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Abstract  

In this paper, given a left type II censored sample from a generalized logistic distribution, we 
obtain the Bayes estimators and corresponding risks of the unknown parameter under different 
asymmetric loss functions, assuming different informative and non-informative priors. Elicitation of 
hyperparameter through prior predictive approach is also discussed. Also we derive the expression 
for posterior predictive distributions and the credible Intervals. As an illustration, comparisons of 
these estimators are made through simulation study as well as real life data example along graphical 
results. The findings of the study indicate that the Bayes estimation under the gamma prior can be 
preferred. 
______________________________ 
Keywords: Left censoring, loss functions, posterior predictive distributions, credible intervals. 
 
1. Introduction 

Balakrishnan and Leung (1988) defined the type I generalized logistic distribution (Type I GLD) 
as one of the three generalized forms of the standard logistic distribution. Type I generalized logistic 
distribution has got additional attention in estimating its parameters for practical usage (see 
Balakrishnan (1992)). The skew logistic distribution with the skewness parameter θ  has been studied 
by many others (see for example, Wahed and Ali (2001), Gupta et al. (2002), Nadrajah and Kotz 
(2006 and 2007), Nadrajah (2009), Gupta and Kundu (2010), and Chakraborty et al. (2012)). The 
cumulative distribution function (cdf), and the probability density function (pdf) of the type I 
generalized logistic distribution with shape or skewness parameter 0θ >  are respectively as follows, 
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The use of a Bayesian approach allows both sample and prior information to be incorporated into 
the statistical analysis, which will improve the quality of the inferences and permit a reduction in 
sample size. The decision-theoretic viewpoint takes into account additional information concerning 
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the possible consequences of our decisions (quantified by a loss function). The main aim of this is to 
consider the statistical analysis of the unknown parameters when the data are left censored from the 
generalized logistic distribution.  There is a widespread application and use of left-censoring or left-
censored data in survival analysis and reliability theory. For example, in medical studies patients are 
subject to regular examinations. Discovery of a condition only tells us that the onset of sickness fell 
in the period since the previous examination and nothing about the exact date of the attack. Thus the 
time elapsed since onset has been left censored. Similarly, we have to handle left-censored data when 
estimating functions of exact policy duration without knowing the exact date of policy entry; or when 
estimating functions of exact age without knowing the exact date of birth. A study on the “Patterns 
of Health Insurance Coverage among Rural and Urban Children” (Coburn, McBride and Ziller 2001) 
faces this problem due to the incidence of a higher proportion of rural children whose spells were 
“left censored” in the sample (i.e., those children who entered the sample uninsured), and who 
remained uninsured throughout the sample. A Job duration might be incomplete because the 
beginning of the job spells is not observed, which is an incidence of left censoring (Bagger 2005). 

 

 
Figure 1 Density functions of type I generalized logistic distribution for different values of θ  

 

 
Figure 2 Density functions of type I generalized logistic distribution for different values of θ  

under left type-II censoring 
 

The shapes of the density functions of type I generalized logistic distribution for different values 
of θ  are given in Figure 1 and shapes of the density functions of type I generalized logistic 
distribution for different values of θ  under left type-II censoring are presented in Figure 2. It is 
obvious from the figures that the shapes of the density function s of type I generalized logistic 
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distribution are quite different for different values of .θ  It is positively skewed for 1θ >  and 
negatively skewed 0 1.θ< <  Because of this reason, the parameter θ  can also be termed as the 
skewness parameter. For 1θ =  the type I generalized logistic distribution coincides the standard 
logistic distribution and is symmetric. If the random variable X  follows type I generalized logistic 
distribution, then the moment generating function of X  is 
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Hence, the mean variance and different moments can be easily obtained. The mean and variance 
of X  can be obtained as 
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This paper is devoted to obtain and compare Bayesian estimation based on different loss 
functions. The rest of the paper is organized as follows.  In Section 2, we derive posterior distribution 
under informative and non-informative priors in the presence of left censoring.  In Section 3, we 
provide the Bayes estimator and corresponding posterior risks under different loss functions. Credible 
intervals are discussed in Section 4. Method of Elicitation of the hyper-parameters via prior predictive 
approach is discussed in Section 5. Posterior predictive distributions are derived in Section 6. 
Simulation study is conducted in Section 7. Data analysis with graphical results is discussions in 
Section 8. Section 9 presents the conclusion of the study. 

 
2. Likelihood Function and Posterior Distribution 

Let ( 1) ( ),...,r nX X+  be the last n r−  order statistics from a random sample of size n  following 

Type I generalized logistic distribution. Then the joint probability density function of ( 1) ( ),...,r nX X+  

is given by 
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2.1.  Prior and posterior distributions 
 Uniform prior reflects the lack of prior information and the Bayesian methodology may still 
work. Uniform prior may be proper or improper. Even if uniform prior is improper, we can still have 
a proper posterior. Equation (4) presents an improper prior while the posterior given in Equation (5) 
is proper one having total area under the curve equals to unity.  The uniform prior for θ  is defined 
as: 
  ( ) , 0.p kθ θ∝ >  (4) 

The posterior distribution under the uniform prior for the left censored data is: 
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Jeffreys prior is perhaps the most widely used non-informative prior in Bayesian analysis. The only 
requirement is a likelihood function from which the prior is then derived using Jeffreys’ rule, which 
is to take the prior distribution to be the determinant of the square root of the Fisher information 
matrix. 

  ( ) 1 , 0.p θ θ
θ
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The posterior distribution under the Jeffreys prior for the left censored data is:  
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The informative prior for the parameter θ  is assumed to be exponential distribution: 
  ( ) ,cp ce θθ −=    0,c >  0.θ >  (8) 
The posterior distribution under the assumption of exponential prior is:   
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The informative prior for the parameter θ  is assumed to be gamma distribution: 
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The posterior distribution under the assumption of gamma prior for the left censored data is: 
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The informative prior for the parameter θ  is assumed to be inverse Levy distribution: 

  ( )
1
2 2 ,

2

hhp e
θ

θ θ
π

 − −  =     ,  0.h θ >  (12) 



Tabassum Naz Sindhu et al. 185 

The posterior distribution under the inverse Levy prior for the left censored data is:   
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3. Bayes Estimators and Posterior Risks under Different Loss Functions 
 This section enlightens the derivation of the Bayes Estimator (BE) and corresponding Posterior 
Risks (PR) under different loss functions. The Bayes estimators are evaluated under Squared Error 
Loss Function (SELF), Precautionary Loss Function (PLF), Weighted Squared Error Loss Function 
(WSELF), Quasi-Quadratic Loss Function (QQLF), and Squared-Log Error Loss Function (SLELF). 
The Bayes Estimator (BE) and corresponding Posterior Risks (PR) under different loss functions are 
given in the following Table. 
 

Table 1 Bayes estimator and posterior risks under different loss functions 
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The Bayes estimators and posterior risks under uniform prior are: 
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The Bayes estimators and posterior risks under the rest of priors can be obtained in a similar manner. 
 
4. Bayes Credible Interval for the Left Censored Data 
 The Bayesian credible intervals for type II left censored data under informative and non-
informative priors, as discussed by Saleem and Aslam (2009) are presented in the following. The 
credible intervals for type II left censored data under all priors are: 
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5. Elicitation 
 Bayesian analysis elicitation of opinion is a crucial step. It helps make it easy for us to understand 
what the experts believe in and what their opinions are. In statistical inference the characteristics of 
a certain predictive distribution proposed by an expert determine the hyperparameters of a prior 
distribution. 
 In this article, we focus on a probability elicitation method known as prior predictive elicitation. 
Predictive elicitation is a method for estimating hyperparameters of prior distributions by inverting 
corresponding prior predictive distributions. Elicitation of hyperparameter from the prior ( )p θ  is 

conceptually difficult task because we first have to identify prior distribution and then its 
hyperparameters. The prior predictive distribution is used for the elicitation of the hyperparameters 
which is compared with the experts’ judgment about this distribution and then the hyperparameters 
are chosen in such a way so as to make the judgment agree closely as possible with the given 
distribution (reader desires more detail see Grimshaw et al. (2001), O’Hagan et al. (2006), Kadane et 
al. (1996), Jenkinson (2005) and Leon et al. (2003)). According to Aslam (2003), the method of 
assessment is to compare the predictive distribution with experts' assessment about this distribution 
and then to choose the hyperparameters that make the assessment agree closely with the member of 
the family. He discusses three important methods to elicit the hyperparameters: (i) Via the prior 
predictive probabilities (ii) Via elicitation of the confidence levels (iii) Via the predictive mode and 
confidence level. We will use the prior predictive approach by Aslam (2003). 
 
5.1.  Prior predictive distribution 
 The prior predictive distribution is: 
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The predictive distribution under exponential prior is: 
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After some simplification it reduces as 
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The predictive distribution under gamma prior is: 
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By using the method of elicitation defined by Aslam (2003), we obtain the following hyper-
parameters c = 0.398658, a = 14.67459, b = 3.85996 and h =0.004175. 
 
6. Posterior Predictive Distribution 
 The predictive distribution contains the information about the independent future random 
observation given preceding observations. The reader desire more details can see Bansal (2007). The 
posterior predictive distribution of the future observation 1ny x +=  is  
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The posterior predictive distribution of the future observation 1ny x +=  under Jeffreys prior is  
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The posterior predictive distribution of the future observation 1ny x +=  under exponential prior is  
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The posterior predictive distribution of the future observation 1ny x +=  under gamma prior is  
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The posterior predictive distribution of the future observation 1ny x +=  under In-Levy prior is  
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7. Simulation Study 
 This section shows how simulation can be helpful and illuminating way to approach problems in 
Bayesian analysis. Bayesian problems of updating estimates can be handled easily and straight 
forwardly with simulation. Since we can express the distribution function of the generalized logistic 
distribution as well as its inverse in closed form, the inversion method of simulation is straightforward 
to implement. The study has been carried out for different values of ( ),n r using 2.5 and 5.θ ∈  

Censoring rates are assumed to be 20%. Sample size is varied to observe the effect of small and large 
samples on the estimators. Changes in the estimators and their risks have been determined when 
changing the loss function and the prior distribution of θ  while keeping the sample size fixed. All 
these results are based on 5,000 repetitions. Tables 2 – 17 gives the estimated value of the parameter, 
posterior risks (PR) and 95% confidence limits (LCL & UCL) for the parameter. The results are 
summarized in the following tables. The first entry is the simulated Bayes estimator. The second entry 
is the simulate posterior risk. 
 

Table 2 Bayes Estimates and the corresponding posterior risks under SELF 

n, r 
Uniform Jeffreys Exponential 
2.5θ =  5θ =  2.5θ =  5θ =  2.5θ =  5θ =  

30, 6 
 

2.68033 5.33681 2.56662 5.13278 2.58650 4.89382 
(0.294739) (1.16860) (0.281384) (1.12327) (0.274677) (0.978552) 

60, 12 
 

2.57973 5.16179 2.53812 5.10567 2.53024 4.92549 
(0.137739) (0.550064) (0.135883) (0.549801) (0.132474) (0.500662) 

90, 18 
 

2.55791 5.12951 2.52782 5.06304 2.52777 4.96577 
(0.090404) (0.363487) (0.089456) (0.344648) (0.088270) (0.34055) 

120, 24 
2.53853 5.07669 2.51627 5.03331 2.51245 4.97006 

(0.066877) (0.267273) (0.066351) (0.265573) (0.065469) (0.25618) 

150, 30 
2.51844 5.06797 2.50929 5.02912 2.50663 4.98969 

(0.052675) (0.21332) (0.052027) (0.211764) (0.052181) (0.206795) 
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Table 3 Bayes estimates and the corresponding posterior risks under PLF 

n, r 
Uniform Jeffreys Exponential 
2.5θ =  5θ =  2.5θ =  5θ =  2.5θ =  5θ =  

30, 6 
 

2.71984 5.45424 2.61727 5.21259 2.61915 5.05590 
(0.105621) (0.211835) (0.105459) (0.210631) (0.101724) (0.196364) 

60, 12 
 

2.62469 5.27570 2.55022 5.19151 2.55711 5.03876 
(0.052759) (0.106047) (0.052314) (0.104444) (0.051400) (0.101284) 

90, 18 
 

2.58408 5.18152 2.52382 5.07511 2.52528 5.03819 
(0.035039) (0.070259) (0.034692) (0.069762) (0.034242) (0.068315) 

120, 24 
2.54835 5.13372 2.51621 5.04698 2.51956 5.01761 

(0.026070) (0.052519) (0.026008) (0.052166) (0.025776) (0.051331) 

150, 30 
2.53032 5.06359 2.51008 5.01676 2.51161 5.00815 

(0.020783) (0.041590) (0.020780) (0.041547) (0.020629) (0.041135) 
 

Table 4 Bayes estimates and the corresponding posterior risks under WSELF 

n, r 
Uniform Jeffreys Exponential 
2.5θ =  5θ =  2.5θ =  5θ =  2.5θ =  5θ =  

30, 6 
 

2.57694 5.21852 2.43025 4.86256 2.46226 4.72470 
(0.107372) (0.217438) (0.105663) (0.211416) (0.102594) (0.196862) 

60, 12 
 

2.53358 5.10645 2.48527 4.92696 2.47465 4.81522 
(0.052783) (0.106384) (0.052878) (0.104829) (0.051551) (0.100317) 

90, 18 
 

2.52611 5.06052 2.49103 4.95018 2.47536 4.91283 
(0.035085) (0.070285) (0.035085) (0.069721) (0.034380) (0.068234) 

120, 24 
2.51301 5.02666 2.49397 4.99753 2.49320 4.93399 

(0.026177) (0.052361) (0.026252) (0.052606) (0.025971) (0.051396) 

150, 30 
2.50370 5.01409 2.49866 5.00320 2.49482 4.94446 

(0.020864) (0.041784) (0.020997) (0.042044) (0.020790) (0.041204) 
 

Table 5 Bayes Estimates and the corresponding posterior risks under QQLF 

n, r 
Uniform Jeffreys Exponential 
2.5θ =  5θ =  2.5θ =  5θ =  2.5θ =  5θ =  

30, 6 
 

2.55257 4.82952 2.43703 4.62747 2.41163 4.44132 
(0.001736) (0.000117) (0.002043) (0.000157) (0.002005) (0.000179) 

60, 12 
 

2.53239 4.93617 2.47281 4.79326 2.46107 4.71617 
(0.000881) (0.000040) (0.000950) (0.000049) (0.000941) (0.000053) 

90, 18 
 

2.52018 4.93974 2.49487 4.90322 2.48216 4.79527 
(0.000575) (0.000023) (0.000608) (0.000024) (0.000608) (0.000028) 

120, 24 
2.51229 4.95924 2.49567 4.91882 2.48561 4.86820 

(0.000439) (0.000016) (0.000453) (0.000017) (0.000453) (0.000018) 

150, 30 
2.50994 4.97115 2.50503 4.93258 2.49119 4.88738 

(0.000351) (0.000012) (0.000356) (0.000013) (0.000359 (0.000013) 
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Table 6 Bayes estimates and the corresponding posterior risks under SLELF 

n, r 
Uniform Jeffreys Exponential 
2.5θ =  5θ =  2.5θ =  5θ =  2.5θ =  5θ =  

30, 6 
 

2.64073 5.22982 2.53572 5.08856 2.53144 4.81258 
(0.040811) (0.040811) (0.042547) (0.042547) (0.040811) (0.040811) 

60, 12 
 

2.55853 5.11589 2.52731 5.04852 2.51374 4.91917 
(0.020618) (0.020618) (0.021052) (0.021052) (0.020618) (0.020618) 

90, 18 
 

2.54426 5.07246 2.51544 5.02094 2.50443 4.93295 
(0.013793) (0.013793) (0.013986) (0.013985) (0.013793) (0.013793) 

120, 24 
2.52333 5.06746 2.50648 5.01515 2.50406 4.95648 

(0.010363) (0.010363) (0.010471) (0.010471) (0.010363) (0.010363) 

150, 30 
2.51737 5.05222 2.49698 5.00952 2.49488 4.98616 

(0.008299) (0.008299) (0.008368) (0.008368) (0.008299) (0.008299) 
 

Table 7 Bayes estimates and the corresponding posterior risks under gamma Prior 

n, r 
SELF PLF WSELF 

2.5θ =  5θ =  2.5θ =  5θ =  2.5θ =  5θ =  
30, 6 

 
2.75648 4.26790 2.79646 4.33131 2.69038 4.14008 

(0.209767) (0.500624) (0.074726) (0.115739) (0.075415) (0.116051) 
60, 12 

 
2.65186 4.50814 2.67247 4.57392 2.61160 4.46962 

(0.116875) (0.336938) (0.043509) (0.074465) (0.043764) (0.074899) 
90, 18 

 
2.60726 4.644880 2.62874 4.68128 2.58136 4.60071 

(0.080831) (0.256100) (0.030773) (0.054801) (0.03085) (0.054983) 

120, 24 
2.59638 4.74280 2.59909 4.76320 2.55704 4.69345 

(0.062351) (0.207904) (0.023753) (0.043530) (0.023748) (0.043589) 

150, 30 
2.56876 4.79671 2.56235 4.81636 2.54475 4.73286 

(0.049956) (0.174049) (0.019253) (0.036098) (0.019326) (0.035944) 
 

Table 8 Bayes estimates and the corresponding posterior risks under inverse Levy prior 

n, r 
SELF PLF WSELF 

2.5θ =  5θ =  2.5θ =  5θ =  2.5θ =  5θ =  
30, 6 

 
2.62816 5.23870 2.66574 5.33688 2.47008 4.96032 

(0.289184) (1.15059) (0.105252) (0.211382) (0.105110) (0.211078) 
60, 12 

 
2.55766 5.12329 2.59017 5.24265 2.48816 4.97960 

(0.13663) (0.54808) (0.052594) (0.106452) (0.052593) (0.104834) 
90, 18 

 
2.54785 5.08249 2.54467 5.11444 2.49057 4.98348 

(0.090235) (0.359609) (0.034740) (0.069823) (0.034833) (0.069699) 

120, 24 
2.52797 5.06450 2.52627 5.09098 2.49689 4.99233 

(0.066641) (0.267473) (0.025977) (0.052167) (0.026146) (0.052276) 

150, 30 
2.51758 5.02683 2.52227 5.05723 2.50265 5.02147 

(0.052877) (0.210726) (0.020802) (0.041709) (0.020943) (0.042021) 
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Table 9 Bayes estimates and the corresponding posterior risks under gamma prior 

n, r 
QQLF SLELF 

2.5θ =  5θ =  2.5θ =  5θ =  
30, 6 

 
2.81007 2.26061 2.73732 4.20357 

(0.000803) (0.000118) (0.027642) (0.027642) 
60, 12 

 
2.66023 4.51028 2.63967 4.50476 

(0.000579) (0.000048) (0.016618) (0.016618) 
90, 18 

 
2.63309 4.62996 2.58029 4.63679 

(0.000428) (0.000028) (0.011879) (0.011879) 

120, 24 
2.60891 4.71788 2.55821 4.72034 

(0.000342) (0.000019) (0.009244) (0.009244) 

150, 30 
2.57598 4.77845 2.54761 4.76712 

(0.000291) (0.000014) (0.007566) (0.007566) 
 

Table 10 Bayes estimates and the corresponding posterior risks under inverse Levy prior 

n, r 
QQLF SLELF 

2.5θ =  5θ =  2.5θ =  5θ =  
30, 6 

 
2.48208 4.67539 2.56837 5.18622 

(0.001916) (0.000144) (0.041661) (0.041661) 
60, 12 

 
2.48882 4.86899 2.53024 5.08555 

(0.000924) (0.000043) (0.020833) (0.020833) 
90, 18 

 
2.49015 4.93031 2.52944 5.04281 

(0.000603) (0.000024) (0.013889) (0.013889) 

120, 24 
2.49475 4.95492 2.51793 5.01487 

(0.000451) (0.000016) (0.010417) (0.010417) 

150, 30 
2.50722 4.96276 2.50284 5.01054 

(0.000354) (0.000012) (0.008333) (0.008333) 
 

Table 11 The lower (LL), the upper (UL) and the width of the 95% CI under uniform prior 

n, r 
2.5θ =  

Width 
5θ =  

Width 
LL UL LL UL 

30, 6 1.68321 3.71521 2.03200 3.34187 7.37629 4.03442 
60, 12 1.89680 3.33000 1.43320 3.79685 6.66572 2.86887 
90, 16 1.98241 3.14136 1.15895 3.98359 6.31245 2.32886 

120, 24 2.04919 3.05403 1.00484 4.07764 6.07715 1.99951 
150, 30 2.09915 3.00001 0.90086 4.16553 5.95318 1.78765 

 
Table 12 The lower (LL), the upper (UL) and the width of the 95% CI under Jeffreys prior 

n, r 
2.5θ =  

Width 
5θ =  

Width 
LL UL LL UL 

30, 6 1.59982 3.59049 1.99067 3.17633 7.12866 3.95233 
60, 12 1.85185 3.27030 1.41845 3.70687 6.54621 2.83934 
90, 16 1.95176 3.10272 1.15096 3.92200 6.23481 2.31281 

120, 24 2.02574 3.02538 0.99964 4.03097 6.02013 1.98916 
150, 30 2.08011 2.97723 0.89712 4.12775 5.90798 1.78023 
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Table 13 The lower (LL), the upper (UL) and the width of the 95% CI under exponential prior 

n, r 
2.5θ =  

Width 
5θ =  

Width 
LL UL LL UL 

30, 6 1.61617 3.56725 1.95108 3.08762 6.81509 3.72747 
60, 12 1.85804 3.26196 1.40392 3.64467 6.39855 2.75388 
90, 16 1.95540 3.09856 1.14316 3.87602 6.14199 2.26597 

120, 24 2.02813 3.02264 0.99451 3.99508 5.95410 1.95902 
150, 30 2.08180 2.97521 0.89341 4.09775 5.85631 1.75856 

 
Table 14 The lower (LL), the upper (UL) and the width of the 95% CI under gamma prior 

n, r 
2.5θ =  

Width 
5θ =  

Width 
LL UL LL UL 

30, 6 1.91352 3.67144 1.75792 2.96267 5.68442 2.72175 
60, 12 2.01855 3.34615 1.32730 3.45894 5.73304 2.27410 
90, 16 2.06589 3.16703 1.10114 3.70963 5.68689 1.97726 

120, 24 2.11157 3.07808 0.96651 3.85326 5.61698 1.76372 
150, 30 2.14858 3.02151 0.87293 3.97167 5.58528 1.61361 

 
Table 15 The lower (LL), the upper (UL) and the width of the 95% CI under In-Levy prior 

n, r 
2.5θ =  

Width 
5θ =  

Width 
LL UL LL UL 

30, 6 1.64110 3.65211 2.01101 3.25759 7.24946 3.99187 
60, 12 1.87411 3.29980 1.42569 3.75102 6.60454 2.85352 
90, 16 1.96694 3.12181 1.15487 3.95221 6.27273 2.32052 

120, 24 2.03735 3.03954 1.00219 4.05386 6.04799 1.99413 
150, 30 2.08954 2.98849 0.89895 4.14628 5.93007 1.78379 

 
8. Comparison of Bayes Estimators and Posterior Risks for Real Life Data Set 
 In this section we present the analysis of one real data set for illustrative purposes. It is a strength 
data originally considered by Badar and Priest (1982). The data represent the strength measured in 
GPA, for single carbon fibers and impregnated 1000-carbon fiber tows. The data are presented below. 
 
Data Set: 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 
2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 
2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 
3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 
3.871, 3.886, 3.971, 4.024, 4.027. 
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Figure 3 Fitted density function and the histogram of the data 

 
 The mean, variance, skewness and kurtosis are 3.461, 0.3855, 0.6328486 and 3.286345,  
respectively. From the chi-squared value 6.524 and p-value 0.8362, it is observed that data follow  
the Type I generalized logistic distribution. The sample characteristics required to evaluate the  
estimates of shape parameter of the generalized logistic distribution are as follows: 

60,n = 12r =  and ( ){ } ( ){ }1
1
ln 1 exp( ) 2.18090 and ln 1 exp( ) 0.077536.

n

i r
i r

x x +
= +

+ − = + − =∑  

 
Table 16 Bayes estimates and the corresponding posterior risks under the real data set 

Prior 
SELF PLF WSELF 

BEs PRs BEs PRs BEs PRs 
Uniform  15.74890 5.06178 15.90880 0.31978  15.4275 0.32141 
Jeffreys  15.42750 4.95848 15.58740 0.31974  15.1061 0.32141 

Exponential  13.96020 3.97726 15.88750 0.31935  13.6753 0.28490 
Gamma  8.70349 1.24848 8.774920 0.14286  8.56005 0.14345 

Inverse-Levy  15.57770 5.00341 15.73750 0.31955  15.2565 0.32119 
 

Table 17 Bayes estimates and the corresponding posterior risks under the real data set 

Prior 
QQLF SLELF 

BEs PRs BEs PRs 
Uniform 13.6561 112.59269 10−×  15.5885 0.020618 
Jeffreys 13.3774 114.24510 10−×  15.2671 0.0210519 

Exponential 12.2834 112.31861 10−×  13.8179 0.0206180 
Gamma 8.13319 71.39517 10−×  8.63187 0.0166179 

Inverse-Levy 13.5089 113.35957 10−×  15.4174 0.0208326 
 

8.1.  Graphical results of posterior distribution for real life data set 
 The below graphs reveal that posterior distributions under different informative and non 
informative priors. Figure 1 depicts posterior densities under uniform and Jeffreys priors. It is obvious 
that both the priors yield the approximately the identical posterior inferences. Figure 2 shows that the 
posterior densities under exponential, gamma and inverse Levy priors are not identical. However, 
gamma prior may be a better a choice because of  its two hyper parameters which ensure better fit. 
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Figure 4 Posterior densities under uniform and Jeffreys priors 

 

 
Figure 5 Posterior densities under exponential, gamma and inverse Levy priors 

 
9. Conclusions 
 The findings of the simulation study are pretty interesting. The parameter has been under-
estimated for majority of the cases. The extent of under estimation is more severe under exponential 
WSELF. To be more specific, larger degrees of parameter results in bigger sizes of underestimation. 
Then extent of this over or under estimation is directly proportional to parametric value and inversely 
proportional to the sample size. Further, the increase in sample size reduces the posterior risks of  .θ  
The performance of squared-log error loss function is independent of choice of parametric value. 
Similarly, the increased true parametric values impose a negative impact on the convergence of the 
estimates under all priors. However, it can be observed that by increasing the sample size, the 
convergence of the estimated values toward the true parametric values tend to increase for each case. 
On the other hand, the amounts of posterior risks, based on each prior and loss function tend to 
decrease by increasing the sample size. It indicates that the estimators are consistent. 
 In comparison of non-informative priors, the Jeffreys prior provides the better estimates as the 
corresponding risks are least under said loss functions except QQLF. While the uniform and the 
exponential priors are equally efficient under SLELF, therefore they produce more efficient estimates 
as compared to the other informative priors. It can also be observed that performance of estimates 
under informative priors is better than those under non-informative priors and the Bayes estimates 



Tabassum Naz Sindhu et al. 195 

may turn out to be most efficient under gamma prior. This simply indicates the use of prior 
information that makes a different in terms of gain in precision. 
 The Credible intervals are in accordance with the point estimates, that is, the width of credible 
interval is inversely proportional to sample size. From the Tables 11-15, appended above, reveal that 
the effect of the prior information in the form of narrower width of interval. The Credible interval 
assuming gamma prior is much narrower than the credible intervals assuming informative and non-
informative priors. The findings of the real life example are in accordance with the simulation study. 
Hence for Bayesian analysis of the parameter of the generalized logistic distribution, the use of 
gamma prior under type II left censored samples can be preferred. The study can further be extended 
by considering two parametric versions of the distribution under variety of circumstances.  
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