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Abstract

Recently, the power Lindley distribution was proposed by Ghitany et al. (2013). It can be
considered as an alternative to the Weibull distribution. In some cases, the Weibull and PL
distributions provide similar data fit. In this paper, we discriminate between the Weibull and PL
distributions by taking advantage of the Fisher information procedure proposed by Gupta and
Kundu (2006). In addition, the Fisher information matrix is used to compute the asymptotic
variance of the p™ percentile estimators including the asymptotic variances of the median and the
average asymptotic variance of the percentile estimators. Furthermore, both of the asymptotic
variances are useful as they can provide the further information of the Q-Q plot, especially the
variation. In cases of the Weibull and PL distributions, the trends of the asymptotic variance of the
pth percentile estimators are demonstrated with respect to the shape and the scale parameters.
Moreover, we also analyze two datasets and compare the result between the likelihood ratio and the
Fisher information procedures.

Keywords: Fisher information matrix, percentile estimators, Weibull distribution, power Lindley

distribution.

1. Introduction

Many researchers pay attention to discriminate among any closeness distributions (Alshunnara
et al. 2010; Gupta and Kundu 2003, 2006; Kundu and Raqgab 2007; Pakyari 2010; Ragaba 2013).
Some sets of distributions are considered similarly according to the shape of density function, the
behavior of hazard function, and the tail probability. In literature, there are many distributions
involved in discrimination problem such as the Weibull and generalized exponential distributions
(Gupta and Kundu 2003, 2006) the generalized Rayleigh and log-normal distributions (Kundu and
Ragab 2007; Alshunnara et al. 2010) and the generalized Rayleigh and Weibull distributions
(Ragaba 2013). It is important to mention that those distributions overlap with each other in some
ranges of parameters. Moreover, the fitted distributions for given dataset are quite similar.
Therefore, the discrimination problem is necessary to be studied.

Ghitany et al. (2013) proposed the power Lindley (PL) distribution. It is a two component
mixture of the Weibull distribution and a generalized gamma distribution. The PL distribution has
two parameters which behave as shape and scale. Indeed, the PL distribution has more shape of
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probability density function than the Weibull distribution, which can broaden the range of
application. Its hazard function can be decreasing, increasing and decreasing-increasing-decreasing
(Ghitany et al. 2013). Furthermore, the decreasing-increasing-decreasing behavior of hazard
function can explain new kind of phenomenon in practice. In application study, Ghitany et al.
(2013) fitted the PL distribution to real dataset and compared the result with the Gompert, gamma
and the Weibull distributions. Remarkably, the PL distribution provided similar maximum log-
likelihood values to the Weibull distribution. Indeed, the Weibull distribution has gained a lot of
attention from many researchers (Rinne 1986). There are many books and works discuss the
Weibull distribution, including properties, applications, generalization, and competitive
distributions. The PL distribution is one of its competitive distributions. In practice, the nearest
fitted results of the Weibull and PL distributions may happen such as in reliability analysis.
Consequently, we are interested in discriminating between the PL and Weibull distributions.

The Fisher information matrix has various advantages. It can measure the information of the
parameter containing in data. In inferential statistics, the Fisher information matrix is associated
with the asymptotic properties of the maximum likelihood estimators (Hofmann 2004).
Additionally, the factorization of the hazard function can be characterized by the property of the
Fisher information (Hofmann et al. 2005). In 2006, Gupta and Kundu applied the Fisher
information matrix to discriminate between the Weibull and generalized exponential (GE)
distributions (Gupta and Kundu 2006). They found that both Weibull and GE distributions can
provide similar fitted result of some particular datasets, but their Fisher information matrices can be
quite different. In fact, they use the Fisher information matrix to compute the asymptotic variance
of the pth percentile estimators including the asymptotic variances of the median and average
asymptotic variance of the percentile estimators. Moreover, the p™ percentile estimators are
functions of MLE, asymptotic variance of the pth percentile estimators and asymptotic variance of
median provides a framework of discriminating distributions through specific function of MLE.
This framework would be useful in practice.

In this paper, above asymptotic variance of the p"™ percentile is applied to discriminate between
the Weibull and PL distributions. The rest of this paper is organized as follows. Section 2 provides
fundamental properties of the Weibull and PL distributions. In Section 3, the Fisher information
matrix of the Weibull and PL distributions are presented. Furthermore, we give the discrimination
procedures considered in this study in Section 4. Section 5 illustrates the trends of the asymptotic
variances of the median and average asymptotic variance of the percentile estimators with respect to
the parameters of an underlying distribution. Moreover, the application to real data is demonstrated
in Section 6.

2. Preliminaries

In this section, we provide fundamental properties of the Weibull and PL distributions. In
addition, both of the distributions have two parameters that are shape and scale parameters. The
closeness of the Weibull and PL distributions is presented in Figure 1.
2.1. Weibull distribution

The distribution function of the Weibull distribution is
Fyy(x:B.y) =1

and the corresponding probability density function is

1 —()?
fWB(X;ﬁay)zﬂyﬂxﬂ le™r P
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where x>0, >0 is the shape parameter, and y > 0 is the scale parameter (Rinne 1986).
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Figure 1 Plots of the Weibull and PL pdfs for some parameter values

The Weibull distribution with shape parameter £ and scale parameter y will be denoted by

WB(S,7).
The log-likelihood function of the Weibull distribution based on a random sample of size n is

log Ly (8. 7) = nlog() + nBlog(r) + (A~ D3 log(x) - 7 3 5.

The first derivatives of log L, (f,7) withrespectto f and y are

a n n
35108 L (B.7) = o+ nlog(p)+ 2 log(x) =" 2 log(r) (1)

0 npf e

——log L, (B.y)=——=py"" 2 xl. )
oy e i=1

By equating (1) and (2) to zero, we get the nonlinear equations. Consequently, these equations can

be solved by a numerical method such as the Newton-Raphson algorithm in optim function of R

language (R Core Team 2015) to find the maximum likelihood estimates (MLE) of £ and y.

22. Power Lindley distribution
The PL distribution has the following distribution function and probability density function,

respectively,
A e
x® e,
+1

(1+x)x“"e™,

F, (x;a,A) :1—(14- 7

and
2

al
X, )=
Il ) Tl

where x>0, & >0 is the shape parameter, and 1 >0 is the scale parameter. The PL distribution

with shape parameter « and scale parameter 4 will be written by PL(a,A). The log-likelihood

function of the PL distribution based on a random sample of size » is
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log L, (a,2) = nlog(a) +2nlog(A) —nlog(A+1)+ D log(1+x") = 2D x" +(a—1))_log(x,).

i=1 i=1 i=1
By differentiating log L,, (o, A) with respect to o and A, respectively, the components of the unit

score vector are

0 n X7 log(x,)

oL, (a, ) =" ! 23 x% 1 3

—log Ly, (. 2)=— Z L Zog(x) Zx 0g(x,) 3)
9 logL, (@.4) = L, )
oq o 7 a1 &

Therefore, the MLEs of @ and A can be obtained by equating (3) and (4) to zero and then solving
numerically.

3. Fisher information matrix

The information matrix is a crucial part in statistical inference, related to estimation,
sufficiency and properties of variance of estimators (Nadarajah 2006). Under certain regularity
conditions (Lehmann 1991), the elements of the information matrix are

(7). =| B| ~2lg /(X :0) dlog /(X :0)
" 26, 20,

where 0 =(6,,6,,...,0,) and Jk=12,...,p

Indeed, the hazard function can be used to obtain the information matrix (Efron and Johnstone
1990).

Let A(X :0):1f1(7)((—);‘-’{0) be the hazard function of X . Accordingly, the elements of the

information matrix are

0y, =| E _ Ologh(X:0) Ologh(X :0)
e 00, 00, ’

3.1. Fisher information matrix of Weibull
If a random variable X has the Weibull distribution, the Fisher information for the parameter

IWB(0)2|:5WB” IIWBIZ :|’

WB21 WB22>

vector 6 is

where

Ly, = %(V/’(D + '//2 (2)),

1
Ly, = ;(1 +w (1)),

L =2

wB22 — 2 *

where T'(-)is the gamma function, w(-)=T"(:)/T() is the digamma function, and w>(-) is the

second derivative of the logarithm of the gamma function.
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3.2. Fisher information matrix of PL
Let a random variable X have the PL distribution, the Fisher information for the parameter

vector 6 is
I 0 _ ]PLll IPLIZ
PL( )_ [PLZI PL21> ’
where
1 1 ) )
L ==+ ———{ Bl @)~ log(A)) +¢ 2. 2)] + 2w (3)-log(B) +¢(2.3)]
a a (f+))

~Blwm-logB) +¢ @]+ (B,
Aly@-1og(p)]+ 2y () -log(p)]

[PLIZ_ O.’IB(IB+1) ’
_pP+4p+2
S VR
where {(a,b) is the Riemann’s zeta function written by
= 1
¢(a,b)= Z‘)W a>1,b#0,-1,-2,...
and

1= B e

4. Discrimination procedures
This section includes two discrimination procedures which are likelihood ratio and Fisher
information procedures.

4.1. Likelihood ratio procedure
Suppose a random sample X,,...,X, belong to either the Weibull distribution or the PL

distribution. Let maximum likelihood of the Weibull distribution and the PL distribution be
LyB.7) =1 i),

and .
L @A) =[] i

respectively.
Thus, the logarithm of the maximum likelihood ratio is

T =log M :lOgLWB(ﬁﬁj;)_logLPL(dsi)'
L (a,A

If T >0, the dataset is better fitted with the Weibull distribution, otherwise the PL distribution is
selected.
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4.2. Fisher information procedure

The Fisher information is beneficial to compute the asymptotic variances of various functions
of estimators (Gupta and Kundu 2006). To obtain the asymptotic variances of the pth percentile
estimators, it required the function of p™ percentile estimators and the inverse of the Fisher
information matrix.

The p™ (0< p<1) percentile points of the WB(f,y) and PL(c,A) distributions are

1
By = ;(_IOg(l _p))l/ﬂ

and
1 1 1a
1 _ = . _ —(A+1)
PPL—[ L= == W, -2+ pe )}
respectively, where W, is the principal branch of the Lambert W function. The asymptotic

variances of the p™ percentile estimators (Lawless 1982) of the Weibull and PL distributions are

OF,,
|
v, (p)={aPWB aPWBiH:IWBll [wm} op
" o oy || L Lysx OF,;
Jy
where
OP 1 7
3 = loe=p)) " log(~log(1 - p)).
aPWB 1 1/p
St (~log(1-p)
and
y oFy,
vV, (p)= 0oy OPpy [ Lo Lpiia oa
" oa O |[Lpy 1pn 0Py, ’
oA
where
aPpL 1 1 1 e 1 1
— = -l-———=W log| -1-————W. R
Fy az( ) _1(Z)j og F) 1(2)
(l-a)/a
%:i(_l_l_lwl(z)j (Lz(l'i‘Wl(Z))— (1+p)67(1+1) W.(z) ,
o4 «a A A A z(1+W_,(2))

—(A+1)

where z =— (1 +1)(1-p)e
We will use the asymptotic variance of the median estimator and the average asymptotic
variance of the percentile estimators to select the appropriate distribution, defined as

1 1
Vis(0.5),V,,(0.5) and _[0 VWB(P)dp,IO V.,s(p)dp respectively. Moreover, the decision rule is to

choose the distribution which has the less variance (Alshunnara et al. 2010; Gupta and Kundu 2003,
2006; Kundu and Ragab 2007)
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5. Simulation study

In this section, we study the behaviors of the median estimator and the average asymptotic
variance of the percentile estimators, based on the Monte Carlo simulations. In addition, we use
sample size n=20,50,100,200, and 1,000 repetitions. The median estimator and the average
asymptotic variance of the percentile estimators are determined on 4 cases including:

1) X ~WB(B,1) , where 8=0.6,0.8,1.2,1.6,1.8
2) X ~WB(l,y), where y=0.6,0.8,1.2,1.6,1.8
3) X ~ PL(a,1), where a=0.6,0.8,1.2,1.6,1.8
4) X ~ PL(L, 1), where 1=0.6,0.8,1.2,1.6,1.8

Table 1 The number in the first row represents the asymptotic variances of the median estimator,
and the numbers in the bracket show the average asymptotic variance of the percentile estimators,

when a random variable X is distributed as WB(f3,1)

n

d 20 50 100 200
0.6 0.1983 0.0724 0.0353 0.0173
(10.1824)  (3.0857)  (1.3602)  (0.6447)

0.8 0.1305 0.0519 0.0259 0.0129
(1.2948)  (0.4886)  (0.2345)  (0.1157)

1.2 0.0740 0.0304 0.0156 0.0078
(0.2135)  (0.0840)  (0.0430)  (0.0212)

1.4 0.0603 0.0245 0.0123 0.0062
(0.1312)  (0.0517)  (0.0259)  (0.0130)

1.6 0.0477 0.0201 0.0101 0.0051
(0.0868)  (0.0359)  (0.0179)  (0.0089)

1.8 0.0404 0.0165 0.0084 0.0042
(0.0657)  (0.0262)  (0.0133)  (0.0067)
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Table 2 The number in the first row represents the asymptotic variances of the median estimator,
and the numbers in the bracket show the average asymptotic variance of the percentile estimators,

when a random variable X is distributed as WB(1, y)

n
v

20 50 100 200
0.6 0.2721 0.1102 0.0552 0.0275
(12377)  (0.4646)  (0.2341)  (0.1156)
0.8 0.1553 0.0619 0.0310 0.0155
0.6841)  (0.2659)  (0.1311)  (0.0657)
1.2 0.0686 0.0277 0.0138 0.0069
(0.3033)  (0.1203)  (0.0585)  (0.0289)
1.4 0.0506 0.0203 0.0101 0.0051
(0.2260)  (0.0867)  (0.0432)  (0.0213)
1.6 0.0382 0.0155 0.0078 0.0039
(0.1746)  (0.0667)  (0.0331)  (0.0164)
1.8 0.0302 0.0121 0.0061 0.0031

(0.1451)  (0.0516)  (0.0259)  (0.0130)

Table 3 The number in the first row represents the asymptotic variances of the median estimator,
and the numbers in the bracket show the average asymptotic variance of the percentile estimators,

when a random variable X is distributed as PL(«,1)

n

“ 20 50 100 200
0.6 0.7647 0.3016 0.1517 0.0749
(17.9853)  (5.4407)  (2.6739)  (1.2734)

0.8 0.3711 0.1473 0.0735 0.0367
(2.1436)  (0.7986)  (0.3906)  (0.1897)

1.2 0.1379 0.0575 0.0289 0.0145
(0.2978)  (0.1206)  (0.0597)  (0.0296)

1.4 0.0964 0.0400 0.0204 0.0103
(0.1685)  (0.0681)  (0.0345)  (0.0174)

1.6 0.0715 0.0304 0.0152 0.0077
(0.1092)  (0.0459)  (0.0228)  (0.0115)

1.8 0.0567 0.0233 0.0119 0.0060

(0.0805)  (0.0325)  (0.0165)  (0.0083)
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Table 4 The number in the first row represents the asymptotic variances of the median estimator,
and the numbers in the bracket show the average asymptotic variance of the percentile estimators,

when a random variable X is distributed as PL(1,4)

n

A 20 50 100 200
0.6 4.2382 43622 2.2061 1.1015
(12.3866)  (12.8871)  (5.9882)  (3.0549)

0.8 2.2607 2.3728 1.1876 0.5968
(6.7064)  (6.8783)  (3.3156)  (1.6553)

1.2 0.9510 0.9556 0.4900 0.2439
(2.9725)  (2.8670)  (1.4428)  (0.7187)

1.4 0.6455 0.6789 0.3395 0.1714
(2.0378)  (2.1036)  (1.0339)  (0.5171)

1.6 0.4863 0.5126 0.2498 0.1257
(1.6620)  (1.6514)  (0.7810)  (0.3908)

1.8 0.3799 0.3838 0.1906 0.0958
(1.3235)  (1.2700)  (0.6069)  (0.3049)

According to Tables 1-2, for the Weibull distribution, we discover that the 7,,(0.5) and

1
J.O V,s(p)dp decrease when n, £, and y increase.

When a random variable X has the PL distribution, there are decreasing trends of ¥, (0.5)

and _[01 Vo (p)dp if n, @, and A increase, as shown in Tables 3-4.

1
In summary, the values of V,,(0.5), V,,(0.5), IO Vs (p)dp, I; V.. (p)dp have decreasing

trends when the shape and the scale parameters of the underlying distribution increase.

6. Applications

In this section, the Weibull and PL distributions are fitted to two real datasets. To select the
appropriate distribution, we discuss primarily on the ratio of the maximized likelihoods, asymptotic
variances of the median and average asymptotic variance of the percentile estimators. Other criteria
including the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and
the Kolmogorov-Smirnov (KS) test are also presented.

Dataset 1 is the tensile strength of 69 carbon fibers tested under tension at gauge lengths of 20
mm. (Bader and Priest 1982) 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958,
1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.14, 2.179, 2.224, 2.240, 2.253, 2.270,
2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514,
2.535, 2.554, 2.566, 2.57, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773,
2.800, 2.809, 2.818, 2.821, 2.848, 2.88, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233,

3.433, 3.585, 3.585.

In addition, the Fisher information matrices are

IWB(ﬁAJ;) :|:

0.0645

1.1937 }

1.1937 212.9763



64 Thailand Statistician, 2017; 15(1): 55-68

2.1041  39.7904
39.7904 809.1376 |

I,,(é,2)= {

The fitted results are shown in Table 5.

Table 5 Fitted results of dataset 1

WB PL

MLEs B =5.5055 & =3.8670
7 =03772 1 =0.0497

log L -49.5961 -49.0595
AIC 103.1923 102.1190
BIC 107.6605 106.5873
KS test 0.0562 0.0443
p-value 0.9813 0.9990
7(0.5) 0.2802 0.2512
jol V(p)dp 0.3671 0.3622

According to Table 5, T =-49.5961+49.0595 = —0.5366, V,, (0.5) <V}, (0.5),

J.Ol V., (p)dp < J.Ol Vs (p)dp, which suggest choosing the PL distribution.

3 = - =+ = \WB(5.5055, 0.3772)
—— PL(3.867. 0.0497)

0.8
1
T
.

f(x)
0.4

0.0
\I\.

10 15 20 25 3.0 35 40
X

Figure 2 The histogram of the dataset 1 and the fitted density functions
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Figure 3 (a) Q-Q plot of fitted WB (b) Q-Q plot of fitted PL

Furthermore, the AIC and BIC of the PL distribution are less than those of the Weibull
distribution, and the PL distribution has smaller KS statistic with larger p-value. Therefore, all of
them also lead to the same conclusion.

Figures 2-3 show the fitted density functions and the quantile-quantile (Q-Q) plots,
respectively, which illustrate that the fitted results based on the Weibull and PL distributions are
quite similar to each other.

Dataset 2 is failure times of the air conditioning system of an airplane (Linhart and Zucchini
1986) 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11,
16,90, 1, 16, 52, 95.

The fitted results are shown in Table 6.

Table 6 Fitted results of dataset 2

WB PL
MLEs S =08535 & =0.6309
7=00183  1-0.1635

log L -151.9369 -151.9341
AIC 307.8738 307.8683
BIC 310.6762 310.6707
KS test 0.1532 0.1516
p-value 0.4817 0.4959
7(0.5) 2396.132 2140.871
jol V(p)dp 16192.3 18910.5

The associated Fisher information matrices are

1 G| 26104 246257
s V)= 0 a 6256 2185.1381
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48.8067 74.0767
With respect to Table 6, T =—151.9369+151.9341 = — 0.0028 and ¥,, (0.5) < ¥, (0.5) imply that

the PL distribution fits the given data better than the Weibull distribution. Additionally, the same
conclusion is made by considering the AIC, BIC, and the KS test. However,

.~ [38.0470 48.8067
1,,(a,0)= ,

Ll V. (p)dp > Ll Vs (p)dp, which indicates that the variation of the pth percentile estimators of

the PL distribution is greater than that of the Weibull distribution. In other words, considering
overall percentiles, the Weibull distribution can fit dataset 2 better than the PL distribution,
especially for percentiles on the tail as shown by Q-Q plot in Figure 5. In further work, one can
include other distributions to be evaluated performance to fit this dataset.

Finally, Figures 4-5 show the fitted density functions and Q-Q plots respectively.

w

E_ - == WB(0.8535,0.0183)
g —— PL(0.6309. 0.1635)
o

E -

=

0.005
I
/

N

0.000
L

[ T T T T T 1
0] 50 100 150 200 250 300

X

Figure 4 The histogram of the dataset 2 and the fitted density functions
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Figure 5 (a) Q-Q plot of fitted WB (b) Q-Q plot of fitted PL
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7. Conclusions

We study the procedures for selecting the most appropriate distribution based on the likelihood
function and the Fisher information matrix. The two procedures are applied to discriminate between
the Weibull and PL distributions. In addition, the Fisher information matrix is used to compute the
asymptotic variance of the pth percentile estimators including the asymptotic variances of the
median and average asymptotic variance of the percentile estimators. Indeed, the asymptotic
variance of the p™ percentile estimators is useful as it provides the further information of the Q-Q
plot, especially the variation. In application, we consider the values of the likelihood function and
the asymptotic variance of the pth percentile estimators as the criteria of discrimination. We
discover the different and indifferent conclusions they lead to. In fact, in some cases, it is quite
difficult to say that the dataset belongs to the Weibull distribution or the PL distribution. Moreover,
ones can get the further information to choose the best model by applying the Fisher information
matrix to compute the variance of other estimators.
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