicitation

Bayesian analysis elicitation of opinion is a crucial step. It helps make it easy for us to understand
what the experts believe in and what their opinions are. In statistical inference the characteristics of
a certain predictive distribution proposed by an expert determine the hyperparameters of a prior
distribution.

In this article, we focus on a probability elicitation method known as prior predictive elicitation.
Predictive elicitation is a method for estimating hyperparameters of prior distributions by inverting
corresponding prior predictive distributions. Elicitation of hyperparameter from the prior p(g) is

conceptually difficult task because we first have to identify prior distribution and then its
hyperparameters. The prior predictive distribution is used for the elicitation of the hyperparameters
which is compared with the experts’ judgment about this distribution and then the hyperparameters
are chosen in such a way so as to make the judgment agree closely as possible with the given
distribution (reader desires more detail see Grimshaw et al. (2001), O’Hagan et al. (2006), Kadane et
al. (1996), Jenkinson (2005) and Leon et al. (2003)). According to Aslam (2003), the method of
assessment is to compare the predictive distribution with experts' assessment about this distribution
and then to choose the hyperparameters that make the assessment agree closely with the member of
the family. He discusses three important methods to elicit the hyperparameters: (i) Via the prior
predictive probabilities (ii) Via elicitation of the confidence levels (iii) Via the predictive mode and
confidence level. We will use the prior predictive approach by Aslam (2003).

5.1. Prior predictive distribution
The prior predictive distribution is:

p(y) = [ p(y16)p(6)do. (14)

The predictive distribution under exponential prior is:
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p(y) = _[Hexp (—y){1+exp (—y)}f(gﬂ) cexp{-6c}do. (15)
0
After some simplification it reduces as

_ cexp(—y){1+ exp(—y)}f1

p(y) , y>0. (16)
[c+ In{1+exp(—y)}]
The predictive distribution under gamma prior is:
p(y) =2 2xp(Y) {1+6Xp(_(i?l}) . y>0, (17)
[b+ In {l+ exp(—y)}]
p(y) = hew(y)iee(-) >0. (18)

2/ [2+ In {1+ exp(—y)}T2 |

By using the method of elicitation defined by Aslam (2003), we obtain the following hyper-
parameters ¢ = 0.398658, a = 14.67459, b = 3.85996 and h =0.004175.

6. Posterior Predictive Distribution

The predictive distribution contains the information about the independent future random
observation given preceding observations. The reader desire more details can see Bansal (2007). The
posterior predictive distribution of the future observation y = x, is

p(y|x) = [ p(@1x)p(y | 6)d6, (19)

where p(y):9exp(—y){1+exp(—y)}f(ml) is the future observation density and p(@|x) is the

posterior distribution obtained by incorporating the likelihood with the respective prior distributions.
The posterior predictive distribution of the future observation y = x_ ., under uniform prior is

(R +1){§(X<i>)}(m) exp(~y){1+exp(-y)} "
[{ (X(i) ) +In{1+ EXp(_y)}:|(R+2)

The posterior predictive distribution of the future observation y = x
(R) a1
(R){g(xm>} exp(—y){1+ exp(—y)}
(R+1)
[§<x(i))+ In{1+ exp(—y)}}

The posterior predictive distribution of the future observation y = x,, under exponential prior is

p(y|x)= > 0. (20)

under Jeffreys prior is

n+1

y > 0. (21)

p(ylx)=

(R +1){c+§(x(i))}(R+1) exp (=3 ){Lrexp(-y)}”

o >0 @)
[c + g’(x(i) ) +In {1+ exp(—y)}}

p(yIx)
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The posterior predictive distribution of the future observation y = x__, under gamma prior is

n+1
(R+a) 1
(R+a){b+§(x(i))} exp(—y){1+exp(—y)}
(R+a+1)
[b + cj(x(i))+ In{1+ exp(—y)}}
The posterior predictive distribution of the future observation y = x_, under In-Levy prior is

. k(T s+1/2
Z(_l) [kJ (s+3/2)
y(u+1) { }

k=0 c/2+g(x(i))+ y

p(ylx)= S @ . ,

{0/2 + g(x(i) )}(Sﬂ/z)

p(ylx)= . y>o0. (23)

y > 0. (24)

7. Simulation Study

This section shows how simulation can be helpful and illuminating way to approach problems in
Bayesian analysis. Bayesian problems of updating estimates can be handled easily and straight
forwardly with simulation. Since we can express the distribution function of the generalized logistic
distribution as well as its inverse in closed form, the inversion method of simulation is straightforward
to implement. The study has been carried out for different values of (n,r)using #<2.5and 5.
Censoring rates are assumed to be 20%. Sample size is varied to observe the effect of small and large
samples on the estimators. Changes in the estimators and their risks have been determined when
changing the loss function and the prior distribution of # while keeping the sample size fixed. All
these results are based on 5,000 repetitions. Tables 2 — 17 gives the estimated value of the parameter,
posterior risks (PR) and 95% confidence limits (LCL & UCL) for the parameter. The results are
summarized in the following tables. The first entry is the simulated Bayes estimator. The second entry
is the simulate posterior risk.

Table 2 Bayes Estimates and the corresponding posterior risks under SELF

0y Uniform Jeffreys Exponential
' 0=25 0=5 0=25 6=5 6=25 6=5
30,6 2.68033 5.33681 2.56662 5.13278 2.58650 4.89382
(0.294739) (1.16860)  (0.281384) (1.12327)  (0.274677)  (0.978552)
60, 12 2.57973 5.16179 2.53812 5.10567 2.53024 4.92549
(0.137739)  (0.550064)  (0.135883)  (0.549801) (0.132474)  (0.500662)
90, 18 2.55791 5.12951 2.52782 5.06304 2.52777 4.96577
(0.090404) (0.363487)  (0.089456)  (0.344648)  (0.088270) (0.34055)
120, 24 2.53853 5.07669 2.51627 5.03331 2.51245 4.97006
' (0.066877)  (0.267273)  (0.066351)  (0.265573)  (0.065469) (0.25618)
150. 30 2.51844 5.06797 2.50929 5.02912 2.50663 4.98969

(0.052675)  (0.21332)  (0.052027)  (0.211764)  (0.052181)  (0.206795)
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Table 3 Bayes estimates and the corresponding posterior risks under PLF

0y Uniform Jeffreys Exponential
' 0=25 6=5 0=25 6=5 0=25 6=5
30, 6 2.71984 5.45424 2.61727 5.21259 2.61915 5.05590
(0.105621)  (0.211835)  (0.105459)  (0.210631)  (0.101724) (0.196364)
60, 12 2.62469 5.27570 2.55022 5.19151 2.55711 5.03876
(0.052759)  (0.106047)  (0.052314)  (0.104444)  (0.051400) (0.101284)
90, 18 2.58408 5.18152 2.52382 5.07511 2.52528 5.03819
(0.035039)  (0.070259)  (0.034692) (0.069762)  (0.034242)  (0.068315)
120. 24 2.54835 5.13372 2.51621 5.04698 2.51956 5.01761
' (0.026070)  (0.052519)  (0.026008)  (0.052166)  (0.025776)  (0.051331)
150. 30 2.53032 5.06359 2.51008 5.01676 2.51161 5.00815
’ (0.020783)  (0.041590)  (0.020780)  (0.041547)  (0.020629)  (0.041135)

Table 4 Bayes estimates and the corresponding posterior risks under WSELF

0y Uniform Jeffreys Exponential
' 0=25 6=5 0=25 6=5 0=25 6=5
30,6 2.57694 5.21852 2.43025 4.86256 2.46226 4.72470
(0.107372)  (0.217438)  (0.105663)  (0.211416)  (0.102594)  (0.196862)
60, 12 2.53358 5.10645 2.48527 4.92696 2.47465 4.81522
(0.052783)  (0.106384)  (0.052878)  (0.104829)  (0.051551)  (0.100317)
90, 18 2.52611 5.06052 2.49103 495018 2.47536 491283
(0.035085)  (0.070285)  (0.035085)  (0.069721)  (0.034380) (0.068234)
120 24 2.51301 5.02666 2.49397 4.99753 2.49320 4.93399
' (0.026177)  (0.052361) (0.026252)  (0.052606)  (0.025971)  (0.051396)
150 30 2.50370 5.01409 2.49866 5.00320 2.49482 4.94446
' (0.020864)  (0.041784)  (0.020997)  (0.042044)  (0.020790)  (0.041204)

Table 5 Bayes Estimates and the corresponding posterior risks under QQLF

Uniform Jeffreys Exponential
mr 0=25 0=5 0=25 0=5 0=25 0=5
30,6 2.55257 4.82952 2.43703 4.62747 2.41163 4.44132
(0.001736)  (0.000117) (0.002043)  (0.000157)  (0.002005)  (0.000179)
60, 12 2.53239 4.93617 2.47281 4.79326 2.46107 4.71617
(0.000881)  (0.000040)  (0.000950)  (0.000049)  (0.000941)  (0.000053)
90, 18 2.52018 4.93974 2.49487 4.90322 2.48216 4.79527
(0.000575)  (0.000023)  (0.000608)  (0.000024)  (0.000608)  (0.000028)
120 24 2.51229 4.95924 2.49567 491882 2.48561 4.86820
' (0.000439)  (0.000016)  (0.000453)  (0.000017)  (0.000453)  (0.000018)
150, 30 2.50994 497115 2.50503 493258 2.49119 4.88738

(0.000351)  (0.000012)  (0.000356)  (0.000013)  (0.000359  (0.000013)
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Table 6 Bayes estimates and the corresponding posterior risks under SLELF

0y Uniform Jeffreys Exponential
' 0=25 6=5 0=25 6=5 0=25 6=5
30,6 2.64073 5.22982 2.53572 5.08856 2.53144 4.81258
(0.040811)  (0.040811) (0.042547)  (0.042547)  (0.040811)  (0.040811)
60, 12 2.55853 5.11589 2.52731 5.04852 2.51374 4.91917
(0.020618)  (0.020618)  (0.021052)  (0.021052)  (0.020618)  (0.020618)
90, 18 2.54426 5.07246 2.51544 5.02094 2.50443 4.93295
(0.013793)  (0.013793)  (0.013986)  (0.013985)  (0.013793)  (0.013793)
120. 24 2.52333 5.06746 2.50648 5.01515 2.50406 4.95648
' (0.010363)  (0.010363)  (0.010471) (0.010471) (0.010363) (0.010363)
150 30 2.51737 5.05222 2.49698 5.00952 2.49488 4.98616
' (0.008299)  (0.008299)  (0.008368)  (0.008368) (0.008299)  (0.008299)

Table 7 Bayes estimates and the corresponding posterior risks under gamma Prior

SELF PLF WSELF

mr 0=-25 9=5 0=-25 0=5 0=-25 0=5
30,6 2.75648 4.26790 2.79646 4.33131 2.69038 4.14008
(0.209767)  (0.500624)  (0.074726) (0.115739) (0.075415) (0.116051)
60, 12 2.65186 4.50814 2.67247 4.57392 2.61160 4.46962
(0.116875)  (0.336938)  (0.043509)  (0.074465)  (0.043764)  (0.074899)
90, 18 2.60726 4.644880 2.62874 4.68128 2.58136 4.60071
(0.080831)  (0.256100)  (0.030773)  (0.054801) (0.03085)  (0.054983)
120, 24 2.59638 4.74280 2.59909 4.76320 2.55704 4.69345
' (0.062351)  (0.207904)  (0.023753)  (0.043530)  (0.023748)  (0.043589)
150. 30 2.56876 4.79671 2.56235 4.81636 2.54475 4.73286
' (0.049956)  (0.174049)  (0.019253) (0.036098)  (0.019326)  (0.035944)

Table 8 Bayes estimates and the corresponding posterior risks under inverse Levy prior

SELF PLF WSELF

nr 0-25 0=5 0-25 0=5 0-25 0=5
30,6 2.62816 5.23870 266574 533688 247008 4.96032
(0.289184)  (1.15059) (0.105252) (0.211382) (0.105110) (0.211078)

60, 12 255766 5.12329 2.59017 5.24265 248816  4.97960
(0.13663)  (0.54808) (0.052594)  (0.106452)  (0.052593)  (0.104834)

90, 18 254785 5.08249 254467 511444 249057  4.98348
(0.000235)  (0.359609)  (0.034740)  (0.069823)  (0.034833)  (0.069699)

120 24 2.52797 5.06450 2.52627 5.00098 249689  4.99233
' (0.066641)  (0.267473)  (0.025977) (0.052167) (0.026146)  (0.052276)
150,50 251758 5.02683 2.52227 5.05723 250265  5.02147
' (0.052877)  (0.210726)  (0.020802)  (0.041709)  (0.020943)  (0.042021)
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Table 9 Bayes estimates and the corresponding posterior risks under gamma prior

o QQLF SLELF
' 0=25 0=5 0=25 0=5
30,6 2.81007 2.26061 2.73732 4.20357
(0.000803) (0.000118) (0.027642) (0.027642)

60, 12 2.66023 4.51028 2.63967 4.50476
(0.000579) (0.000048) (0.016618) (0.016618)

90, 18 2.63309 4.62996 2.58029 4.63679
(0.000428) (0.000028) (0.011879) (0.011879)

190, 24 2.60891 4.71788 255821 4.72034
’ (0.000342) (0.000019) (0.009244) (0.009244)
150,30 2.57598 4.77845 2.54761 4.76712
’ (0.000291) (0.000014) (0.007566) (0.007566)

Table 10 Bayes estimates and the corresponding posterior risks under inverse Levy prior

o QQLF SLELF
' 6=25 0=5 =25 0=5
30,6 2.48208 4.67539 2.56837 5.18622
(0.001916) (0.000144) (0.041661) (0.041661)

60, 12 2.48882 4.86899 2.53024 5.08555
(0.000924) (0.000043) (0.020833) (0.020833)

90, 18 2.49015 4.93031 252044 5.04281
(0.000603) (0.000024) (0.013889) (0.013889)

120,24 2.49475 4.95492 251793 5.01487
’ (0.000451) (0.000016) (0.010417) (0.010417)
150,30 250722 4.96276 2.50284 5.01054
’ (0.000354) (0.000012) (0.008333) (0.008333)

Table 11 The lower (LL), the upper (UL) and the width of the 95% CI under uniform prior
6=25 6=5

nr Width Width
LL UL LL UL

30,6 1.68321 3.71521 2.03200 3.34187 7.37629 4.03442

60, 12 1.89680 3.33000 1.43320 3.79685 6.66572 2.86887

90, 16 1.98241 3.14136 1.15895 3.98359 6.31245 2.32886

120, 24 2.04919 3.05403 1.00484 4.07764 6.07715 1.99951

150, 30 2.09915 3.00001 0.90086 4.16553 5.95318 1.78765

Table 12 The lower (LL), the upper (UL) and the width of the 95% CI under Jeffreys prior

nr 0=25 Width 0=5 Width
LL uL LL UL

30, 6 159982 3.59049 1.99067 3.17633 7.12866 3.95233

60, 12 1.85185 3.27030 1.41845 3.70687 6.54621 2.83934

90, 16 1.95176 3.10272 1.15096 3.92200 6.23481 231281

120, 24 2.02574 3.02538 0.99964 4.03097 6.02013 1.98916

150, 30 2.08011 297723 0.89712 412775 5.90798 1.78023
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Table 13 The lower (LL), the upper (UL) and the width of the 95% CI under exponential prior

nr =25 Width f=5 Width
LL UL LL UL

30,6 161617 3.56725 1.95108 3.08762 6.81500 3.72747

60, 12 1.85804  3.26196 1.40392 3.64467 6.39855 275388

90, 16 1.95540 3.09856 1.14316 3.87602 6.14199 2.26597

120, 24 2.02813 3.02264  0.99451 3.99508 5.95410 1.95902

150, 30 2.08180 2.97521 089341  4.09775 5.85631 1.75856

Table 14 The lower (LL), the upper (UL) and the width of the 95% CI under gamma prior

nr 0=25 Width 0=5 Width
LL UL LL UL

30,6 1.91352 3.67144 1.75792 2.96267 5.68442 272175

60, 12 2.01855 3.34615 1.32730 3.45894 5.73304 2.27410

90, 16 2.06589 3.16703 110114  3.70963 5.68689 1.97726

120, 24 211157 3.07808  0.96651 3.85326 5.61698 1.76372

150, 30 2.14858 3.02151 0.87293 3.97167 5.58528 1.61361

Table 15 The lower (LL), the upper (UL) and the width of the 95% CI under In-Levy prior

nr 0=25 Width 0=5 Width
LL uL LL uL

30,6 164110  3.65211 201101 325759  7.24946  3.99187

60, 12 1.87411 3.29980 142569  3.75102 6.60454  2.85352

90, 16 1.96694  3.12181 115487  3.95221 627273  2.32052

120, 24 203735  3.03954 1.00219  4.05386  6.04799 1.99413

150, 30 208954 298849  0.89895  4.14628  5.93007 1.78379

8. Comparison of Bayes Estimators and Posterior Risks for Real Life Data Set

In this section we present the analysis of one real data set for illustrative purposes. It is a strength
data originally considered by Badar and Priest (1982). The data represent the strength measured in
GPA, for single carbon fibers and impregnated 1000-carbon fiber tows. The data are presented below.

Data Set: 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518,
2.522, 2.525, 2,532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917,
2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264,
3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852,
3.871, 3.886, 3.971, 4.024, 4.027.
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Figure 3 Fitted density function and the histogram of the data

The mean, variance, skewness and kurtosis are 3.461, 0.3855, 0.6328486 and 3.286345,
respectively. From the chi-squared value 6.524 and p-value 0.8362, it is observed that data follow
the Type | generalized logistic distribution. The sample characteristics required to evaluate the
estimates of shape parameter of the generalized logistic distribution are as follows:

n=60, r =12 and Z In {1+ exp(—x(i))} =2.18090 and In {1+ exp(—x(m))} =0.077536.

i=r+l

Table 16 Bayes estimates and the corresponding posterior risks under the real data set

Prior SELF PLF WSELF
BEs PRs BEs PRs BEs PRs
Uniform 15.74890 5.06178 15.90880 0.31978 15.4275 0.32141
Jeffreys 15.42750 4.95848 15.58740 0.31974 15.1061 0.32141
Exponential 13.96020 3.97726 15.88750 0.31935 13.6753 0.28490
Gamma 8.70349 1.24848 8.774920 0.14286 8.56005 0.14345

Inverse-Levy 15.57770 5.00341 15.73750 0.31955 15.2565 0.32119

Table 17 Bayes estimates and the corresponding posterior risks under the real data set

. QQLF SLELF

Prior BEs PRs BEs PRs
Uniform 13.6561 2.59269x10 - 155885 0.020618
Jeffreys 13.3774 4.24510x10" 152671  0.0210519
Exponential 12.2834 2.31861x10™ 13.8179 0.0206180
Gamma 8.13319 1.39517x107 8.63187  0.0166179
Inverse-Levy 13.5089 3.35957 x10° 1 154174  0.0208326

8.1. Graphical results of posterior distribution for real life data set

The below graphs reveal that posterior distributions under different informative and non
informative priors. Figure 1 depicts posterior densities under uniform and Jeffreys priors. It is obvious
that both the priors yield the approximately the identical posterior inferences. Figure 2 shows that the
posterior densities under exponential, gamma and inverse Levy priors are not identical. However,
gamma prior may be a better a choice because of its two hyper parameters which ensure better fit.
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Figure 4 Posterior densities under uniform and Jeffreys priors
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Figure 5 Posterior densities under exponential, gamma and inverse Levy priors

9. Conclusions

The findings of the simulation study are pretty interesting. The parameter has been under-
estimated for majority of the cases. The extent of under estimation is more severe under exponential
WSELF. To be more specific, larger degrees of parameter results in bigger sizes of underestimation.
Then extent of this over or under estimation is directly proportional to parametric value and inversely
proportional to the sample size. Further, the increase in sample size reduces the posterior risks of 6.
The performance of squared-log error loss function is independent of choice of parametric value.
Similarly, the increased true parametric values impose a negative impact on the convergence of the
estimates under all priors. However, it can be observed that by increasing the sample size, the
convergence of the estimated values toward the true parametric values tend to increase for each case.
On the other hand, the amounts of posterior risks, based on each prior and loss function tend to
decrease by increasing the sample size. It indicates that the estimators are consistent.

In comparison of non-informative priors, the Jeffreys prior provides the better estimates as the
corresponding risks are least under said loss functions except QQLF. While the uniform and the
exponential priors are equally efficient under SLELF, therefore they produce more efficient estimates
as compared to the other informative priors. It can also be observed that performance of estimates
under informative priors is better than those under non-informative priors and the Bayes estimates
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may turn out to be most efficient under gamma prior. This simply indicates the use of prior
information that makes a different in terms of gain in precision.

The Credible intervals are in accordance with the point estimates, that is, the width of credible
interval is inversely proportional to sample size. From the Tables 11-15, appended above, reveal that
the effect of the prior information in the form of narrower width of interval. The Credible interval
assuming gamma prior is much narrower than the credible intervals assuming informative and non-
informative priors. The findings of the real life example are in accordance with the simulation study.
Hence for Bayesian analysis of the parameter of the generalized logistic distribution, the use of
gamma prior under type Il left censored samples can be preferred. The study can further be extended
by considering two parametric versions of the distribution under variety of circumstances.
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