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Abstract 

Recently, the power Lindley distribution was proposed by Ghitany et al. (2013). It can be 

considered as an alternative to the Weibull distribution. In some cases, the Weibull and PL 

distributions provide similar data fit. In this paper, we discriminate between the Weibull and PL 

distributions by taking advantage of the Fisher information procedure proposed by Gupta and 

Kundu (2006). In addition, the Fisher information matrix is used to compute the asymptotic 

variance of the pth percentile estimators including the asymptotic variances of the median and the 

average asymptotic variance of the percentile estimators. Furthermore, both of the asymptotic 

variances are useful as they can provide the further information of the Q-Q plot, especially the 

variation. In cases of the Weibull and PL distributions, the trends of the asymptotic variance of the 

pth percentile estimators are demonstrated with respect to the shape and the scale parameters. 

Moreover, we also analyze two datasets and compare the result between the likelihood ratio and the 

Fisher information procedures. 

______________________________ 

Keywords: Fisher information matrix, percentile estimators, Weibull distribution, power Lindley 

distribution. 

1. Introduction 

Many researchers pay attention to discriminate among any closeness distributions (Alshunnara 

et al. 2010; Gupta and Kundu 2003, 2006; Kundu and Raqab 2007; Pakyari 2010; Raqaba 2013). 

Some sets of distributions are considered similarly according to the shape of density function, the 

behavior of hazard function, and the tail probability. In literature, there are many distributions 

involved in discrimination problem such as the Weibull and generalized exponential distributions 

(Gupta and Kundu 2003, 2006) the generalized Rayleigh and log-normal distributions (Kundu and 

Raqab 2007; Alshunnara et al. 2010) and the generalized Rayleigh and Weibull distributions 

(Raqaba 2013). It is important to mention that those distributions overlap with each other in some 

ranges of parameters. Moreover, the fitted distributions for given dataset are quite similar. 

Therefore, the discrimination problem is necessary to be studied. 

Ghitany et al. (2013) proposed the power Lindley (PL) distribution. It is a two component 

mixture of the Weibull distribution and a generalized gamma distribution. The PL distribution has 

two parameters which behave as shape and scale. Indeed, the PL distribution has more shape of 
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probability density function than the Weibull distribution, which can broaden the range of 

application. Its hazard function can be decreasing, increasing and decreasing-increasing-decreasing 

(Ghitany et al. 2013). Furthermore, the decreasing-increasing-decreasing behavior of hazard 

function can explain new kind of phenomenon in practice. In application study, Ghitany et al. 

(2013) fitted the PL distribution to real dataset and compared the result with the Gompert, gamma 

and the Weibull distributions. Remarkably, the PL distribution provided similar maximum log-

likelihood values to the Weibull distribution. Indeed, the Weibull distribution has gained a lot of 

attention from many researchers (Rinne 1986). There are many books and works discuss the 

Weibull distribution, including properties, applications, generalization, and competitive 

distributions. The PL distribution is one of its competitive distributions. In practice, the nearest 

fitted results of the Weibull and PL distributions may happen such as in reliability analysis. 

Consequently, we are interested in discriminating between the PL and Weibull distributions.  

The Fisher information matrix has various advantages. It can measure the information of the 

parameter containing in data. In inferential statistics, the Fisher information matrix is associated 

with the asymptotic properties of the maximum likelihood estimators (Hofmann 2004). 

Additionally, the factorization of the hazard function can be characterized by the property of the 

Fisher information (Hofmann et al. 2005). In 2006, Gupta and Kundu applied the Fisher 

information matrix to discriminate between the Weibull and generalized exponential (GE) 

distributions (Gupta and Kundu 2006). They found that both Weibull and GE distributions can 

provide similar fitted result of some particular datasets, but their Fisher information matrices can be 

quite different. In fact, they use the Fisher information matrix to compute the asymptotic variance 

of the pth percentile estimators including the asymptotic variances of the median and average 

asymptotic variance of the percentile estimators. Moreover, the pth percentile estimators are 

functions of MLE, asymptotic variance of the pth percentile estimators and asymptotic variance of 

median provides a framework of discriminating distributions through specific function of MLE. 

This framework would be useful in practice. 

In this paper, above asymptotic variance of the pth percentile is applied to discriminate between 

the Weibull and PL distributions. The rest of this paper is organized as follows. Section 2 provides 

fundamental properties of the Weibull and PL distributions. In Section 3, the Fisher information 

matrix of the Weibull and PL distributions are presented. Furthermore, we give the discrimination 

procedures considered in this study in Section 4. Section 5 illustrates the trends of the asymptotic 

variances of the median and average asymptotic variance of the percentile estimators with respect to 

the parameters of an underlying distribution. Moreover, the application to real data is demonstrated 

in Section 6. 

 

2. Preliminaries 

 In this section, we provide fundamental properties of the Weibull and PL distributions. In 

addition, both of the distributions have two parameters that are shape and scale parameters. The 

closeness of the Weibull and PL distributions is presented in Figure 1. 

2.1.  Weibull distribution 

 The distribution function of the Weibull distribution is 

( )( ; , ) 1 x
WBF x e

     

 

and the corresponding probability density function is 

1 ( )( ; , ,) x
WBf x x e

        
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where 0,x  0   is the shape parameter, and 0   is the scale parameter (Rinne 1986). 

 
 

Figure 1 Plots of the Weibull and PL pdfs for some parameter values 

 

 The Weibull distribution with shape parameter   and scale parameter    will be denoted by 

( , ).WB    

 The log-likelihood function of the Weibull distribution based on a random sample of size n  is 

1 1

log ( , ) log( ) log( ) ( 1) log( ) .
n n

WB i i
i i

L n n x x       
 

       

The first derivatives of log ( , )WBL     with respect to    and   are 

 
1 1

log ( , ) log( ) log( ) log( )
n n

WB i i i
i i

n
L n x x x     

   


   


                (1) 

 1

1

log ( , ) .
n

WB i
i

n
L x 

  
 






 


               (2) 

By equating (1) and (2) to zero, we get the nonlinear equations. Consequently, these equations can 

be solved by a numerical method such as the Newton-Raphson algorithm in optim function of R 

language  (R Core Team 2015) to find the maximum likelihood estimates (MLE) of   and .   

 

2.2. Power Lindley distribution 

 The PL distribution has the following distribution function and probability density function, 

respectively, 

 ( ; , ) 1 1 ,
1

x
PLF x x e

 
 


 

    
  

and 

 
2

1( ; , ) (1 ) ,
1

x
PLf x x x e

  
 


  


  

where 0,x  0   is the shape parameter, and 0   is the scale parameter. The PL distribution 

with shape parameter   and scale parameter   will be written by ( , ).PL    The log-likelihood 

function of the PL distribution based on a random sample of size n  is 
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1 1 1

log ( , ) log( ) 2 log( ) log( 1) log(1 ) ( 1) log( ).
n n n

PL i i i
i i i

L n n n x x x       
  

            

By differentiating log ( , )PLL    with respect to   and ,  respectively, the components of the unit 

score vector are 

 
1 1 1

log( )
log ( , ) log( ) log( )

1

n n n
i i

PL i i i
i i ii

x xn
L x x x

x





  

    


   

 
                        (3) 

               
1

2
log ( , ) .

1

n

PL i
i

n n
L x 

   


  

 
                                                                 (4) 

Therefore, the MLEs of   and   can be obtained by equating (3) and (4) to zero and then solving 

numerically. 

 

3. Fisher information matrix 

 The information matrix is a crucial part in statistical inference, related to estimation, 

sufficiency and properties of variance of estimators (Nadarajah 2006). Under certain regularity 

conditions (Lehmann 1991), the elements of the information matrix are 

 
log ( ) log ( )

( ) jk

j k

f f
I E

 

   
   
     

: :X θ X θ
  

where 1 2( , , , )p   θ  and , 1,2, , .j k p   

Indeed, the hazard function can be used to obtain the information matrix (Efron and Johnstone 

1990). 

Let 
( : )

( : )
1 ( : )

f
h

F



X θ
X θ

X θ
 be the hazard function of X . Accordingly, the elements of the 

information matrix are 

 
log ( : ) log ( : )

( ) .jk

j k

h h
I E

 

   
   
     

X θ X θ
  

 

3.1. Fisher information matrix of Weibull 

If a random variable X  has the Weibull distribution, the Fisher information for the parameter 

vector θ  is 

 11 12

21 22

( ) ,
,

WB WB

WB

WB WB

I I

I I

 
  
 

I    

where 

2
11 2

1
( (1) (2)),WBI  


   

12

1
(1 (1)),WBI 


   

2

22 2
.WBI




  

where ( )  is the gamma function, ( ) ( ) / ( )        is the digamma function, and 2 ( )   is the 

second derivative of the logarithm of the gamma function. 
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3.2. Fisher information matrix of PL 

 Let a random variable X  have the PL distribution, the Fisher information for the parameter 

vector θ   is 

 11 12

21 21

( ) ,
,

PL PL

PL

PL PL

I I

I I

 
  
 

I   

where 

 




2 2
11 2 2

2 2

1 1
( (2) log( )) (2,2) 2 ( (3) log( )) (2,3)

( 1)

         ( (1) log( )) (2,1) ( ) ,

[ ] [ ]

[ ]

PLI

J

      
  

     

    



 


  

  

12

(2) log( ) 2 (3) log( )
,

( 1)

[ ] [ ]
PLI

    

 

  



 

2

22 2 2

4 2
,

( 1)
PLI

 

 

 


  

where ( , )a b  is the Riemann’s zeta function written by 

 
0

1
( , ) , 1, 0, 1, 2,

( )a
m

a b a b
b m






     


   

and 

 
2

0

(log )
( ) .

1
tt

J e dt
t





   

 

4. Discrimination procedures 

This section includes two discrimination procedures which are likelihood ratio and Fisher 

information procedures. 

 

4.1. Likelihood ratio procedure 

 Suppose a random sample 1, , nX X  belong to either the Weibull distribution or the PL 

distribution. Let maximum likelihood of the Weibull distribution and the PL distribution be 

 
1

 ˆ ˆˆ ˆ( , ) ( ; , ),
n

WB WB i
i

L f x   


   

and 

 
1

 ˆ ˆˆ ˆ( , ) ( ; , ),
n

PL PL i
i

L f x   


   

respectively. 

 Thus, the logarithm of the maximum likelihood ratio is 

ˆ ˆ( , ) ˆ ˆˆ ˆlog log ( , ) log ( , ).
ˆˆ( , )

WB
WB PL

PL

L
T L L

L

 
   

 

 
   

 
 

 

If 0,T   the dataset is better fitted with the Weibull distribution, otherwise the PL distribution is 

selected. 
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4.2. Fisher information procedure 

 The Fisher information is beneficial to compute the asymptotic variances of various functions 

of estimators (Gupta and Kundu 2006). To obtain the asymptotic variances of the pth percentile 

estimators, it required the function of pth percentile estimators and the inverse of the Fisher 

information matrix. 

The pth (0 1)p   percentile points of the ( , )WB    and ( , )PL    distributions are 

 1/1
( log(1 ))WBP p 


     

and 

  
1/

( 1)
1

1 1
1 ( 1)(1 )PLP W p e




 

 


 
       
 

  

respectively, where 1W  is the principal branch of the Lambert W function. The asymptotic 

variances of the pth percentile estimators (Lawless 1982) of the Weibull and PL distributions are 

 

1

11 12

21 22

( ) ,

WB

WB WBWB WB
WB

WB WB WB

P

I IP P
V p

I I P



 





 
               
 
 

  

where 

    
1/

2

1
log(1 ) log log(1 ) ,WBP

p p


 


     


  

 
1/

2

1
log(1 )WBP

p


 


   


 

and 

 

1

11 12

21 22

( ) ,

PL

PL PLPL PL
PL

PL PL PL

P
I IP P

V p
I I P


 




 
     
           
  

  

where 
1/

1 12

1 1 1 1 1
1 ( ) log 1 ( ) ,PLP

W z W z



    
 

    
              

 

 
(1 ) /

( 1) 1
1 12

1

( )1 1 1 1
1 ( ) 1 ( )  (1 ) ,

(1 ( ))
PLP W z

W z W z p e
z W z

 



    



  
 



   
             

 

where ( 1) ( 1)(1 ) .z p e         

We will use the asymptotic variance of the median estimator and the average asymptotic 

variance of the percentile estimators to select the appropriate distribution, defined as 

(0.5), (0.5)WB PLV V  and 
1 1

0 0
( )d , ( )dWB WBV p p V p p   respectively. Moreover, the decision rule is to 

choose the distribution which has the less variance (Alshunnara et al. 2010; Gupta and Kundu 2003, 

2006; Kundu and Raqab 2007) 
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5. Simulation study 

In this section, we study the behaviors of the median estimator and the average asymptotic 

variance of the percentile estimators, based on the Monte Carlo simulations. In addition, we use 

sample size 20,50,100,200,n   and 1,000 repetitions. The median estimator and the average 

asymptotic variance of the percentile estimators are determined on 4 cases including:  

1) ~ ( ,1)X WB  , where 0.6,0.8,1.2,1.6,1.8    

2) ~ (1, )X WB  , where 0.6,0.8,1.2,1.6,1.8    

3) ~ ( ,1)X PL  , where 0.6,0.8,1.2,1.6,1.8    

4) ~ (1, )X PL  , where 0.6,0.8,1.2,1.6,1.8    

 

Table 1 The number in the first row represents the asymptotic variances of the median estimator, 

and the numbers in the bracket show the average asymptotic variance of the percentile estimators, 

when a random variable X  is distributed as )1,(WB  

  
n  

20 50 100 200 

0.6 0.1983 0.0724 0.0353 0.0173 

 
(10.1824) (3.0857) (1.3602) (0.6447) 

0.8 0.1305 0.0519 0.0259 0.0129 

 
(1.2948) (0.4886) (0.2345) (0.1157) 

1.2 0.0740 0.0304 0.0156 0.0078 

 
(0.2135) (0.0840) (0.0430) (0.0212) 

1.4 0.0603 0.0245 0.0123 0.0062 

 
(0.1312) (0.0517) (0.0259) (0.0130) 

1.6 0.0477 0.0201 0.0101 0.0051 

 
(0.0868) (0.0359) (0.0179) (0.0089) 

1.8 0.0404 0.0165 0.0084 0.0042 

 
(0.0657) (0.0262) (0.0133) (0.0067) 
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Table 2 The number in the first row represents the asymptotic variances of the median estimator, 

and the numbers in the bracket show the average asymptotic variance of the percentile estimators, 

when a random variable X  is distributed as (1, )WB   

  
n  

20 50 100 200 

0.6 0.2721 0.1102 0.0552 0.0275 

 
(1.2377) (0.4646) (0.2341) (0.1156) 

0.8 0.1553 0.0619 0.0310 0.0155 

 
(0.6841) (0.2659) (0.1311) (0.0657) 

1.2 0.0686 0.0277 0.0138 0.0069 

 
(0.3033) (0.1203) (0.0585) (0.0289) 

1.4 0.0506 0.0203 0.0101 0.0051 

 
(0.2260) (0.0867) (0.0432) (0.0213) 

1.6 0.0382 0.0155 0.0078 0.0039 

 
(0.1746) (0.0667) (0.0331) (0.0164) 

1.8 0.0302 0.0121 0.0061 0.0031 

 
(0.1451) (0.0516) (0.0259) (0.0130) 

 

Table 3 The number in the first row represents the asymptotic variances of the median estimator, 

and the numbers in the bracket show the average asymptotic variance of the percentile estimators, 

when a random variable X  is distributed as ( ,1)PL   

  
n  

20 50 100 200 

0.6 0.7647 0.3016 0.1517 0.0749 

 
(17.9853) (5.4407) (2.6739) (1.2734) 

0.8 0.3711 0.1473 0.0735 0.0367 

 
(2.1436) (0.7986) (0.3906) (0.1897) 

1.2 0.1379 0.0575 0.0289 0.0145 

 
(0.2978) (0.1206) (0.0597) (0.0296) 

1.4 0.0964 0.0400 0.0204 0.0103 

 
(0.1685) (0.0681) (0.0345) (0.0174) 

1.6 0.0715 0.0304 0.0152 0.0077 

 
(0.1092) (0.0459) (0.0228) (0.0115) 

1.8 0.0567 0.0233 0.0119 0.0060 

 
(0.0805) (0.0325) (0.0165) (0.0083) 
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Table 4 The number in the first row represents the asymptotic variances of the median estimator, 

and the numbers in the bracket show the average asymptotic variance of the percentile estimators, 

when a random variable X  is distributed as (1, )PL   

  
n  

20 50 100 200 

0.6 4.2382 4.3622 2.2061 1.1015 

 
(12.3866) (12.8871) (5.9882) (3.0549) 

0.8 2.2607 2.3728 1.1876 0.5968 

 
(6.7064) (6.8783) (3.3156) (1.6553) 

1.2 0.9510 0.9556 0.4900 0.2439 

 
(2.9725) (2.8670) (1.4428) (0.7187) 

1.4 0.6455 0.6789 0.3395 0.1714 

 
(2.0378) (2.1036) (1.0339) (0.5171) 

1.6 0.4863 0.5126 0.2498 0.1257 

 
(1.6620) (1.6514) (0.7810) (0.3908) 

1.8 0.3799 0.3838 0.1906 0.0958 

 
(1.3235) (1.2700) (0.6069) (0.3049) 

 

According to Tables 1-2, for the Weibull distribution, we discover that the (0.5)WBV  and 

1

0
( )dWBV p p  decrease when ,  ,n   and   increase. 

When a random variable X  has the PL distribution, there are decreasing trends of (0.5)PLV  

and 
1

0
( )dPLV p p  if ,  ,n   and   increase, as shown in Tables 3-4. 

In summary, the values of (0.5),  (0.5),  WB PLV V
1 1

0 0
( )d ,  ( )dWB PLV p p V p p   have decreasing 

trends when the shape and the scale parameters of the underlying distribution increase.  

 

6. Applications 

In this section, the Weibull and PL distributions are fitted to two real datasets. To select the 

appropriate distribution, we discuss primarily on the ratio of the maximized likelihoods, asymptotic 

variances of the median and average asymptotic variance of the percentile estimators. Other criteria 

including the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and 

the Kolmogorov-Smirnov (KS) test are also presented.  

Dataset 1 is the tensile strength of 69 carbon fibers tested under tension at gauge lengths of 20 

mm. (Bader and Priest 1982) 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 

1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.14, 2.179, 2.224, 2.240, 2.253, 2.270, 

2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 

2.535, 2.554, 2.566, 2.57, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 

2.800, 2.809, 2.818, 2.821, 2.848, 2.88, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 

3.433, 3.585, 3.585. 

In addition, the Fisher information matrices are 

 
0.0645 1.1937ˆ ˆ( , ) ,
1.1937 212.9763

WB  
 

  
 

I   
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2.1041 39.7904ˆˆ( , ) .

39.7904 809.1376PL  
 

  
 

I   

The fitted results are shown in Table 5. 

 

Table 5 Fitted results of dataset 1 

 
WB PL 

MLEs ˆ 5.5055   ˆ 3.8670   

 
0.3772̂   ˆ 0.0497   

log L  -49.5961 -49.0595 

AIC 103.1923 102.1190 

BIC 107.6605 106.5873 

KS test 0.0562 0.0443 

p-value 0.9813 0.9990 

(0.5)V  0.2802 0.2512 

1

0
( )dV p p  0.3671 0.3622 

 

According to Table 5,    49.5961 49.0595  0.5366,  0.5 0.5 ,PL WBT V V       and
 

1 1

0 0
( )d ( )d ,PL WBV p p V p p   which suggest choosing the PL distribution. 

 
Figure 2 The histogram of the dataset 1 and the fitted density functions 
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Figure 3 (a) Q-Q plot of fitted WB (b) Q-Q plot of fitted PL 

 

Furthermore, the AIC and BIC of the PL distribution are less than those of the Weibull 

distribution, and the PL distribution has smaller KS statistic with larger p-value. Therefore, all of 

them also lead to the same conclusion. 

Figures 2-3 show the fitted density functions and the quantile-quantile (Q-Q) plots, 

respectively, which illustrate that the fitted results based on the Weibull and PL distributions are 

quite similar to each other. 

Dataset 2 is failure times of the air conditioning system of an airplane (Linhart and Zucchini 

1986) 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 

16, 90, 1, 16, 52, 95. 

The fitted results are shown in Table 6. 

 

Table 6 Fitted results of dataset 2 

 
WB PL 

MLEs ˆ 0.8535   ˆ 0.6309   

 
ˆ 0.0183   

ˆ 0.1635   
log L  -151.9369 -151.9341 

AIC 307.8738 307.8683 

BIC 310.6762 310.6707 

KS test 0.1532 0.1516 

p-value 0.4817 0.4959 

(0.5)V  2396.132 2140.871 

1

0
( )dV p p  16192.3 18910.5 

 

The associated Fisher information matrices are 

 
2.6194 24.6257ˆ ˆ( , ) ,

24.6256 2185.1381WB  
 

  
 

I   
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38.0470 48.8067ˆˆ( , ) .
48.8067 74.0767PL  
 

  
 

I   

With respect to Table 6, 151.9369 151.9341  0.0028T       and (0.5) (0.5)PL WBV V  imply that 

the PL distribution fits the given data better than the Weibull distribution. Additionally, the same 

conclusion is made by considering the AIC, BIC, and the KS test. However, 
1 1

0 0
( )d ( )d ,PL WBV p p V p p   which indicates that the variation of the thp  percentile estimators of 

the PL distribution is greater than that of the Weibull distribution. In other words, considering 

overall percentiles, the Weibull distribution can fit dataset 2 better than the PL distribution, 

especially for percentiles on the tail as shown by Q-Q plot in Figure 5. In further work, one can 

include other distributions to be evaluated performance to fit this dataset. 

Finally, Figures 4-5 show the fitted density functions and Q-Q plots respectively. 

 

 
Figure 4 The histogram of the dataset 2 and the fitted density functions 

 

 
Figure 5 (a) Q-Q plot of fitted WB (b) Q-Q plot of fitted PL 
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7. Conclusions 

We study the procedures for selecting the most appropriate distribution based on the likelihood 

function and the Fisher information matrix. The two procedures are applied to discriminate between 

the Weibull and PL distributions. In addition, the Fisher information matrix is used to compute the 

asymptotic variance of the thp  percentile estimators including the asymptotic variances of the 

median and average asymptotic variance of the percentile estimators. Indeed, the asymptotic 

variance of the pth percentile estimators is useful as it provides the further information of the Q-Q 

plot, especially the variation. In application, we consider the values of the likelihood function and 

the asymptotic variance of the thp percentile estimators as the criteria of discrimination. We 

discover the different and indifferent conclusions they lead to. In fact, in some cases, it is quite 

difficult to say that the dataset belongs to the Weibull distribution or the PL distribution. Moreover, 

ones can get the further information to choose the best model by applying the Fisher information 

matrix to compute the variance of other estimators. 
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