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Abstract 

The paper investigates a M/M(b,b)/1 queuing model with bulk service

customers in batches of fixed size b, and the service time is assumed to be exponentially 

distribution. Customers arrive to the system as a Poisson process and may renege after waiting in 

the queue for an exponentially distributed time

the system. The model is analyzed to find the different measures of effectiveness of the model

approach adopted is based on embedded Markov chains

______________________________ 

Keywords: Queuing, Poisson arrival, batch service

1. Introduction 

Bulk service is a common phenomenon in real life

are telecommunication, transportation process, production process, airline scheduling, to name a 

few. Over the last two decades many studies have been carried out to analyze bulk service queues 

with various arrival processes and service time distributions

general control strategy for bulk service queue

service queue with arrival rate dependent on server

proposed transient analysis for the Mx /M /

for bulk queuing system. See also Jaiswal 

However, very few authors considered bulk service queuing system with impatient customer

Shawky, and El–Paoumy (2008) studied a truncated h

rule, finite holding capacity and impatient customers and attempted to obtain an analytical solution 

to the problem, which is applicable only when the system has finite holding capacity

find only the explicit expression for the expected queue length

investigated a state dependent bulk service system with server vacation when customers may be 

impatient. Their analysis is based on shifting operator and Rouche

the methods used by various authors become very complicated when state dependent balking or 

state dependent reneging is introduced. 
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queuing model with bulk service. The server serves the 

, and the service time is assumed to be exponentially 

Customers arrive to the system as a Poisson process and may renege after waiting in 

for an exponentially distributed time. The reneging of a customer depends on the state of 

The model is analyzed to find the different measures of effectiveness of the model. The 

approach adopted is based on embedded Markov chains. 

batch service, reneging customers, embedded Markov chain. 

Bulk service is a common phenomenon in real life. Some examples of a bulk service system 

process, production process, airline scheduling, to name a 

Over the last two decades many studies have been carried out to analyze bulk service queues 

with various arrival processes and service time distributions.  Powell and Humblet (1986) used 

al control strategy for bulk service queue. Jayaraman et al. (1994) investigated a general bulk 

service queue with arrival rate dependent on server-breakdown. Willmot and Drekic (2001) 

/∞ queue. Dshalalow (2001) described briefly D-policy 

See also Jaiswal (1964), Downton (1986), Jain and Singh (2005). 

However, very few authors considered bulk service queuing system with impatient customer. 

studied a truncated hyper-Poisson queue with general bulk service 

rule, finite holding capacity and impatient customers and attempted to obtain an analytical solution 

which is applicable only when the system has finite holding capacity.  They could 

e explicit expression for the expected queue length. Shinde and Patankar (2012) 

a state dependent bulk service system with server vacation when customers may be 

based on shifting operator and Rouche’s Theorem involving. However, 

the methods used by various authors become very complicated when state dependent balking or 
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In this paper, we suggest a different approach to compute the performance measures of a 

system. We use embedded Markov chain to analyze a batch service queuing model with state 

dependent reneging. The batch size “b” is assumed to be fixed, so that whenever there is less than 

“b” customers in the system, the server waits till at least “b” customers are available. Customers or 

units are assumed to arrive in a Poisson manner, and the service time is exponentially distributed. 

An arriving customer who has to wait reneges (abandon later) after an exponentially distributed 

time, if his service has not yet begun. As different customers may have different delay thresholds, 

just as different customers have different utility functions, the reneging times of the successive 

customers may be taken to be independently and identically distributed. 

Our analysis is based on steady state distribution of the semi Markov process. There is no 

bound for system capacity, so the state space of the Markov chain is infinite (countable). We check 

the stability condition to ensure the existence and uniqueness of the steady state distribution, and we 

use finite approximation of infinite transition probability matrix (TPM) to obtain the steady state 

distribution. Thus, we can avoid using transformations and carrying out tedious calculations of 

roots to get the values of the steady state probabilities. By our approach we can get a good 

approximation of the steady state distribution for any given set of system parameters, and it can be 

improved by our choice of the finite order of the TPM, that is, increase in the order will make the 

approximation better. 

The paper is organized as follows. Section 2 gives the assumptions and notations. Section 3 

analyzes the model to obtain the steady state distribution of the number of customers in the system. 

In Section 4 expressions for the measures of effectiveness of the system are obtained, while a 

comparison of the derived formulae of the performance measures and those obtained from a 

simulation study is given in Section 5. Some concluding remarks on the approach are made in 

Section 6. 

2. Assumptions and Notations 

Assumptions: 

The queuing system is governed by the following assumptions: 

(i)  Customers arrive to the system one by one as a Poisson process with mean arrival rate  . 

(ii) The service times are independently and identically distributed as exponential with mean 

11/  . 

(iii) The waiting time of the server since last service until the number of waiting customers is at 

least equal to its serving capacity b, does not affect the next service time. 

(iv) The waiting time in the queue of a reneging customer has an exponential distribution with 

mean 21/  . 

(v) The service station has an infinite waiting capacity. 

(vi) 1b   

Notations: 

( )X   number of customer in the system at time “ ” 

mt        m-th time epoch at which the system size changes. 

mX      number of customers in the system after the m-th transition. 
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3. Analysis of the model 

Let us define 

 I = {0, 1, 2, …}, I+ = {1, 2, …}, X = {Xm: m = 0, 1, 2,…}, t = {tm: m = 1, 2,…}. 

We have that Xm = X(tm+) = 
0

lim ( )m
h

X t h


 , for m  1. Now, for all m  1, tm  0 and j I, we have 

                              P[Xm+1 = j, tm+1 – tm ≤  | X0, X1,…, Xm; t1, t2,…., tm]  

      = P[Xm+1= j, tm+1 – tm ≤  | Xm].            (1) 

Hence, (X, t) is a Markov-renewal process. 

Our interest lies in finding the distribution of Xm as m and of ( )X   as , that is, we 

want to find the steady state distribution of the number of customers in the system at any point of 

time.  

Let Q(i, j, ) denote the probability that if the system is in state i after a transition, then the next 

transition  will occur after at most   units of time and the system will move to state j, i.e. 

Q(i, j, ) = P[Xm+1= j , tm+1 – tm ≤  |Xm=i].                                               (2) 

Let ( )Q   denote a matrix whose (i, j)-th element is Q(i, j,). Let, further, P be the transition 

probability matrix (TPM) of the discrete time Markov chain {Xm} underlying the Markov renewal 

process (X, t), and P(i, j) denote the one-step transition probability of going from state i to state j. 

Then,  

  ( , ) lim ( , , )P i j Q i j





                                                                  (3) 

Let Ti denote the unconditional time for which the system remains in state i. The distribution of 

Ti can be obtained in the following way:  

Suppose at some time point “t*” the system reaches the state ‘i’. If, i < b, the state of the 

system can change only due to an arrival or a reneging. Let X denote the time for the next arrival 

and Y denote the time for the next departure due to reneging. Then, Ti = min (X, Y). 

Now, according to our assumptions, X  exp (λ) and Y  exp (iµ2), since there are “i” customers 

waiting in the queue. Hence, 
2( )Pr( ) Pr[ , ] Pr[ ]Pr[ ] i

iT X Y X Y e                 , 

which shows that Ti ~ exponential 2( )i  . 

The situation i ≥ b occurs when there are b customers in service, none of whom will renege, 

and (i-b) customers are in the waiting line, who may renege., In this situation, the state of the 

system can change due to a new arrival, a reneging or a service completion. Let X, Y and Z denote 

respectively the times for the next arrival, the next reneging and the next service completion, Then, 

Ti = min (X, Y, Z). By our assumptions, X  exponential(λ), Y  exponential 2(( ) )i b   and Z  

exponential(µ1), and, therefore, arguing as before, we have that Ti ~ exponential 2 1( ( ) )i b     . 

Thus we have, 

Ti ~ exp 2( )i  ,                when i < b 

Ti ~ exp 2 1( ( ) )i b     ,  when i ≥ b. 

Hence, the process { ( )X t } is a Markov process. 

Noting that both i, the system size before transition, and j, the system size after transition, can 

vary from 0 to , we obtain the one-step transition probabilities P(i, j) as follows:  
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      1                                              if i = 0 and j = 1 

              2/( )i                               if 0  i < b  and j = i+1 

              2 2/( )i i                            if 0  i < b and j = i -1 

      ( , )P i j   = 2 1/( ( ) )i b                  if i ≥ b and j = i+1                                   (4) 

    2 2 1( ) /( ( ) )i b i b        if i ≥ b  and j = i-1 

           1 2 1/( ( ) )i b                 if i ≥ b  and j = i-b. 

                           0                                              otherwise  

To study the Markov chain {Xm}, we make use of the following theorem by Pakes (1969): 

 

Theorem 1 (Pakes, 1969): If |i|< for all i, where i= 1[ | ]m m mE X X X i   , and if 
i

lim sup i < 0 

in an irreducible and aperiodic Markov chain {Xm: m = 1, 2,…}, then it is ergodic. 

 

We then have the following observation on the Markov chain {Xm}: 

 

Theorem 2 The Markov chain {Xm} is positive recurrent.  

Proof: The state of the chain can get increased by one unit due to an arrival, and decreased by one 

unit due to reneging or decreased by “b” units due to service completion. If “b” is an even number 

then starting from a state, the system can return to that state either in an odd number of steps or in 

an even number of steps. The above claim is clear from the following example: 

 

Example 1: Let us assume that b is an even number. Suppose the system is at the state “0” and the 

server is idle. Then, it can go to the state “ b ” in b  steps if there be “ b ” consecutive arrivals, and 

then can get back to the state “0” in a single step due to a service completion, provided there are no 

arrivals during that time. This means, the number of steps for the system to return to the state “0” is 

1b , which is an odd number. Let us consider another way in which the system starting at state 

“0” returns to the same state. Suppose there are “ 1b ” consecutive arrivals which takes the system 

to state “ 1b ” in 1b  steps, and then it gets back to state “0” in 1b steps due to “ 1b ” 

consecutive reneging of the customers. Hence, in this case, the number of steps to return to the state 

“0” is 2 2b  , which is an even number. Thus, the periodicity of the state “0” is one.  

Since the chain is irreducible, clearly the periodicity of the chain must be 1. 

Thus, for b even, the chain is aperiodic. 

If “b” is an odd number, then starting from a state, the system can return to that state only in an 

odd number of steps, which is clear from the following example:  

 

Example 2: Consider the system to be at the state “0” and the server is idle. Due to arrivals, service 

completions and reneging, the system goes through different states. The number of steps required 

for the system to again return to state “0” can be calculated in the following way: 

Suppose there are “ 1 2n b n ”(where “ 2n ” be any positive integer less than “b”) arrivals in that 

interval, and “ 1 3n n ” service completions, where 3 10 n n  . Then for the system to go back to 

state “0”, there must be 1 2 1 3 3 2( )n b n n n b n b n      reneging. Thus, the number of steps to return 

to state “0” is 1 2 1 3 3 2 1 3 2 0( ) ( 1) ( 1) 2n b n n n n b n n b n b n n           , say, since every arrival 
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increases the state by unity and every service completion decreases the state by “b”, while every 

reneging decreases the state by unity. Clearly, 0n  is an even number, whatever be 

1 2 3, , {0,1,2,...}n n n  , 1 3n n . Hence, the number of steps to return to “0” is always even. 

Since the chain is irreducible, it follows that the periodicity of the chain is 2, which is the greatest 

common divisor of all even numbers. 

Hence, for odd b, the chain is of periodicity 2. 

 

Case 1: “b” is an even integer, the Markov chain {Xm} is aperiodic. 

For b even, 

  γi = E[Xm+1 – Xm | Xm =i]. 

      = 1,               when i =0 

      = 2 2( ) /( )i i     ,     when 0 < i < b 

      = 1 2 1[(2 ( 1) ) /( ( ) )] 1b i b          , when i ≥ b. 

Hence, γi  → -1 as i→∞. This indicates that |i| < and 
i

lim sup i < 0. 

Then, by virtue of Theorem 1, it follows that the Markov chain {Xm} is ergodic.   

 

Case 2: “b” is an odd integer, the chain {Xm } is periodic with periodicity 2.  

In this case,  

Pr[Xm+2 =i| Xm=i] > Pr[Xm+2=i|Xm+1=i+1] Pr[Xm+1 = i+1| Xm=i] > 0. 

Hence, Pr[X2m+2=i|X2m=i] > 0. But this gives the one step transition probability “p(i, i)” for the chain 

{X2m}. Thus the chain {X2m} is aperiodic (Hoel et al., 1972). 

Consider 

i = E[X2m+2 – X2m |X2m =i], i ≥ 0. 

Since we have only a finite number of non-zero elements in each row and column of the transition 

matrix P, for given i, i will be the sum of a finite number of non-zero values. Hence, i is finite for 

all i. 

When i ≥ 2b,  

     i=2·p(i,i+1)·p(i+1,i+2)-2·p(i,i-1)·p(i-1,i-2)-(b-1)·{p(i,i+1)·p(i+1,i+1-b)+p(i,i-b)·p(i-b,i-b+1)}-  

           (b+1)·{p(i,i-1)·p(i-1,i-1-b)+ p(i,i-b)·p(i-b,i-b-1)}-2b·p(i,i-b) p(i-b,i-2b) 

Hence,  i → -2 as i→∞.  

This shows that |i | < , and 
i

lim sup i < 0. 

Then, by virtue of Theorem 1, the Markov chain {X2m} is ergodic. 

Now, consider (2)
y = min{2n: X2n= y | X0 = y} and (1)

y = min{n: Xn= y | X0 = y }. 

As the chain {X2m} is ergodic, E[ (2)
y ] < ∞. 

But, (2) (1)
y y  , since the Markov chain {Xm}is of periodicity 2. 

Hence, E[ (1)
y ] <∞. 

Thus, the chain {Xm} is positive recurrent. 

Hence, whatever be “b”, the chain {Xm} is positive recurrent. 

Thus the theorem is proved. 
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As {Xm} is irreducible and positive recurrent, there exists a unique stationary distribution  , 

which is characterized by the equations 

 0

( , )j i
i

P i j 


 , for all j ≥ 1; 
0

1j
j




 .                                         (5) 

(Hoel et al., 1972) 

 

Equations (5) give an infinite system of equations, which is rather difficult to solve. In order to 

compute the steady-state probabilities, we therefore make use of a modification of a well-known 

procedure due to Seneta (1968), which is the north-west corner truncation of an infinite-

dimensional TPM to a finite one. The modified method is due to Wolf (1980). The method works 

well when the elements in the TPM become negligible as one proceeds to the eastern and southern 

sides of the infinite-dimensional transition probability matrix.  

Let us consider a special sequence of TPM {Pm, m > 0}, constructed using P, such that  

                 0,                               if i   m+1 or, j   m+1 

  ( , )mP i j  =     ( ,0)P i + ( , )
j m

P i j


 , if i < m+1 and j = 0                                      (6) 

          ( , )P i j ,                      if i < m+1 and 0 < j < m+1. 

 

Then, Pm has exactly one stationary distribution, m , and it converges to   (Wolf, 1979). 

If lim [ ( ) ] j
t

P X t j 


  , then m m m
j j j j ji

M M     will converge to j , where Mi=E[Ti]. 

Using the statistical software R, we can compute m  as the eigen vector of the transpose of Pm 

corresponding to the eigen value 1 and it exists because we are considering an irreducible and 

positive recurrent transition probability matrix of order “m”. Then, using the formula 
m m m
j j j j ji

M M     for large value of “m”,  

we can approximate j . 

4. Performance Measures 

We now evaluate the performance measure as follows: 

(i) Expected number of customer in the system = lim m
jjm

E j


   

(ii) Standard deviation of number of customer in the system = 2 2lim m
jjm

j E 


  
   

(iii) Expected queue length = 
1

0
lim ( )

b m m
j jj j bm

Q j j b 


 
     

(iv) Busy period probability = PB = lim m
jj bm




  

(v) Average reneging rate = 2 2lim ( )m m
i ii b i bm

R i i b   
 

       

(vi) Proportion of customers served, that is the proportion of customers who left after service 

completion. 

To obtain (vi), we consider a large value of “t” as well as a large number of transitions, say M 

transitions in the system size, so that the value of the M th transition, viz. tM , is high. If we have 1n

arrivals and 2n  service completions during that time, then we can say that in the long run the 

proportion of customers served under steady state situation is  
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P*≈ �
�����	������	��	��������	������

�����	������	��	��������	�������
� = 2 1/bn n  

Now,  

 1 1 10
( / ) lim [ 1] lim ( , 1) m

n n iin m
n M P X X p i i P  

       , say 

and 2 1 2( / ) lim [ ] lim ( , ) m
n n ii bn m

n M P X X b p i i b P  
        , say. 

Hence, * 2 2 2

1 1 1

/

/

bn bn M bP
P

n n M P

     
       

     
.                    (7) 

Though we do not get the above measures of performance in closed forms we can approximate 

them for large “m”. In fact, these measures are convergent, which is very evident from Figure 1. 

With increase in the value of ‘m’ one can make the approximation better up to any desired level of 

accuracy. 

5. Computations of Performance Measures 

Using R software, we have computed all the performance measures mentioned above. 

Simulation studies are carried out for each set of values of the system parameters. In each case, we 

have simulated 500 transitions and used 1000 replications. 

Values obtained using the derived formula are very close to the simulated values of the 

performance measures. As this method is highly based on the consideration of large value of ‘m’, so 

we have computed all the measures for m = 100(1)199 and checked their convergence. 

Table 1 compares the measures of performance based on the derived formulae with those 

obtained by simulation, and these are found to be considerably close. It is also observed that other 

parameters remaining constant, an increase in the service capacity (b) of the server results in a 

decrease in the expected queue length, the chance of the server remaining idle and the rate of 

reneging. The variation in the number of customers in the system also decreases with increase in b. 

In Figure 1, we graphically show the convergence of the various measures of performance to their 

true values as the order of the transition probability matrix increases. 

6. Conclusions  

The paper analyzes a M/M(b,b)/1 queuing model with reneging using embedded Markov chain. 

It derives the performance measures of the system and carries out a simulation study to show the 

closeness of simulated values to those derived by the algebraic expressions. The procedure adopted 

is less tedious than the usual Laplace transform approach used to analyze a queuing system, which 

requires the generation of complex zeroes and therefore poses several numerical difficulties. The 

method may be used to analyze more general type of bulk service queues. 
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(a) λ=4, µ1=0.5, µ2=0.08, b= 13 

 

 
(b) λ= 4, µ1=0.3, µ2=0.025, b= 1

 

 
Figure 1 Graphs showing the convergence of the performance measures as the order (m) of TPM 

increases 

 

For each graph, the value to which the curve converges is indicated by dotted line. 
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