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Abstract  

Maximizing the Shannon entropy and Renyi entropy in a class of distributions subject to a set of 
constraints are the topics that play an important role in statistical inference. In this paper some 
distributions with maximum Renyi entropy under given constraints are presented. In this regard, we 
wrote a program in Matlab, that find out distributions with maximum Renyi entropy. In this program 
we have used the method of Lagrange. Using this program we have determined Lagrange multipliers 
and then obtained distributions with maximum Renyi entropy under a given constraint. In any case 
the results are summariezed in related table. 
______________________________ 
Keywords: Shannon entropy, Renyi entropy, maximum entropy principle, maximum Renyi entropy, 
lagrange method, moment condition. 
 
1. Introduction 
 Optimization is an integral part in every field of study. This topic had its special position in 
information theory. One of the optimization methods is maximum entropy principle with Lagrange 
method. In many cases we seek the maximum entropy distribution and how to find that under some 
constraint is expressed by Kagan et al. (1979) and Kapur (1989). Maximum Renyi and Tsallis 
entropies subject to some conditions are extensions of this idea a larger class of Shannon entropy. 
Costa et al. (2004 and 2006), Bashkirov (2004 and 2006), Johnson and Vignat (2007), Haremouse 
(2006), Brody et al. (2008), Wilks and Wlodarrczyk (2008), Bercher (2008a and 2008b), Jose and 
Naik (2008) and Nagy and Romera (2009) have presented interpretations and characteristics of 
maximum Renyi entropy and Tsallis entropy in univariate and multivariate models. In this paper we 
give a Matlab program to find out distribution with maximum Renyi entropy. We have written it 
based on Djafari (1991). He has presented a Matlab program to calculate Lagrange multipliers and 
maximum entropy distributions. Here we were able to obtain Lagrange multipliers for an arbitrary 
number of conditions in connection with maximum Renyi entropy for different parameter ,α  where 
α is the Renyi parameter. In the limit 1,α →  it is transformed to Shannon entropy. 
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 In calculus of variations, Lagrange’s equation is a second-order partial differential equation 
whose solutions are the functions for which a given functional is stationary. Because a differentiable 
functional is stationary at its local maxima and minima, the Lagrange equation is useful for solving 
optimization problems in which, given some functional, one seeks the function minimizing (or 
maximizing) it.  
  
2. Maximum Renyi Entropy 
 
Definition 2.1 Renyi entropy of a probability density function ( )P x  is: 

1( ) log ( ) , 0, 1. 
1

H P p x dxα
α α α

α
= > ≠

− ∫  

 
In this section we have consider maximizing ( )H Pα  under given conditions, the problem, in its 
general form is the following 

 

1max( ( ( ))) max log ( )
1

.

( ) ( )  , 0,1,..., ,               n n

H P x p x dx

s t

g x p x dx u n N

α
α α

  =  − 

 = =


∫

∫
  (1) 

where 0 0( ) 1, 1g x u= =  and in this case we have constraint  

 ( ) 1,p x dx =∫   (2) 

( ); 0,1,..., ,ng x n N=  are known functions and ; 0,1,...,nu n N=  are the given expectation data. We 
use Lagrange method for solving problem (1) we must make Lagrange equation. 

 ( ) ( )0
1 log ( ) ( ) 1 ( ) ( ) 0.

1 n n np x dx p x dx g x p x dx uα λ λ
α

− − − − =
− ∫ ∫ ∫   (3) 

The derivative of Equation (3) yields 

 
( ) ( )0

1

0

1 log ( ) ( ) 1 ( ) ( ) 0
1

( )=0,
(1 ) ( )

n n n

n n

p x dx p x dx g x p x dx u
p

p g x
p x dx

α

α

α

λ λ
α

α λ λ
α

−

∂  − − − − = ∂ − 

⇒ − −
−

∫ ∫ ∫

∫

  (4) 

where the Lagrange multipliers can be obtained from the constraints. We multiply both side of (4) by 
( )P x  and integrate the result. The relations (1) and (2) give the following results: 

 0 00 .
1 1n n n nu uα αλ λ λ λ

α α
− − = ⇒ = −

− −
  (5) 

With replacing (5) in (4) we have: 

 ( )
1

1
1

1 1( ) ( ) 1 ( ) .n n nP x p x dx u g x
αα α α λ

α
−

− −  = − −    ∫   (6) 

Assuming 
1

1( ) ,
n

Z p x dxα α
λ

− =  ∫   

 

https://en.wikipedia.org/wiki/Calculus_of_variations
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Functional_(mathematics)
https://en.wikipedia.org/wiki/Stationary_point
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Optimization_(mathematics)


Sanei Tabass M. et al. 221 

 ( )
1

11 1( ) 1 ( ) .
n

n n nP x u g x
Z

α

λ

α λ
α

−− = − −  
  (7) 

( )P x  in (7) is distribution with maximum Renyi entropy for a fixed α  under constraint in the form 

(1). On the other hand, ( )P x  must be density function and this gives 

 ( )
1

111 ( )
n n n nZ u g x dx

α

λ
α λ

α
−− = − −  ∫   (8) 

In general, we can consider n constraints in the form (1), in this case relation (7) becomes the  

 ( )
1

1 1
1

1

1( ) ( ) 1 ( ) .
n

i i i
i

p x p x dx u g x
α

α α α λ
α

−
−

=

−  = − −    
∑∫   (9) 

As before assuming 

 

1
1

1
1

1( , ,..., ) 1 ( ( )) .
n

n i i i
i

B u u u g x dx
ααα λ

α

−

=

− = − − 
 

∑∫   (10) 

Then ( )p x  with maximum Renyi entropy under n  constraints is: 

 

1
1

11

1 1( ) 1 ( ( )) .
( , ,..., )

n

i ii
in

p x u g x
B u u

αα λ
α α

−

=

− = − − 
 

∑   (11) 

Similarly 0λ  in this case is obtained from: 

0
1

.
1

n

i i
i

uαλ λ
α =

= −
− ∑  

 In particular we consider ( ) ik
ig x x=  and if ,  1, 2,...,ik i i n= =  we have moment constraints. 

This problem is solved by Brody et al. (2007). Before we present a Matlab program for estimate 
Lagrange multipliers, we remember their results. Let ( )p x  be the unknown probability density 

function on the positive real line. We also assume that -thk moment of the distribution ( )p x  is 

known and is given by .ku  So the problem is to find the ( )p x  that maximizes the Renyi entropy with 

-thk moment .ku  Furthermore constraint (2) we have condition  

 ( ) .k
kx p x dx u=∫   (12) 

The resulting maximum Renyi entropy distribution takes the form 

 ( )
1

11 1( ) 1 ,
k

k
k kp x u x

Z
α

λ

α λ
α

−− = − −  
  (13) 

where Zβ  is the normalization factor such that (13) satisfies the condition (2). In view of the 

expression in (6) we observe that 

 
1

1
1

1 1( ) 1 ( )  .
k

k
k kZ p x dx u x dx

αα α
λ

α λ
α

−
− −  = = − −    ∫ ∫   (14) 

Brody et al. (2007), in order to determine 
k

Zλ in the right hand side of (13) have used the identity 
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1 1 1( ) ( )1 ,

( )( )

l
l k k k

k

x adx
ba bx kaµ µ

µ
µ

− Γ Γ − =   Γ+  ∫   (15) 

valid for 10 , 1.
k

µ µ< < >   

 Compare the relation (14) with (15) and 1 1,   1 ,   1,
1 k ka u lαµ λ

α α
− = = − = −  

 
1

kb αλ
α
−

=  

and with consider this point that, ( )xΓ  denotes the standard gamma function we have: 

 
( )

1 1
1 1 1

1 1 .
1 ( )

k
k k

k k

Z dx dx
u x a bx

λ
α α α
α λ− − −

= =
 − − + 
∫ ∫   (16) 

That concludes  
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1
1 1

1 1 1
1 1 .

1(1 )
(1 ( ))

1

k

k

k
k

k k

k kZ u
k u

λ
α α
α

α α
λ α

λ
α

− −

   Γ Γ −     −   = − −    Γ−  − 

  (17) 

This relation valid for 1 1,
2

α< <  
1 10 .

1k α
< <

−
 Now we multiply both sides of equation (13) by kx

and integrate of the result. Using Equation (12) we obtain: 

 

1
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1
1

1
1

1
1

1 1         1 ( )

11 ( )

          .    
11

k

k
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k
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k

k
k k
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Z

xu Z dx
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α

λ

λ
α

α
α
α

α λ
α
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α

αλ λ
α

−

−

−
−

 −  = − −    

⇒ =
 −  − −    

=
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∫

∫

∫

  (18) 

Replace (17) in (18) and let 
1 11,  ,  1

1 k kl k a u αµ λ
α α

−
= + = = −

−
 and 

1
kb αλ

α
−

=  and use of (15) 

after simple calculations we conclude 

 

1

1 1 1
1 (1 )

1 .        

k

k k
k

k
k

u u
k

ku

α
α λ α

λ

  − − = −  − −   

⇒ =

  (19) 

We note that 
1 1

1k
α< <

+
 the moment conditions are well defined for all 1k ≥  provided that,

1 1.
2

α< <  Density function in (13) is known as Renyi distribution or α  distribution. When 1α →  

the distribution ip  becomes the Gibbs canonical distribution which has maximum entropy. For 
maximum entropy Djafari (1991) presented a Matlab program. He used this program to find Lagrange 
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multipliers and he obtained some distributions with maximum entropy. In this paper we could write 
a program in Matlab that gives distribution with maximum Renyi entropy under known constraints. 
This program determines Lagrange multipliers iλ  and with replace iλ ’s in (13) we estimate ( )p x  
with maximum Renyi entropy. Some examples are presented below. 
 
3. Some Examples of Maximum Renyi Entropy   
 In this section we consider some well-known distribution with maximum Renyi entropy under 
given constraints. 
 When we don’t have any constraint the probability density function with maximum Renyi 
entropy is uniform distribution as well as Shannon entropy. 
 Let ( )g x x=  that means ( )xp x dx θ=∫  then ( )p x  is: 

11
11

1
1 2 1 11( ) 1 ( ) .

(2 1)
1

p x x
ααα α αα β θ

αα θ α β
α

−−

 Γ   − − −−   = − −   −     Γ − 

 

Thus function ( )p x  under constraint ( )E X θ=  is generalized Pareto distribution with shape 

parameter 
1 1
α
−  and scale parameter .β . 

 In Table 1, we calculate Lagrange multipliers 0 1( , )λ λ  under constraint ( ) 9E X u= =  for 4 
sample sizes (400, 600, 1000, 1500). Since moment conditions are well defined for all 1k ≥  provided 

that 1 1
2

α< < , we consider 4 different values for α (0.5, 0.75, 0.95, 0.999), α  is the parameter of  

Renyi entropy. In addition this program being able to estimate ( ( ))E g X  for that estimated 
probability ( )p x  and in this example ( )E X  for given sample. This value is shown with 1µ  in Table 
1. 
 The last columns of Tables is dedicated to value .

k
Zλ  With replacing 1λ  and Zβ  in (13), we 

obtain density function ( )p x  with maximum Renyi entropy under ( ) 9.E X =  
 

Table 1 Estimate of 0 1,λ λ  under constraint ( ) 9E X =  

Sample sizes α  0λ  1λ  0µ  1µ  Z
kλ

 

400 

0.50 
0.75 
0.95 

0.999 

9.4825 
11.3691 

112.2076 
100.79 

-0.9425 
-0.9299 

-10.3564 
-0.9877 

1 
1 
1 
1 

9.7699 
9.0081 
9.9645 
9.000 

22.1222 
3.2975 

389730 
207498 

600 

0.50 
0.75 
0.95 

0.999 

16.7535 
25.3272 
94.9438 

218.2122 

-1.8615 
-2.7808 
-8.4382 

-13.2458 

1 
1 
1 
1 

9.5344 
9.9063 
9.9381 
9.9412 

953.9402 
86.5057 

9281.4 
126590 

1000 

0.50 
0.75 
0.95 

0.999 

5.58 
22.9809 
74.3905 

1080.8 

-0.65 
-2.2201 
-6.1545 
-9.0934 

1 
1 
1 
1 

8.9076 
9.8317 
9.8887 
9.8954 

4.1854 
26.6378 

287.4375 
1062.6 
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Table 1 (Continued) 
Sample sizes α  0λ  1λ  0µ  1µ  Z

kλ
 

1500 

0.50 
0.75 
0.95 

0.999 

13.6584 
54.4233 
60.4756 

1053.9 

-1.5172 
-5.7137 
-4.6084 
-6.1003 

1 
1 
1 
1 

9.6576 
9.526 

9.8233 
9.8339 

2450.9 
569910000 

41.7605 
73.1238 

 
 Johnson and Vignat (2005) are presented a Theorem for n dimensional probability density 
function with maximum Renyi entropy. Some of the results are presented as follow: 

 For ,
1

n
n

α<
+

 1,α ≠  Define the n -dimensional probability density ,Cgα  as  

 ( )
1

1 1
, ( ) 1 ( 1) T
Cg x A x C x α

α α α β − −
+

= − −   (20) 

with 1
2 (1 )n

β
α α

=
− −

 and normalization constants 

 

( )

( )

2

1
2 2

2

1
2 2

1 (1 )
1 , 1

21
1 2

( 1)
1 , 1.

1

n

n

n

n

n
nn C

A

C

α

β α
α α

π
α

α β α
α α

α π
α

  Γ −  −  < <
+  Γ −  −  = 

 Γ −  −  >
  Γ  − 

  (21) 

We write ,CRα  for a random variable with density ,Cgα  which has mean 0 and covariance .C  

 

Theorem 3.1  Given, any ,
2

n
n

α >
+

 and positive definite symmetric matrix ,C  among all 

probability densities f  with mean 0 and 
,

( ) ,
C

Tp x xx dx C
αΩ

=∫  the Renyi entropy is uniquely 

maximized by ,Cgα  that is 

,( ( )) ( ),CH p x H gα α α≤  
 with equality, if and only if ,( ) Cp x gα=  almost everywhere. 
 

 For any, 1,
2

n
n

α< <
+

 writing 2 2
1

m n
α

= − >
−

 we have 

( 2)
, ~ m C
C

Z
R

Uα
−  

 
where, ~ mU χ  and  independent of .Z  Thus ,CRα  has t -student with m  degrees of freedom. 

 
 Let 2( )g x x=  that means 2( )E X θ=  then ( )p x  is: 
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1 1
2 1

2

1
1 11( ) 2 1 .

1 1(3 1) (3 1)
1 2

p x x
αα αα

α θ α θπ
α

−

 Γ    − −− = +   − −    Γ − − 

  (22) 

This distribution is a special case n dimensional probability ,Cgα  when .n l=  In this case we have 

constraint 2( ) .E X u=  The results are presented in Table 2. In this case our condition is 2( ) 25E X =  

and this value is estimated for the obtained ( )p x  and has presented in Table 2. For example when 

400,n =  0.5,α =  the program has estimated 1 24.5395µ =  this value shows how correct our 
calculations has been. 
 

Table 2 Estimate of 0 1,λ λ  under constraint 2( ) 25E X =  

Sample sizes α  0λ  1λ  0µ  1µ  Z
kλ

 

400 

0.50 
0.75 
0.95 
0.99 

3186 
161.3225 
127.1575 

202.32 

-127.4004 
-6.3329 
-4.3263 
-4.1328 

1 
1 
1 
1 

24.5394 
24.6768 
24.6981 
24.7004 

0.00009 
0.0116 
0.0186 
0.0197 

600 

0.50 
0.75 
0.95 
0.99 

458.4575 
107.3775 

91.2525 
168.0825 

-18.2983 
-4.1751 
-2.8901 
-2.7633 

1 
1 
1 
1 

24.8148 
24.6797 
24.6649 
24.6634 

0.0097 
0.0276 
0.0382 
0.0398 

1000 

0.50 
0.75 
0.95 
0.99 

223.3425 
66.22 

66.5675 
140.635 

-8.8937 
-2.5288 
-1.7427 
-1.6654 

1 
1 
1 
1 

24.2927 
24.3547 
24.3640 
24.3650 

0.0096 
0.0381 
0.0561 
0.0588 

1500 

0.50 
0.75 
0.95 
0.99 

133.8425 
46.2925 

48.725 
127.3900 

-5.3137 
-1.7317 

-1.189 
-1.1356 

1 
1 
1 
1 

24.1042 
24.0929 
24.0929 
24.0930 

0.0191 
0.0589 
0.0857 
0.0898 

 
Let 1( )g x x= and 2

2 ( )g x x=  in this case distribution with maximum Renyi entropy is: 

1 2

1
12

1 1 2 2
,

1 1 1( ) 1 ( ) ( ) .p x x x
Z

α

λ λ

α αλ θ λ θ
α α

−− − = − − − −  
 

Now we consider ( )
1

2 1( )p x ax bx c α −+ + and if we regard 
2
by x
a

= +  then 2

1( ) .p x
y c′+

  Using  

( )

1
1

2

1 1
1 .

( )

l k

k

x a k kdx
ba bx kaµ

µ

µ

−
   Γ Γ −        =   Γ+  ∫  

Now let 12, , 1, 1,
1

k a c b l µ
α

′= = = = =
−

 thus 
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1 2

1 1
2 1

( , )

1 1 1
2 1 2 ,

12
1

cZ
α

λ λ
α

α

−
−

   Γ Γ −   ′ −   =
 Γ − 

 

and ( )p x  is Burr type (XII). Consider two constraints ( ) 9,E X = 2( ) 0.8E X =  the results are 
summarized in the following table. 
 

Table 3 Estimate of 0 1 2, ,λ λ λ  under constraint ( ) 9,E X = 2( ) 0.8E X =  

Sample sizes α  0λ  1λ  2λ  0µ  1µ  2µ  
1 2,Zλ λ  

400 

0.50 
0.75 
0.95 
0.99 

8.9848 
79.2658 
45.6577 

131.7677 

-4.3965 
-44.7857 

-8.9701 
-15.0077 

-5.0355 
-44.9483 
-23.2195 
-24.0759 

1 
1 
1 
1 

0.9677 
0.92 

0.9874 
0.9859 

0.9368 
0.8464 
0.9753 
0.9722 

19.5960 
1667800 
14.0568 
11.8788 

600 

0.50 
0.75 
0.95 
0.99 

5.4367 
12.0772 

114.0232 
120.9526 

-2.4485 
-4.3058 
-8.5529 
-9.2884 

-2.7913 
-6.5025 

-14.1570 
-16.9913 

1 
1 
1 
1 

0.9171 
0.9594 
0.9764 
0.9772 

0.8649 
0.9254 
0.9540 
0.9556 

0.6591 
0.8010 
1.6988 
2.004 

1000 

0.50 
0.75 
0.95 
0.99 

4.7283 
9.0520 

31.1287 
113.0195 

-1.9744 
-3.3878 
-5.3028 
-6.2958 

-2.4392 
-3.7537 
-9.1952 

-10.4416 

1 
1 
1 
1 

0.8736 
0.9004 
0.9583 
0.9620 

0.7997 
0.8307 
0.9207 
0.9270 

0.4812 
0.3813 
0.5553 
0.6048 

1500 

0.50 
0.75 
0.95 
0.99 

-23.8026 
8.3363 

23.7768 
108.2797 

13.9873 
-2.8634 
0.8081 

-3.9030 

15.2675 
-3.4490 
-6.8801 
-7.2088 

1 
1 
1 
1 

0.8719 
0.8817 
0.8965 
0.9398 

0.7601 
0.8029 
0.8217 
0.8876 

143.6108 
0.3601 
0.3316 
0.3657 

 
 As mentioned previously sometimes we have generally constraint ( ( ))E g X u=  for example 

( ) cos( ).g x x=  For 4 sample sizes 400, 600, 1000, 1500 and different values for 
 ( 0.75,0.95,1.25,1.5),α α = we determine Lagrange multipliers. The results are summarized in Table 

4. When 1 ( 1.25, 1.5)α α> = the values of 1µ  is equal 0.5.  
 

Table 4 Estimate of 0 1,λ λ  under constraint (cos( )) 0.5E X =  

Sample sizes α  0λ  1λ  0µ  1µ  
1

Zλ  

400 

0.75 
0.95 
1.25 
1.50 

1.9519 
34.2781 
-4.3515 
-2.3188 

2.0963 
-30.5562 

-1.2970 
-1.3624 

1 
1 
1 
1 

-0.9299 
0.9967 
0.5003 
0.5006 

29206000000 
28827000000000 

4.5777 
4.4029 

600 

0.75 
0.95 
1.25 
1.50 

5.8155 
32.9127 
-4.3517 
-2.3186 

-5.6309 
-27.8254 

-1.2967 
-1.3627 

1 
1 
1 
1 

0.9934 
0.9950 
0.5005 
0.5010 

17577 
6819000000000 

4.5769 
4.4021 
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Table 4 (Continued) 

Sample sizes α  0λ  1λ  0µ  1µ  
1

Zλ  

1000 

0.75 
0.95 
1.25 
1.50 

5.7036 
30.7988 
-4.3513 
-2.3178 

-5.4073 
-23.5977 

-1.2974 
-1.3644 

1 
1 
1 
1 

0.9889 
0.9917 
0.5008 
0.5016 

3423.7 
84535000 

4.5764 
4.4007 

1500 

0.75 
0.95 
1.25 
1.50 

5.5762 
28.9264 
-4.3549 
-2.3167 

-5.1525 
-19.8529 

-1.2902 
-1.3665 

1 
1 
1 
1 

0.9832 
0.9786 
0.4988 
0.5024 

1004.6 
1017900 

4.5784 
4.3989 

 

4. Conclusions  
 In this paper while introducing the Renyi entropy, we were looking for distribution that 
maximizes the Renyi entropy under given constraints. Considering this constraints we have made 
nonlinear equation and this equations have been solved with Lagrange method. We wrote a program 
in Matlab that is given in appendix.  Using this program, we have determined Lagrange multipliers. 
Then replacing this iλ ’s in relation (11) we have obtained the distribution with maximum Renyi 
entropy. 
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Appendix 
1 function [lambda,p,beta,conditions] = reni2(mu,xprime,alpha) 
2 %UNTITLED Summary of this function goes here 
3 %   Detailed explanation goes here 
4 %p has the values of PDF 
5 Eps=1e-4;                  
6 Xmin=xprime(1);                %in order to avoid conflict we defined xprime instead of x 
7 Xmax=xprime(length(xprime)); 
8 Dx=xprime(2)-xprime(1);  
9 lambda=zeros(size(mu)); 
10 n=length(lambda); 
11 phi2=fin_3(); 
12 r=1; 
13 [row,column]=size(xprime); 
14 finalx=xprime; 
15 phin=zeros(n,column); 
16 muprime=zeros(n,column); 
18 lambdaprime=zeros(n,column); 
19 phi1=zeros(n,1); 
20 not=0; 
21 y=0; 
22 for myi=1:length(xprime)   %Calculation of muprime matrix which is n*r 
23 muprime(:,myi)=mu'; 
24 end                        %End of muprime calculation 
25 for ex=xmin:dx:xmax     %start of loop for calculating Phi-en 
26 for i=1:n            %caculation of matrix phi1 in order to use in sigma 
27 phi1(i,1)=phi2{i,1}(ex); 
28 end                  %end of phi1 calculation         
29 phin(:,r)=phi1(:);  %Calculation of Phi-en matrix which is r*n 
30 r=r+1; 
31 end                     %end of loop for calculating Phi-en   
32 while 1         %first of while loop 
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33 for myi=1:length(xprime)  %Calculation of lambdaprime matrix which is n*r 
34 lambdaprime(:,myi)=lambda'; 
35 end  %End of lambdaprime calculation  
36 if (n==1) 
37 lmphi=((1-alpha)/alpha)*(lambdaprime.*(muprime-phin));    
38 %Calculation of sum of ((1-alpha)/alpha)*lambda.*(mu-phi) in which each column stands for 

a single x 
39 else 
40 lmphi=((1-alpha)/alpha)*sum(lambdaprime.*(muprime-phin)); 
41 end 
42 beta=dx*sum((1-lmphi).^(1/(alpha-1)));           %calculation of beta           
43 p=1/beta*((1-lmphi).^(1/(alpha-1)));          %Calculation of P(x)                                   
44 a=(1-lmphi).^((1/(alpha-1))-1); 
45 g=zeros(1,n); 
46 for myi=1:n       %calculation of  g(1,i)    
47 g(1,myi)=dx*sum(phin(myi,:).*p); 
48 end %for end  
49 if(isnan(g)|isinf(g)|(~isreal(g)))  %If any element in g was not a number or was infinite or was 
complex the 
50 % calculation is broken. 
51 not=1; 
52 break 
53 end       
54 gmk=zeros(n,n); 
55 for m=1:n            
56 for k=1:n            
57 first=(((-(1-lmphi)/beta)*sum((muprime(k,:)-phin(k,:)).*a)+(muprime(k,:)-

phin(k,:))).*a)/(alpha*beta); 
58 gmk=dx*sum(first.*phin(m,:)); 
59 end 
60 end  %end of forming g(i,j) 
61 v=(mu-g)'; 
62 delta=gmk\v; 
63 lambda=lambda+delta'; 
64 if(abs(delta./(lambda'))<eps)     
65 for myi=1:length(finalx)  %Calculation of lambdaprime matrix which is n*r 
66 lambdaprime(:,myi)=lambda'; 
67 end  %End of lambdaprime calculation  
68 if (n==1) 
69 lmphi=((1-alpha)/alpha)*(lambdaprime.*(muprime-phin));      
70 %Calculation of sum of ((1-alpha)/alpha)*lambda.*(mu-phi) in which each column stands for 

a single x 
71 else 
72 lmphi=((1-alpha)/alpha)*sum(lambdaprime.*(muprime-phin)); 
73 end  %Calculation of sum of ((1-alpha)/alpha)*lambda.*(mu-phi) in which each 

column stands for a single x 
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74 beta=dx*sum((1-lmphi).^(1/(alpha-1)));            %calculation of beta           
75 p=1/beta*((1-lmphi).^(1/(alpha-1)));  %Calculation of P(x)       
76 break,  
77 end        %End of delta if 
78 end%while end         
79 if(not==0) 
80 p_integral=dx*sum(p); 
81 conditions=zeros(1,n); 
82 for myj=1:n 
83 conditions(1,myj)=dx*sum(phin(myj,:).*p); 
84 end 
85 conditions=[p_integral,conditions]; %Conditions shows how correct our calculations has been 
86 if(size(p)==size(finalx)) 
87 plot(finalx,p) 
88 disp('End of the program'); 
89 else 
90 finalx(end)=[]; 
91 plot(finalx,p) 
92 disp('End of the program'); 
93 end 
94 else 
95 disp('No answer exists')   
96 end 
97 end % function end 
 

 
 
 
 
 
 
 
 
 
 
 

 


	Thailand Statistician
	July 2016; 14(2): 219-230
	http://statassoc.or.th
	Short communication

