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Abstract

This study introduces the use of adaptive cluster sampling with spatially clustered secondary
units when the population study area can be stratified into smaller areas or strata based on available
prior information, which can increase the precision of estimation. The method by which secondary
units are adaptively added when the primary units are formed by a spatial cluster of secondary units
is described, and has the advantage of saving cost and time of travelling and observing units in the
sample compared to the standard approach of stratified adaptive cluster sampling with an initial
sample random sample per stratum.

An unbiased estimator of the mean and its variance by applying the Horvitz-Thompson estimator
is presented, and the advantages and disadvantages of stratified adaptive cluster sampling with
spatially clustered secondary units in comparison to stratified adaptive cluster sampling based on a
stratified random sample are described.

Keywords: Stratified adaptive cluster sampling, stratified sampling, Horvitz-Thompson estimator, spatial
sampling.

1. Introduction

Unlike conventional sampling designs, an adaptive sampling design is a sampling design in
which values of the variable of interest observed during the survey are considered before selecting
the next units to include in the sample. That is, the procedure adaptively selects the sampling units
based on values of the variable of interest (Thompson and Seber 1996). For spatially clustered
populations such as rare species of plants and animals, it is often more appropriate and efficient to
use adaptive cluster sampling (ACS) (Thompson 1990). In ACS, an initial sample of units is selected
by using a conventional sampling design. Whenever the value of the variable of interest of a sampled
unit satisfies a condition, its neighboring units are also added to the sample and sampling continues
until no sampled unit satisfies the condition. ACS has been widely used in real-world situations. For
example, it is used for surveys of forest inventories (Roesch 1993; Talvitie et al. 2006), deforestation
(Magnussen et al. 2005), plants (Philippi 2005), macroalgae (Glodberg et al. 2006), larval sea
lampreys (Sullivan et al. 2008), mussels (Smith et al. 2003), waterfowl (Smith et al. 1995),
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herpetofauna (Noon et al. 2006), sediment load (Arabkhedri et al. 2010), and hydroacoustic surveys
(Conners and Schwager 2002).

Adaptive cluster sampling that is applied to a stratified population is known as stratified ACS,
and was proposed by Thompson (Thompson 1991). In stratified ACS, an initial stratified sample is
selected. Whenever the value of the variable of interest of a sampled unit satisfies a pre-specified
condition, its neighborhood is also added to the sample until no more units satisfying such condition
are found. For example, stratified ACS has been used to estimate the total carbon dioxide flux released
by magmatic and hydrothermal sources at the Mud Volcano area within Yellowstone National Park
(Boomer et al. 2000).

The disadvantage of ACS is that if a sampling unit is large, it will be time consuming and the
cost will be high to observe all sampled units. To overcome this drawback, adaptive cluster sampling
with spatially clustered secondary units (ACS-SCSU) was proposed by introducing the approach of
adaptively adding units in the sample under ACS (Patummasut and Borkowski 2014). In ACS-SCSU,
a primary unit is partitioned into smaller secondary units, and an initial sample of primary units is
selected by simple random sampling without replacement. For each primary unit in the initial sample,
neighboring secondary units are added to the sample and observed whenever the variable of interest
of a secondary unit satisfies a specific condition. This procedure continues until no adaptively
sampled secondary units satisfy a condition. ACS-SCSU is a special case of adaptive cluster sampling
with primary and secondary units presented by Thompson (Thompson 1991a).

The set of all secondary units that satisfy the condition in the neighborhood of each other is called
a network, while the secondary units that were adaptively sampled but did not satisfy the condition
are called edge units. A network with its corresponding edge units is called a cluster. Units that do
not satisfy the condition, including edge units, are considered networks of size one. Since secondary
units are adaptively added to the sample instead of primary units, this yields a smaller final sample
size, taking less time and cost to travel and observe all sampled units. Thus, ACS-SCSU is a time and
cost-effective design, and it is appropriate when sampling a spatially aggregated population.

Two-stage ACS is one of the sampling designs allowing less cost and time of traveling observing
sampled units. Under two-stage ACS, a sample of primary units is selected, then a subsample of
secondary units within each sampled primary unit is taken. For this sampling design, there are two
stages of sampling, while ACS-SCSU is one-stage sampling, leading less complicated and easier in
estimation.

When prior information about a population is available, stratification can be done based on such
prior information or based on the vicinity of the units when spatial correlation is assumed to be exist.
The population can be stratified by grouping similar units into a stratum and dissimilar units into
different strata. The advantage of stratification is that the variance of an estimator can be reduced
(Lohr 1999). Since adaptive sampling can be used with conventional stratified sampling such as
stratified ACS, and it is known that stratification can increase precision in estimation, this paper
applies ASC-SCSU with stratified sampling, and it is called stratified ACS-SCSU.

2. Stratified Adaptive Cluster Sampling with Spatially Clustered Secondary Units and
Technical Notation
Assume a population is partitioned into L strata, of which stratum h contains N, equal-sized

rectangular primary units, and let N be the total number of primary units in the population. Each
primary unit u, (h=12,3,...,L, 1=12.3,..,N,), the i" unit in stratum h, is divided into 2 rows
and 2 columns forming 4 equal-sized rectangular secondary units u,; (j=1,2,3,4). Let m be the
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L
number of secondary units in each primary unit. In this research, m=4. Thus, there are N = 42 N,
h=1

secondary units in the study region. Let y,; be the value of the variable of interest corresponding to

each secondary unit u,;. The parameter of interest in this paper is the population mean

1 L
_WZ;

4

hom
DYy or the population total 7 =N .

j=1

N
iN

2.1. Stratified adaptive cluster sampling with spatially clustered secondary units design
In stratified ACS-SCSU, an initial stratified sample of primary units of size n is obtained by

taking an initial sample of primary units of size n, from stratum h using simple random sampling

L
without replacement. Thus, the total number of secondary units in the initial sample is n :Znh.
h=1

Then for each sampled primary unit u,; (i=12,...,n,), neighboring secondary units are added to the
sample and observed whenever the variable of interest y,; of a sampled secondary unit u,; satisfies
a specific condition C, which is determined a priori by the researcher. It is typically an interval for
the variable of interest of a secondary unit. That is, y,; >c where c is a constant defining the

condition C. This procedure continues until no adaptively sampled secondary units satisfy C. The
set of all secondary units satisfying C as a result of u,; being in the initial sample form a network

while the secondary units that were adaptively sampled but did not satisfy C are edge units. Together
these units form a cluster. Note that the selection in one stratum may result in the addition of units
from other strata to the sample if adaptive sampling is allowed to cross stratum boundaries. In this
case, a cluster may intersect more than one stratum. Stratified ACS-SCSU is a special case combining
of adaptive cluster sampling with primary and secondary units (Thompson 1991a) with stratified
adaptive cluster sampling (Thompson 1991b).

For instance, suppose that the population is composed of N =100 primary units, and each is
divided into 2 rows and 2 columns forming 4 secondary units. Thus, there are 400 secondary units in
the population. Suppose the population is stratified in to L =2 equal-sized strata, each having
N, =50 primary units or 200 secondary units as shown Figure 1. To illustrate a stratified ACS-

SCSU scheme, suppose n, =2 (and, hence, n=4). The stratified initial sample of 4 primary units

is obtained by selecting an initial sample of 2 primary units from each stratum using simple random
sampling without replacement. The obtained stratified initial sample is shown in Figure 2. Here, the
condition C is defined to be y,; > 0. That is a neighboring secondary unit is adaptively added when

a sampled secondary unit has value of the variable of interest y,; >0. The neighborhood for a
secondary unit u,; in this example is defined to be the four adjacent units on the left, right, above

and below unit uy;.
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Figure 1 A population stratified into 2 strata formed by the vertical center line. The solid lines
within each stratum form the 50 within-stratum primary units. The dotted lines form the 4
secondary units within each primary unit

For the initial sample in Figure 2, because the leftmost sampled primary unit of stratum 1 and
the rightmost sampled primary unit of stratum 2 both contain four secondary units with y,; =0 (and
which do not satisfy C ), no additional unit will be adaptively added to the sample in the
neighborhoods of these primary units. On the other hand, the rightmost sampled primary unit of
stratum 1 contains 4 secondary units with y,; values of 0, 2, 3 and 15. Because the three secondary
units with values of 2, 3 and 15 satisfy condition C, their neighboring secondary units are adaptively
sampled and observed. This procedure continues until no adaptively sampled secondary units having
Yy; greater than zero are found. The resulting cluster whose network consists of 12 dark grey
secondary units with 17 edge units in light grey is shown in Figure 3. Notice that this cluster intersects
both stratum 1 and 2. Finally, for the rightmost sampled primary units of stratum 2, four secondary
units with values y,; of 2, 5, 6 and 14 satisfy condition C, so their neighboring secondary units are

adaptively sampled. This procedure continues until no adaptively sampled secondary units have vy,

greater than zero. This results in the second cluster whose network consists of 8 dark grey secondary
units with 10 edge units in light grey as shown in Figure 3.
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sample of 2 primary sampling units per stratum

Figure 2 A stratified initial

Figure 3 A final sample of adaptively sampled secondary units

2.2. Estimation

The Horvitz-Thompson estimator (Horvitz and Thompson 1952) is applied in the stratified ACS-

SCSU design, but it is based on network inclusion probabilities. Let K be the number of distinct

networks in the population without regard to stratum boundaries. Let y, be the total of the y-values
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inthe k™ network of the population. Let ¢, be the probability that network k is included in the final
sample. ¢, is called the inclusion probability of network k.

For stratified ACS-SCSU, ¢, is the probability at least one of the n primary units in the initial
stratified sample intersects network k. Let x,, be the number of primary units in stratum h that

intersect network k. Using complementary probability, the probability that network k is included in
the final sample is

[Nh thj
PREEES ) LI &

Let E; be the event that network i is included in the final sample. Thus, P(E;)=¢; and
P(E,) =, for network j and k respectively. Let «; be the probability distinct networks j and
k are both included in the final sample. «;, is called the joint inclusion probability of networks |
and k with
a; =P(E; nE,) =P(E;)+P(E)-P(E; VE,)
=a;+a, —P(E; UE,) 2

where P(E; UE,) is the probability that at least one of networks j and k is included in the final

(Nh = Xy _th +thkJ
Ny
3
N , ®)
Ny

where Xy is the number of primary units in stratum h which intersect both networks j and k.

sample. Using complementary probability

P(E, UE,)=1-

L
h=1

Hence, substitution yields

[N—xhj] [N—xhkj [Nh—xhi—xhj+xmkj
L n n L n
oy =1- LA LIPS " . @)
R v ¥ v | s

nh nh nh

Define Z, be the indicator variable having value 1 if network k is included in the final sample and

zero otherwise. Using calculated inclusion probabilities, the Horvitz-Thompson estimator is
implemented in the stratified ACS-SCSU design, and the unbiased estimator of the population mean
7
. 1&yZ
Hssc :_z =k, ®)
N

where K is the total number of networks in the population. First, note that for (5) it is not necessary
to know K because if network k is not included in the final sample, then Z, =0, and it contributes

zero to (5). Second, even though different primary units in the initial sample might intersect the same
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network, only the distinct networks observed in the final sample are utilized in the formula. Finally,
one network can intersect more than one stratum, but this does not affect (5).
Applying the results of Horvitz and Thompson (1952), the variance of fi. is

. 1 K K ajk 6
V(/uSSC):szl;yjyk P -1 (6)
j=1 k= i

Note that ¢, = ¢,. An estimator of this variance is

A 1 EE VWL L[ ay
v =— —_— | —-1]. 7
(Assc) N2 ;; o, a0, (7

V(4issc ) s unbiased if all joint inclusion probabilities «;, are greater than zero.

2.3. An Example

In Section 2.1, stratified ACS-SCSU scheme was demonstrated by applying it in the small
population in Figure 1, and the obtained final sample is shown in Figure 3. Next, the calculations
used for estimation will be illustrated. The sample consists of 2 networks with a total of y-values
greater than zero. The left and the right networks have a total y-values of 74 and 40 respectively, that
is, y, =74 and y, =40. The number of strata in the population is L = 2. Each stratum consists of 50

primary units, thus N, =50. The number of primary units in the population is N =100, and the
initial sample size in stratum h is n, =2, so the initial sample size is n = 4. The number of primary
units in stratum 1 that intersect network 1 is 3, thus x,; =3. The number of primary units in stratum
2 that intersect network 1 is 1, thus x,, =1. From (1), the probability that network 1 is included in

the sample is
[Nh—xm] [Nl—xﬂj[Nz—an [50_3j (504}
2
1- LIPS ) L2 )L 2 ) gisp
b1 N, N, N, 50 50
n, n n, 2 2

There are no primary units in stratum 1 that intersect network 2, thus x, =0. The number of

o

primary units in stratum 2 that intersect network 2 is 4, thus X,, =4. Hence, the probability that
network 2 is included in the sample is

(Nh—xmj (Nl—xu)(Nz—xzzj (50—0)(50—4}

/A ! m ) 4\ 2 2_J)_ 01551,
N, N, N, 50 50
n, n n, 2 2

By using (5), the estimate of the mean is

K
ﬂssc=izykzk=i( "o, 40 ):7.4187.
N4 « 1001 0.1529 0.1551

The number of primary units in stratum 1 which intersect both networksl and 2 is 0, thus
X, = 0. The number of primary units in stratum 2 which intersect both networks1 and 2 is 0, thus

a, =1-

2
h=1

X1, = 0.
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[N_xth (N—thJ (Nh_xhj_xhk+xhij
L n L n L n
a. =1— h " h _ h
R A1 N,
N, Ny N,
(Nl_xnj[Nz_Xm) [Nl_xiz)(Nz_xzzJ
. =1— n n, 4 n n,
. N1 Nz N1 Nz
n n, n n,

(Nl_xll_xlz +X112] [Nz _le_xzz"'xzuj
n n,

W G
LI 0 )
DCERE BB

=0.0218.
From (7), the estimate of the variance estimator is
AN 1 &&yyy Oy
V(lu ) = — Il AL .S I -1
SsC N2 ;; J a,a,

AT (s (]
N\ G\ &, A \ O,
1 742 ( 1 _1j+ 402 ( 1 _1j
100?| 0.1529\ 0.1529 0.15511 0.1551

| (14)(40%) 00218
0.0218 | (0.1529)(0.1551)

=21.7788.

The number of secondary units in the sample, which is found by counting the number of dark-
shaded and light-shaded secondary units in Figure 3, is 54. This is equivalent to 54/4 = 13.5 primary
units in terms of sampling effort. On the other hand, under stratified ACS with the same initial sample,
the number of primary and secondary units in the final sample are 26 and 104, respectively, as shown
in Figure 4. For stratified ACS, neighboring primary units are adaptively added to the sample instead
of secondary units, thus stratified ACS requires a much larger sample size than stratified ACS-SCSU.
Thus, ACS-SCSU is much more cost-effective. It can be concluded that stratified ACS-SCSU gives
less cost and time spent travelling and observing units in the final sample than stratified ACS for this
example. In other words, the cost and time of travelling and observing units in the stratified ACS
sample is twice more expensive than that of stratified ACS-SCSU sample.
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Figure 4 A final sample of stratified ACS whose initial sample is shown in Figure 2

3. Simulation Study and Result

To investigate the performance of stratified ACS-SCSU compared to stratified ACS of primary
units, California redwood trees data (Strauss 1975) was used in a simulation. The simulation is
composed of 1000 iterations, and for the i" iteration, the value for the corresponding estimator 4,
under both sampling designs is calculated. The formula used to estimate an estimator variance is the

sample variance of the estimates:
1000

W) = oo 2~ ©®)
where z is the sample mean of the 1000 4, values (Dryver and Thompson 2005). Note that the
modified Horvitz-Thompson estimator based on initial intersection probabilities is used to estimate
the population mean for stratified ACS.

The effective sample size v,, which is the number of primary units in the final sample, of

stratified ACS-SCSU were calculated for i" iteration, and the estimated expected effective sample
size of primary units under stratified ACS-SCSU is calculated by the formula
l 1000
v=——> 0,
1000; '
while the expected sample size of stratified ACS for each initial sample size is calculated from
L Ny
L= ZZ T (10)
h=1 i=1
which is the sum of inclusion probabilities in the population where

©)
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(Ng —-my, + aghij
L n
i =1—HN—9 (11)
g=1 g
(ng J

and m, is the number of (primary) units in the intersection of stratum g with the network that

contains unit u,, and a,, is the total number of units in the intersection of stratum g with distinct
networks having unit u,; as an edge unit.

The California redwood trees study area consists of 400 primary units, and each contains 4
secondary units. In the simulation, the population was stratified into 2 equal-sized strata (each stratum
consists of 200 primary units) as shown in Figure 5, and into 4 equal-sized strata (each stratum
consists of 100 primary units) as shown in Figure 6. To compare stratified ACS to ACS-SCSU, three
conditions C,,C, and C, were used. That is, adaptively sample if y >0 for C,, adaptively sample

if y>1 for C,, and adaptively sample if y >2 for C,. For the 1000 simulated samples, V() and
v for stratified ACS and stratified ACS-SCSU were compared.

lraides

1 1

Figure 5 California redwood trees data partitioned into 2 strata of 200 primary units and 800
secondary units
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1111 1 i
1 1

Figure 6 California redwood trees data partitioned into 4 strata of 100 primary units and 400
secondary units

The simulation results for the California redwood trees population with 2 and 4 strata were
presented in Table 1 and 2, respectively. These results indicated that, for conditions C, and Cu,
stratified ACS had a smaller average estimated variance than stratified ACS-SCSU for each initial
sample size n, and the estimated relative efficiencies (ratio of the estimated variances: R. E.) were
less than one. Hence, stratified ACS is more efficient than stratified ACS-SCSU when considering
the same value of the initial sample size. However, for condition C,, the estimated relative
efficiencies for some initial sample sizes are greater than one. For these cases, stratified ACS-SCSU
is not efficient than stratified ACS. These comparisons, however, are misleading because the effective
sample size v under SACS is always larger (often much larger) than v under SACS-SCSU. The
effective sample size v indicates the true sampling effort generated by the researcher instead of the
initial sample size. Therefore, it is appropriate to compare variances between two ACS designs when
the effective sample sizes are similar (Turk and Borkowski 2005).

Note that for the same initial sample size n in the population with 2 and 4 strata, v is smaller for
stratified ACS-SCSU than stratified ACS for both conditions C, withy >0, C, with y>1 and C,

with y > 2. Thus, stratified ACS-SCSU will, on average, be more efficient in terms of cost and time

spent to observe the units in the final sample.

The average estimated variances in Table 1 and 2 were plotted against the estimated expected
effective sample size in the graphs in Figure 7. For the population with 2 and 4 strata and for both
conditions, the graph of the estimated variances for stratified ACS-SCSU was below the graph for
stratified ACS. This implies that the estimated variances of the estimator of the mean for stratified
ACS-SCSU are smaller, on average, than the estimated variances under stratified ACS for the same
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average effective sample size. Thus, when considering the same final sample size, stratified ACS-
SCSU is more efficient than stratified ACS.

4. Discussion

The stratified ACS-SCSU is a time and cost-effective sampling design to apply in rare and
clustered population partitioned into strata. In practice, sampling cost and time are important factors
for the sampler to consider when choosing an appropriate sampling design to use. Thus, this motivates
the researcher to develop time and cost-effective sampling designs such as adaptive web sampling
(Thompson 2006), path sampling (Patummasut and Dryver 2012), stratified ACS (Thompson 1991b),
and ASC-SCSU (Patummasut and Borkowski 2014). Additionally, it is known that stratification can
increase the precision of the estimator (Lohr 1999), thus stratified ACS-SCSU would be a sampling
design that can save time, money and effort of the researchers with a higher statistical precision for a
spatially aggregated population.

To apply stratified ASC-SCSU in a geographical study area, the study area may be partitioned
into smaller but similar areas according to a known variable such as soil or habitat type or plant
species. Although a large area appears to be homogeneous, stratification based on geographical
locations can be used to produce a sample aggregated over the entire area. Note that the overall
variability in the estimation can be reduced when stratification leads to reduced variability within a
stratum with larger variation across strata. Moreover, the most precise estimator will be obtained if
the units in each stratum are as similar as possible (Thompson 2002).

For stratified ACS-SCSU, ACS-SCSU is applied in every stratum in the population providing
good spatial coverage and, hence a representative sample of the population. On the other hand, a
sample from two-stage ACS will consist of sampling additional secondary units from a certain area
because all secondary units in neighboring primary units must be sampled, which results in increased
sampling effort and cost, and often less efficient estimation.

In stratified ACS-SCSU, the unbiased estimator of the population mean and its variance were
developed by applying the Horvitz-Thompson estimator based on network inclusion probabilities.
Horvitz-Thompson estimation has been frequently used in estimation for a variety of sampling
designs (Lucas and Seber 1977; Thompson 1990; Thompson 1991; Borkowski 2003; Akanisthanon
et al. 2010; Mohammadi and Salehi 2011) because it is a general estimator of the population total or
mean for any probability sampling design, and can be used as long as the inclusion probabilities can
be provided (Horvitz and Thompson 1952).

It is known that the estimator can be improved by using the Rao-Blackwell method (Rao 1945;
Blackwell 1947) and, when possible, using ratio estimation. For example, Salehi (1999), Dryver and
Thompson (2005), and Chao et al. (2011) used the Rao-Blackwell method to improve estimators in
ACS, while Chao (2004) and Dryver and Chao (2007) offered ratio estimators in ACS. For ratio
estimation, auxiliary information is utilized to get the better estimation. In addition, Chutiman (2010)
proposed the new ratio estimator in stratified ACS. Possibly, a ratio estimator for stratified ACS-
SCSU could be developed based on the auxiliary information obtained from sampling survey, so this
could be an interesting future research topic.
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Figure 7 Graphs of average estimated variances from the simulation study on the California
redwood trees data. SACS represents stratified ACS and SACS-SCSU represents stratified ACS-
SCsU

5. Conclusions

Stratified ACS-SCSU, or ACS-SCSU with stratification, was proposed in this paper when prior
information allows stratification which can increase precision in estimation. In stratified ACS-SCSU,
an initial stratified sample of primary units is selected by taking the initial sample of primary units
from each stratum using simple random sampling without replacement. Then for each sampled
primary unit, neighboring secondary units are added to the sample and observed whenever the
variable of interest of a secondary unit satisfies a specific condition. This procedure continues until
no adaptively sampled secondary units satisfy the condition. The estimator of the mean for this design
was obtained by applying the Horvitz-Thompson estimator based on network inclusion probabilities.
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The simulation results support that stratified ACS-SCSU can be a time and cost-effective sampling
design, and it is appropriate for sampling in a spatially aggregated population.
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