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Abstract

Maximizing the Shannon entropy and Renyi entropy in a class of distributions subject to a set of
constraints are the topics that play an important role in statistical inference. In this paper some
distributions with maximum Renyi entropy under given constraints are presented. In this regard, we
wrote a program in Matlab, that find out distributions with maximum Renyi entropy. In this program
we have used the method of Lagrange. Using this program we have determined Lagrange multipliers
and then obtained distributions with maximum Renyi entropy under a given constraint. In any case
the results are summariezed in related table.

Keywords: Shannon entropy, Renyi entropy, maximum entropy principle, maximum Renyi entropy,
lagrange method, moment condition.

1. Introduction

Optimization is an integral part in every field of study. This topic had its special position in
information theory. One of the optimization methods is maximum entropy principle with Lagrange
method. In many cases we seek the maximum entropy distribution and how to find that under some
constraint is expressed by Kagan et al. (1979) and Kapur (1989). Maximum Renyi and Tsallis
entropies subject to some conditions are extensions of this idea a larger class of Shannon entropy.
Costa et al. (2004 and 2006), Bashkirov (2004 and 2006), Johnson and Vignat (2007), Haremouse
(2006), Brody et al. (2008), Wilks and Wlodarrczyk (2008), Bercher (2008a and 2008b), Jose and
Naik (2008) and Nagy and Romera (2009) have presented interpretations and characteristics of
maximum Renyi entropy and Tsallis entropy in univariate and multivariate models. In this paper we
give a Matlab program to find out distribution with maximum Renyi entropy. We have written it
based on Djafari (1991). He has presented a Matlab program to calculate Lagrange multipliers and
maximum entropy distributions. Here we were able to obtain Lagrange multipliers for an arbitrary
number of conditions in connection with maximum Renyi entropy for different parameter «, where

a is the Renyi parameter. In the limit « — 1, it is transformed to Shannon entropy.
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In calculus of variations, Lagrange’s equation is a second-order partial differential equation
whose solutions are the functions for which a given functional is stationary. Because a differentiable
functional is stationary at its local maxima and minima, the Lagrange equation is useful for solving
optimization problems in which, given some functional, one seeks the function minimizing (or
maximizing) it.

2.  Maximum Renyi Entropy

Definition 2.1 Renyi entropy of a probability density function P(x) is:

H,(P) =ﬁ|09'[ p*(x)dx, a>0,a 1.

In this section we have consider maximizing H,(P) under given conditions, the problem, in its
general form is the following

max(H , (P(x))) = max [L Iogj p* (x)dx}
l-a

st 1)
[9.00p()dx=u, , n=01..,N,

where g,(x) =1, u, =1 and in this case we have constraint

[ p(dx =1 )
g,(x);n=0,1,...,N, are known functions and u,;n=0,1,...,N are the given expectation data. We
use Lagrange method for solving problem (1) we must make Lagrange equation.

—tog [ p* (e~ 4 [ POXOEK-1) 1 9, ( PO -1, ) = ©
The derivative of Equation (3) yields

o| 1 a B
a—p[glog [p (x)dx—ﬂo( [ pe0dx-1)= 4, ([ 9,6 pO)ex -, )}—0
ap- 4)
A~ 4,8,(X)=0,
7 o) P (dx
where the Lagrange multipliers can be obtained from the constraints. We multiply both side of (4) by
P(x) and integrate the result. The relations (1) and (2) give the following results:
-2, =0 = /10_——/1u ®)
l-« -«
With replacing (5) in (4) we have:

1

P =[ [ p* (0] [1—1—“1 (v, -9, (x))}- ©)

Assuming Z, = U p” (X)dx}ﬁ,
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P(X)=Zi[1-l_7a/1n(un -gn(X))Tl- U]

y
P(x) in (7) is distribution with maximum Renyi entropy for a fixed « under constraint in the form
(1). On the other hand, P(x) must be density function and this gives

z, = j{l-l‘T“zn (u, - gn(x))}aldx ®)

In general, we can consider n constraints in the form (1), in this case relation (7) becomes the

1
a-1

p() = | p“(x)dx]a-{l ZA g(x)}. ©)

As before assuming

B(a,U,,...,U,) = J‘l{ Zn:ﬂ,,(u,—g(x))} dx. (10)

Then p(x) with maximum Renyi entropy under n constraints is:
1

1 l-a g B
D(X)=B(a,ul,m,u){l— " Z&(Ui—g.(x))} : (11)

i=1

Similarly 4, in this case is obtained from:
n
- Au;.
i=1
In particular we consider g;(x) = x4 and if k. =i, i=12,..,n we have moment constraints.

This problem is solved by Brody et al. (2007). Before we present a Matlab program for estimate
Lagrange multipliers, we remember their results. Let p(x) be the unknown probability density

function on the positive real line. We also assume that k-th moment of the distribution p(x) is
known and is given by u,. So the problemis to find the p(x) that maximizes the Renyi entropy with
k-th moment u,. Furthermore constraint (2) we have condition

J'xk p(x)dx =u,. 12)

The resulting maximum Renyi entropy distribution takes the form
1

pO) =~ [1——4(uk - X )} (13)

A
where Z, is the normalization factor such that (13) satisfies the condition (2). In view of the
expression in (6) we observe that

U p (x)dx}“ - —J[l——/lk(uk -X )} dx . (14)

Brody et al. (2007), in order to determine Z, in the right hand side of (13) have used the identity
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I( PV | (gij(&)F(u—&’ 15)

a+bd)  ka' (b T(x)

valid for O<%<,u, 4>l

Compare the relation (14) with (15) and ,uzli, a=1-4u, [1_—“) =1 b:ﬁkl_—a
24 o (04

and with consider this point that, I'(x) denotes the standard gamma function we have:

1 1
z, =j io|x=j ——dx. (16)
[l—LT“ﬂk(uk —x")]w*l (a+hbx* )et
That concludes
: e
o 24
Z, = —-u . 17
" k- Au, ) [“1‘“) j r(lj )
]'k k\ o l1-a
. . . 1 1 1 . . . K
This relation valid for 3 <a<l 0< M < ——. Now we multiply both sides of equation (13) by x
-a

and integrate of the result. Using Equation (12) we obtain:

u, :J.Zi[l_(l_TaJ’ﬁ(Uk —x")}a_lx"dx

A
=uz, =| Xt ——dx (18)
{1—(?)@ © —xk)}”
=I Xt —dx.

{1—21uk Tay g 12a }la
[04

Replace (17) in (18) and let 1 =k +1, u :%, a=1-4u, 1za and b= 4, 1za and use of (15)
24 (04 o

after simple calculations we conclude

( 1 1 j ( a Ji
U |———-1|=| ——-u,
l-a Kk /7.1((1—0() (19)
1
:>2'k =H.

We note that ﬁ<a <1 the moment conditions are well defined for all k >1 provided that,
+

%< a <1. Density function in (13) is known as Renyi distribution or « distribution. When o —1

the distribution p, becomes the Gibbs canonical distribution which has maximum entropy. For
maximum entropy Djafari (1991) presented a Matlab program. He used this program to find Lagrange
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multipliers and he obtained some distributions with maximum entropy. In this paper we could write
a program in Matlab that gives distribution with maximum Renyi entropy under known constraints.

This program determines Lagrange multipliers A, and with replace 4, ’s in (13) we estimate p(x)
with maximum Renyi entropy. Some examples are presented below.

3. Some Examples of Maximum Renyi Entropy

In this section we consider some well-known distribution with maximum Renyi entropy under
given constraints.

When we don’t have any constraint the probability density function with maximum Renyi
entropy is uniform distribution as well as Shannon entropy.

Let g(x)=x that means [xp(x)dx =6 then p(x) is:

) F(lj ;
L-a (Z“‘lj” 1-a {1—1_aﬁ(9—x)}“.
T

Qa-10\ « [aj B
l-«a

Thus function p(x) under constraint E(X) =6 is generalized Pareto distribution with shape

p(x) =

1
parameter ——1 and scale parameter 5..
(24

In Table 1, we calculate Lagrange multipliers (4,,4,) under constraint E(X)=u=9 for 4
sample sizes (400, 600, 1000, 1500). Since moment conditions are well defined for all k >1 provided

that %< a <1, we consider 4 different values for « (0.5, 0.75, 0.95, 0.999), « is the parameter of

Renyi entropy. In addition this program being able to estimate E(g(X)) for that estimated
probability p(x) and in this example E(X) for given sample. This value is shown with z in Table

1.
The last columns of Tables is dedicated to value Z, . With replacing 4 and Z, in (13), we

obtain density function p(x) with maximum Renyi entropy under E(X) =09.

Table 1 Estimate of 4, 4, under constraint E(X)=9

Sample sizes a 2 A o i zZ,

0.50 9.4825 -0.9425 1 9.7699 22.1222

400 0.75 11.3691 -0.9299 1 9.0081 3.2975
0.95 112.2076 -10.3564 1 9.9645 389730

0.999 100.79 -0.9877 1 9.000 207498

0.50 16.7535 -1.8615 1 9.5344 953.9402

600 0.75 25.3272 -2.7808 1 9.9063 86.5057
0.95 94.9438 -8.4382 1 9.9381 9281.4

0.999 218.2122 -13.2458 1 9.9412 126590

0.50 5.58 -0.65 1 8.9076 4.1854

1000 0.75 22.9809 -2.2201 1 9.8317 26.6378
0.95 74.3905 -6.1545 1 9.8887 287.4375

0.999 1080.8 -9.0934 1 9.8954 1062.6
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Table 1 (Continued)

Sample sizes a A A Hq M Z,
0.50 13.6584 -1.5172 1 9.6576 2450.9
1500 0.75 54.4233 -5.7137 1 9.526 569910000
0.95 60.4756 -4.6084 1 9.8233 41.7605

0.999 1053.9 -6.1003 1 9.8339 73.1238

Johnson and Vignat (2005) are presented a Theorem for n dimensional probability density
function with maximum Renyi entropy. Some of the results are presented as follow:

For Ll <a, a =1, Define the n-dimensional probability density g, . as

n+
i
0.c () = A, (1-(@=DAX'Cx)*? (20)
with f =—————— and normalization constants
2a-n(l-a)
1 n
F(lj(ﬁ(l—a))z
24
1 n) 2 2’ n+2<0{<1
A= 7 i 1)
ey
- , a>1.
r(“JﬁzMz
a-1

We write R, . for a random variable with density g, . which has mean 0 and covariance C.

Theorem 3.1 Given, any a>L2, and positive definite symmetric matrix C, among all
n+

probability densities f with mean 0 and LZ p(x)xx"dx =C, the Renyi entropy is uniquely

maximized by g, . thatis

Ha(p(x)) S Ha(ga,C)l
with equality, if and only if p(x) =g, . almost everywhere.

For any, L<a<1, writing m:i—n>2 we have
n+2 l-o

R - Z(m—Z)C

a,C U

where, U ~ y,, and independent of Z. Thus R, . has t -student with m degrees of freedom.

Let g(x) = x> that means E(X?) =46 then p(x) is:
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F[l j 1
— _ — a-1
l-« l-«a l-« Xz} . 22)

j [1+
(3 -1)0 ‘/;F(l‘l) (3a-1)0

p(x) = 2(

l-a 2
This distribution is a special case n dimensional probability g, . when n=1. In this case we have
constraint E(X?) =u. The results are presented in Table 2. In this case our condition is E(X?) = 25
and this value is estimated for the obtained p(x) and has presented in Table 2. For example when

n=400, «=0.5 the program has estimated s, =24.5395 this value shows how correct our
calculations has been.

Table 2 Estimate of A, 4, under constraint E(X?) =25

Sample sizes a 2 A Ly n Z,
0.50 3186 -127.4004 1 24,5394 0.00009

400 0.75 161.3225 -6.3329 1 24.6768 0.0116
0.95 127.1575 -4.3263 1 24.6981 0.0186

0.99 202.32 -4.1328 1 24.7004 0.0197

0.50 458.4575 -18.2983 1 24.8148 0.0097

600 0.75 107.3775 -4.1751 1 24.6797 0.0276
0.95 91.2525 -2.8901 1 24.6649 0.0382

0.99 168.0825 -2.7633 1 24.6634 0.0398

0.50 223.3425 -8.8937 1 24,2927 0.0096

1000 0.75 66.22 -2.5288 1 24.3547 0.0381
0.95 66.5675 -1.7427 1 24.3640 0.0561

0.99 140.635 -1.6654 1 24.3650 0.0588

0.50 133.8425 -5.3137 1 24.1042 0.0191

1500 0.75 46.2925 -1.7317 1 24.0929 0.0589
0.95 48.725 -1.189 1 24.0929 0.0857

0.99 127.3900 -1.1356 1 24,0930 0.0898

Let g,(x) =xand g,(x) =X’ in this case distribution with maximum Renyi entropy is:

a-1

[1—1‘—“4(01—x)—1‘—“42(92—x2)}“
a a

1
p(x) = 7
1

Now we consider p(x) ~ (ax2 +bx +c)E and if we regard y = x +2£ then p(x) ~
a

L, 1@]&4&)%#-&)

(@+bx')"  ka’l\b T(x)

Using

24¢"

Now let k=2,a=c',b=11 :1’ﬂ:ﬁ thus
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Sl r(ljr[l_lj
c'2 e 2 l-aa 2
L = '
v 2 1
(5)
a-1

and p(x) is Burr type (XII). Consider two constraints E(X) =9, E(X?)=0.8 the results are
summarized in the following table.

Table 3 Estimate of 4,, 4,4, under constraint E(X)=9, E(X?)=0.8

Sample sizes @ A A A My #1 Hy 2,5,
0.50 8.9848 -4.3965 -5.0355 1 0.9677 0.9368 19.5960

400 0.75 79.2658 -44.7857 -44.9483 1 0.92 0.8464 1667800
0.95 45.6577 -8.9701 -23.2195 1 0.9874 0.9753 14.0568

0.99 131.7677 -15.0077 -24.0759 1 0.9859 0.9722 11.8788

0.50 5.4367 -2.4485 -2.7913 1 0.9171 0.8649 0.6591

600 0.75 12.0772 -4.3058 -6.5025 1 0.9594 0.9254 0.8010
0.95 114.0232 -8.5529 -14.1570 1 0.9764 0.9540 1.6988

0.99 120.9526 -9.2884 -16.9913 1 09772 0.9556 2.004

0.50 4.7283 -1.9744 -2.4392 1 0.8736 0.7997 0.4812

1000 0.75 9.0520 -3.3878 -3.7537 1 0.9004 0.8307 0.3813
0.95 31.1287 -5.3028 -9.1952 1 0.9583 0.9207 0.5553

0.99 113.0195 -6.2958 -10.4416 1 0.9620 0.9270 0.6048

0.50 -23.8026 13.9873 15.2675 1 0.8719 0.7601 143.6108

1500 0.75 8.3363 -2.8634 -3.4490 1 0.8817 0.8029 0.3601
0.95 23.7768 0.8081 -6.8801 1 0.8965 0.8217 0.3316

0.99 108.2797 -3.9030 -7.2088 1 0.9398 0.8876 0.3657

As mentioned previously sometimes we have generally constraint E(g(X))=u for example
g(x)=cos(x). For 4 sample sizes 400, 600, 1000, 1500 and different values for
a (a =0.75,0.95,1.25,1.5), we determine Lagrange multipliers. The results are summarized in Table
4. When ¢ >1(a =1.25,1.5) the values of 4, is equal 0.5.

Table 4 Estimate of A, A4, under constraint E(cos(X))=0.5

Sample sizes a

Z

A

z

Ho H A

0.75 1.9519 2.0963 1 -0.9299 29206000000

400 0.95 34.2781 -30.5562 1 0.9967 28827000000000
1.25 -4.3515 -1.2970 1 0.5003 4.5777

1.50 -2.3188 -1.3624 1 0.5006 4.4029

0.75 5.8155 -5.6309 1 0.9934 17577

600 0.95 32.9127 -27.8254 1 0.9950 6819000000000
1.25 -4.3517 -1.2967 1 0.5005 4.5769

1.50 -2.3186 -1.3627 1 0.5010 4.4021
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Table 4 (Continued)

Sample sizes a Ao A o i zZ,
0.75 5.7036 -5.4073 1 0.9889 3423.7

1000 0.95 30.7988 -23.5977 1 0.9917 84535000
1.25 -4.3513 -1.2974 1 0.5008 4.5764

1.50 -2.3178 -1.3644 1 0.5016 4.4007

0.75 5.5762 -5.1525 1 0.9832 1004.6

1500 0.95 28.9264 -19.8529 1 0.9786 1017900
1.25 -4.3549 -1.2902 1 0.4988 4.5784

1.50 -2.3167 -1.3665 1 0.5024 4.3989

4. Conclusions

In this paper while introducing the Renyi entropy, we were looking for distribution that
maximizes the Renyi entropy under given constraints. Considering this constraints we have made
nonlinear equation and this equations have been solved with Lagrange method. We wrote a program
in Matlab that is given in appendix. Using this program, we have determined Lagrange multipliers.
Then replacing this 4 ’s in relation (11) we have obtained the distribution with maximum Renyi

entropy.
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Appendix

function [lambda,p,beta,conditions] = reni2(mu,xprime,alpha)

%UNTITLED Summary of this function goes here

% Detailed explanation goes here

%p has the values of PDF

Eps=1e-4;

Xmin=xprime(1); %in order to avoid conflict we defined xprime instead of x
Xmax=xprime(length(xprime));

Dx=xprime(2)-xprime(1);

lambda=zeros(size(mu));

O© 0O NO Ol &~ W N -

10 n=length(lambda);

11 phi2=fin_3();

12 r=1;

13  [row,column]=size(xprime);

14 finalx=xprime;

15 phin=zeros(n,column);

16 muprime=zeros(n,column);

18 lambdaprime=zeros(n,column);

19 phil=zeros(n,1);

20 not=0;

21  y=0;

22 for myi=1:length(xprime) %¢Calculation of muprime matrix which is n*r
23 muprime(:,myi)=mu’;

24 end %End of muprime calculation

25 for ex=xmin:dx:xmax  %start of loop for calculating Phi-en
26 fori=l:n %caculation of matrix phil in order to use in sigma
27  phil(i,1)=phi2{i,1}(ex);

28 end %end of phil calculation

29 phin(;,r)=phil(;); %Calculation of Phi-en matrix which is r*n
30 r=r+l;

31 end %end of loop for calculating Phi-en

32 while 1l %first of while loop
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33 for myi=1:length(xprime) %Calculation of lambdaprime matrix which is n*r

34 lambdaprime(:,myi)=lambda’;

35 end %End of lambdaprime calculation

36 if (n==1)

37 Imphi=((1-alpha)/alpha)*(lambdaprime.*(muprime-phin));

38 %Calculation of sum of ((1-alpha)/alpha)*lambda.*(mu-phi) in which each column stands for
asingle x

39 else

40 Imphi=((1-alpha)/alpha)*sum(lambdaprime.*(muprime-phin));

41 end

42 beta=dx*sum((1-Imphi).”(1/(alpha-1))); %calculation of beta

43 p=1/beta*((1-Imphi).~(1/(alpha-1))); %Calculation of P(x)

44 a=(1-lmphi).~((1/(alpha-1))-1);

45 g=zeros(1,n);

46 for myi=1:n  %calculation of g(1,i)

47 g(1,myi)=dx*sum(phin(myi,:).*p);

48  end %for end

49 if(isnan(g)lisinf(g)|(~isreal(g))) %If any element in g was not a number or was infinite or was

complex the

50 % calculation is broken.

51 not=1;

52  break

53 end

54 gmk=zeros(n,n);

55 for m=1:n

56 for k=1:n

57  first=(((-(2-Imphi)/beta)*sum((muprime(k,:)-phin(k,:)).*a)+(muprime(k,:)-
phin(k,:))).*a)/(alpha*beta);

58 gmk=dx*sum(first.*phin(m,:));

59 end

60 end %end of forming g(i,j)

61 v=(mu-g);

62 delta=gmk\v;

63 lambda=lambda+delta’;

64 if(abs(delta./(lambda’))<eps)

65 for myi=1:length(finalx) %Calculation of lambdaprime matrix which is n*r

66 lambdaprime(:,myi)=lambda’;

67 end %End of lambdaprime calculation

68 if (n==1)

69 Imphi=((1-alpha)/alpha)*(lambdaprime.*(muprime-phin));

70 %Calculation of sum of ((1-alpha)/alpha)*lambda.*(mu-phi) in which each column stands for
asingle x

71 else

72 Imphi=((1-alpha)/alpha)*sum(lambdaprime.*(muprime-phin));

73 end %Calculation of sum of ((1-alpha)/alpha)*lambda.*(mu-phi) in which each

column stands for a single x
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74 beta=dx*sum((1-Imphi).~(1/(alpha-1))); %calculation of beta
75 p=1l/beta*((1-Imphi).”~(1/(alpha-1))); %Calculation of P(x)
76  break,

77 end %End of delta if
78 end%while end

79 if(not==0)

80 p_integral=dx*sum(p);

81 conditions=zeros(1,n);

82 for myj=1:n

83 conditions(1,myj)=dx*sum(phin(myj,:).*p);
84 end

85 conditions=[p_integral,conditions]; %Conditions shows how correct our calculations has been
86 if(size(p)==size(finalx))
87 plot(finalx,p)

88 disp('End of the program);
89 else

90 finalx(end)=[];

91 plot(finalx,p)

92 disp('End of the program’);
93 end

94  else

95 disp('No answer exists’)
96 end

97 end % function end
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