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Abstract 

This study introduces the use of adaptive cluster sampling with spatially clustered secondary 

units when the population study area can be stratified into smaller areas or strata based on available 

prior information, which can increase the precision of estimation. The method by which secondary 

units are adaptively added when the primary units are formed by a spatial cluster of secondary units 

is described, and has the advantage of saving cost and time of travelling and observing units in the 

sample compared to the standard approach of stratified adaptive cluster sampling with an initial 

sample random sample per stratum. 

An unbiased estimator of the mean and its variance by applying the Horvitz-Thompson estimator 

is presented, and the advantages and disadvantages of stratified adaptive cluster sampling with 

spatially clustered secondary units in comparison to stratified adaptive cluster sampling based on a 

stratified random sample are described. 

______________________________ 

Keywords: Stratified adaptive cluster sampling, stratified sampling, Horvitz-Thompson estimator, spatial 

sampling. 

1. Introduction 

Unlike conventional sampling designs, an adaptive sampling design is a sampling design in 

which values of the variable of interest observed during the survey are considered before selecting 

the next units to include in the sample. That is, the procedure adaptively selects the sampling units 

based on values of the variable of interest (Thompson and Seber 1996). For spatially clustered 

populations such as rare species of plants and animals, it is often more appropriate and efficient to 

use adaptive cluster sampling (ACS) (Thompson 1990). In ACS, an initial sample of units is selected 

by using a conventional sampling design. Whenever the value of the variable of interest of a sampled 

unit satisfies a condition, its neighboring units are also added to the sample and sampling continues 

until no sampled unit satisfies the condition. ACS has been widely used in real-world situations. For 

example, it is used for surveys of forest inventories (Roesch 1993; Talvitie et al. 2006), deforestation 

(Magnussen et al. 2005), plants (Philippi 2005), macroalgae (Glodberg et al. 2006), larval sea 

lampreys (Sullivan et al. 2008), mussels (Smith et al. 2003), waterfowl (Smith et al. 1995), 
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herpetofauna (Noon et al. 2006), sediment load (Arabkhedri et al. 2010), and hydroacoustic surveys 

(Conners and Schwager 2002). 

Adaptive cluster sampling that is applied to a stratified population is known as stratified ACS, 

and was proposed by Thompson (Thompson 1991).  In stratified ACS, an initial stratified sample is 

selected. Whenever the value of the variable of interest of a sampled unit satisfies a pre-specified 

condition, its neighborhood is also added to the sample until no more units satisfying such condition 

are found. For example, stratified ACS has been used to estimate the total carbon dioxide flux released 

by magmatic and hydrothermal sources at the Mud Volcano area within Yellowstone National Park 

(Boomer et al. 2000). 

The disadvantage of ACS is that if a sampling unit is large, it will be time consuming and the 

cost will be high to observe all sampled units. To overcome this drawback, adaptive cluster sampling 

with spatially clustered secondary units (ACS-SCSU) was proposed by introducing the approach of 

adaptively adding units in the sample under ACS (Patummasut and Borkowski 2014). In ACS-SCSU, 

a primary unit is partitioned into smaller secondary units, and an initial sample of primary units is 

selected by simple random sampling without replacement. For each primary unit in the initial sample, 

neighboring secondary units are added to the sample and observed whenever the variable of interest 

of a secondary unit satisfies a specific condition. This procedure continues until no adaptively 

sampled secondary units satisfy a condition. ACS-SCSU is a special case of adaptive cluster sampling 

with primary and secondary units presented by Thompson (Thompson 1991a). 

The set of all secondary units that satisfy the condition in the neighborhood of each other is called 

a network, while the secondary units that were adaptively sampled but did not satisfy the condition 

are called edge units. A network with its corresponding edge units is called a cluster. Units that do 

not satisfy the condition, including edge units, are considered networks of size one. Since secondary 

units are adaptively added to the sample instead of primary units, this yields a smaller final sample 

size, taking less time and cost to travel and observe all sampled units. Thus, ACS-SCSU is a time and 

cost-effective design, and it is appropriate when sampling a spatially aggregated population. 

Two-stage ACS is one of the sampling designs allowing less cost and time of traveling observing 

sampled units. Under two-stage ACS, a sample of primary units is selected, then a subsample of 

secondary units within each sampled primary unit is taken. For this sampling design, there are two 

stages of sampling, while ACS-SCSU is one-stage sampling, leading less complicated and easier in 

estimation. 

When prior information about a population is available, stratification can be done based on such 

prior information or based on the vicinity of the units when spatial correlation is assumed to be exist. 

The population can be stratified by grouping similar units into a stratum and dissimilar units into 

different strata. The advantage of stratification is that the variance of an estimator can be reduced 

(Lohr 1999). Since adaptive sampling can be used with conventional stratified sampling such as 

stratified ACS, and it is known that stratification can increase precision in estimation, this paper 

applies ASC-SCSU with stratified sampling, and it is called stratified ACS-SCSU. 

2. Stratified Adaptive Cluster Sampling with Spatially Clustered Secondary Units and 

Technical Notation 

Assume a population is partitioned into L  strata, of which stratum h  contains hN  equal-sized 

rectangular primary units, and let N be the total number of primary units in the population. Each 

primary unit hiu  ( 1,2,3,..., ,h L 1,2,3,..., hi N ), the 
thi unit in stratum ,h  is divided into 2 rows 

and 2 columns forming 4 equal-sized rectangular secondary units hiju  ( 1,2,3,4j  ). Let m  be the 
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number of secondary units in each primary unit. In this research, 4.m   Thus, there are 
1

4
L

h

h

N N


 

secondary units in the study region. Let hijy  be the value of the variable of interest corresponding to 

each secondary unit .hiju  The parameter of interest in this paper is the population mean 

1 1 1

1 hNL m

hij

h i j

y
N


  

   or the population total .N   

 

2.1. Stratified adaptive cluster sampling with spatially clustered secondary units design 

In stratified ACS-SCSU, an initial stratified sample of primary units of size n  is obtained by 

taking an initial sample of primary units of size hn  from stratum h  using simple random sampling 

without replacement. Thus, the total number of secondary units in the initial sample is 
1

.
L

h

h

n n




Then for each sampled primary unit hiu  ( 1,2,..., hi n ), neighboring secondary units are added to the 

sample and observed whenever the variable of interest hijy  of a sampled secondary unit hiju  satisfies 

a specific condition ,C  which is determined a priori by the researcher. It is typically an interval for 

the variable of interest of a secondary unit. That is, hijy c  where c  is a constant defining the 

condition .C  This procedure continues until no adaptively sampled secondary units satisfy .C  The 

set of all secondary units satisfying C  as a result of hiju  being in the initial sample form a network 

while the secondary units that were adaptively sampled but did not satisfy C  are edge units. Together 

these units form a cluster. Note that the selection in one stratum may result in the addition of units 

from other strata to the sample if adaptive sampling is allowed to cross stratum boundaries. In this 

case, a cluster may intersect more than one stratum. Stratified ACS-SCSU is a special case combining 

of adaptive cluster sampling with primary and secondary units (Thompson 1991a) with stratified 

adaptive cluster sampling (Thompson 1991b). 

For instance, suppose that the population is composed of 100N   primary units, and each is 

divided into 2 rows and 2 columns forming 4 secondary units. Thus, there are 400 secondary units in 

the population. Suppose the population is stratified in to 2L   equal-sized strata, each having 

50hN   primary units or 200 secondary units as shown Figure 1. To illustrate a stratified ACS-

SCSU scheme, suppose 2hn   (and, hence, 4n  ). The stratified initial sample of 4 primary units 

is obtained by selecting an initial sample of 2 primary units from each stratum using simple random 

sampling without replacement. The obtained stratified initial sample is shown in Figure 2. Here, the 

condition C is defined to be 0.hijy   That is a neighboring secondary unit is adaptively added when 

a sampled secondary unit has value of the variable of interest 0.hijy   The neighborhood for a 

secondary unit hiju  in this example is defined to be the four adjacent units on the left, right, above 

and below unit .hiju  
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Figure 1 A population stratified into 2 strata formed by the vertical center line. The solid lines 

within each stratum form the 50 within-stratum primary units. The dotted lines form the 4 

secondary units within each primary unit 

 

For the initial sample in Figure 2, because the leftmost sampled primary unit of stratum 1 and 

the rightmost sampled primary unit of stratum 2 both contain four secondary units with 0hijy   (and 

which do not satisfy C ), no additional unit will be adaptively added to the sample in the 

neighborhoods of these primary units. On the other hand, the rightmost sampled primary unit of 

stratum 1 contains 4 secondary units with hijy  values of 0, 2, 3 and 15. Because the three secondary 

units with values of 2, 3 and 15 satisfy condition ,C  their neighboring secondary units are adaptively 

sampled and observed. This procedure continues until no adaptively sampled secondary units having 

hijy  greater than zero are found. The resulting cluster whose network consists of 12 dark grey 

secondary units with 17 edge units in light grey is shown in Figure 3. Notice that this cluster intersects 

both stratum 1 and 2. Finally, for the rightmost sampled primary units of stratum 2, four secondary 

units with values hijy  of 2, 5, 6 and 14 satisfy condition ,C  so their neighboring secondary units are 

adaptively sampled. This procedure continues until no adaptively sampled secondary units have hijy  

greater than zero. This results in the second cluster whose network consists of 8 dark grey secondary 

units with 10 edge units in light grey as shown in Figure 3. 
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Figure 2 A stratified initial sample of 2 primary sampling units per stratum 

 

 
 

Figure 3 A final sample of adaptively sampled secondary units 

 

2.2. Estimation 

The Horvitz-Thompson estimator (Horvitz and Thompson 1952) is applied in the stratified ACS-

SCSU design, but it is based on network inclusion probabilities. Let K  be the number of distinct 

networks in the population without regard to stratum boundaries. Let ky  be the total of the y-values 
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in the 
thk network of the population. Let k  be the probability that network k  is included in the final 

sample. k  is called the inclusion probability of network .k  

For stratified ACS-SCSU, 
k  is the probability at least one of the n  primary units in the initial 

stratified sample intersects network .k  Let hkx  be the number of primary units in stratum h  that 

intersect network k.  Using complementary probability, the probability that network k  is included in 

the final sample is 

1

1 .

h hk

L
h

k

h h

h

N x

n

N

n




 
 
 

 
 
 
 

                                                       (1) 

Let iE  be the event that network i  is included in the final sample. Thus, ( )j jP E   and 

( )k kP E   for network j  and k  respectively. Let jk  be the probability distinct networks j  and 

k  are both included in the final sample. jk  is called the joint inclusion probability of networks j  

and k  with 

( ) ( ) ( ) ( )jk j k j k j kP E E P E P E P E E        

( )j k j kP E E                                                    (2) 

where ( )j kP E E is the probability that at least one of networks j  and k  is included in the final 

sample. Using complementary probability 

 
1

( ) 1 ,

h hi hj hjk

L
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
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  
 
 
 

              (3) 

where hjkx  is the number of primary units in stratum h which intersect both networks j  and .k  

Hence, substitution yields 
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      

               (4) 

Define kZ  be the indicator variable having value 1 if network k  is included in the final sample and 

zero otherwise. Using calculated inclusion probabilities, the Horvitz-Thompson estimator is 

implemented in the stratified ACS-SCSU design, and the unbiased estimator of the population mean 

  is 

 
1

1
ˆ ,

K
k k

SSC

k k

y Z

N




                 (5) 

where K  is the total number of networks in the population. First, note that for (5) it is not necessary 

to know K  because if network k is not included in the final sample, then 0,kZ   and it contributes 

zero to (5). Second, even though different primary units in the initial sample might intersect the same 
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network, only the distinct networks observed in the final sample are utilized in the formula. Finally, 

one network can intersect more than one stratum, but this does not affect (5). 

Applying the results of Horvitz and Thompson (1952), the variance of ˆSSC  is 

2
1 1

1
ˆ( ) 1 .

K K
jk

SSC j k

j k j k

v y y
N




  

 
  

 
 

                                          (6) 

Note that .kk k   An estimator of this variance is 

2
1 1

1
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                                      (7) 

ˆ ˆ( )SSCv   is unbiased if all joint inclusion probabilities jk  are greater than zero. 

 

2.3. An Example 

In Section 2.1, stratified ACS-SCSU scheme was demonstrated by applying it in the small 

population in Figure 1, and the obtained final sample is shown in Figure 3. Next, the calculations 

used for estimation will be illustrated. The sample consists of 2 networks with a total of y-values 

greater than zero. The left and the right networks have a total y-values of 74 and 40 respectively, that 

is, 1 74y   and 2 40.y   The number of strata in the population is 2.L   Each stratum consists of 50 

primary units, thus 50.hN   The number of primary units in the population is 100,N   and the 

initial sample size in stratum h  is 2,hn   so the initial sample size is 4.n   The number of primary 

units in stratum 1 that intersect network 1 is 3, thus 11 3.x   The number of primary units in stratum 

2 that intersect network 1 is 1, thus 21 1.x   From (1), the probability that network 1 is included in 

the sample is 

1 1 11 2 21

2
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There are no primary units in stratum 1 that intersect network 2, thus 12 0.x   The number of 

primary units in stratum 2 that intersect network 2 is 4, thus 22 4.x   Hence, the probability that 

network 2 is included in the sample is 

1 1 12 2 22

2
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By using (5), the estimate of the mean is 

1

1 1 74 40
ˆ 7.4187.
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N
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The number of primary units in stratum 1 which intersect both networks1 and 2 is 0, thus 

112 0.x   The number of primary units in stratum 2 which intersect both networks1 and 2 is 0, thus 

212 0.x   
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                             = 0.0218. 

From (7), the estimate of the variance estimator is 
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                                                            = 21.7788. 

 

The number of secondary units in the sample, which is found by counting the number of dark-

shaded and light-shaded secondary units in Figure 3, is 54. This is equivalent to 54/4 = 13.5 primary 

units in terms of sampling effort. On the other hand, under stratified ACS with the same initial sample, 

the number of primary and secondary units in the final sample are 26 and 104, respectively, as shown 

in Figure 4. For stratified ACS, neighboring primary units are adaptively added to the sample instead 

of secondary units, thus stratified ACS requires a much larger sample size than stratified ACS-SCSU. 

Thus, ACS-SCSU is much more cost-effective. It can be concluded that stratified ACS-SCSU gives 

less cost and time spent travelling and observing units in the final sample than stratified ACS for this 

example. In other words, the cost and time of travelling and observing units in the stratified ACS 

sample is twice more expensive than that of stratified ACS-SCSU sample. 
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Figure 4 A final sample of stratified ACS whose initial sample is shown in Figure 2 

 

3. Simulation Study and Result 

To investigate the performance of stratified ACS-SCSU compared to stratified ACS of primary 

units, California redwood trees data (Strauss 1975) was used in a simulation. The simulation is 

composed of 1000 iterations, and for the thi  iteration, the value for the corresponding estimator ˆ i  

under both sampling designs is calculated. The formula used to estimate an estimator variance is the 

sample variance of the estimates: 
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where   is the sample mean of the 1000 ˆ
i  values (Dryver and Thompson 2005). Note that the 

modified Horvitz-Thompson estimator based on initial intersection probabilities is used to estimate 

the population mean for stratified ACS.  

The effective sample size ,i  which is the number of primary units in the final sample, of 

stratified ACS-SCSU were calculated for 
thi  iteration, and the estimated expected effective sample 

size of primary units under stratified ACS-SCSU is calculated by the formula   
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while the expected sample size of stratified ACS for each initial sample size is calculated from 
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which is the sum of inclusion probabilities in the population where 
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and ghim  is the number of (primary) units in the intersection of stratum g  with the network that 

contains unit ,hiu  and ghia  is the total number of units in the intersection of stratum g with distinct 

networks having unit hiu  as an edge unit. 

The California redwood trees study area consists of 400 primary units, and each contains 4 

secondary units. In the simulation, the population was stratified into 2 equal-sized strata (each stratum 

consists of 200 primary units) as shown in Figure 5, and into 4 equal-sized strata (each stratum 

consists of 100 primary units) as shown in Figure 6. To compare stratified ACS to ACS-SCSU, three 

conditions 0 1,C C  and 2C  were used. That is, adaptively sample if 0y   for 0 ,C  adaptively sample 

if 1y   for 1,C  and adaptively sample if 2y   for 2 .C  For the 1000 simulated samples, ˆ ˆ( )v   and 

 for stratified ACS and stratified ACS-SCSU were compared.  

 

 
 

Figure 5 California redwood trees data partitioned into 2 strata of 200 primary units and 800 

secondary units 

 



Patummasut and Borkowski 121 

 
 

Figure 6 California redwood trees data partitioned into 4 strata of 100 primary units and 400 

secondary units 

 

The simulation results for the California redwood trees population with 2 and 4 strata were 

presented in Table 1 and 2, respectively. These results indicated that, for conditions 0C  and C1, 

stratified ACS had a smaller average estimated variance than stratified ACS-SCSU for each initial 

sample size ,n  and the estimated relative efficiencies (ratio of the estimated variances: R. E.) were 

less than one. Hence, stratified ACS is more efficient than stratified ACS-SCSU when considering 

the same value of the initial sample size. However, for condition 2 ,C  the estimated relative 

efficiencies for some initial sample sizes are greater than one. For these cases, stratified ACS-SCSU 

is not efficient than stratified ACS. These comparisons, however, are misleading because the effective 

sample size   under SACS is always larger (often much larger) than  under SACS-SCSU. The 

effective sample size   indicates the true sampling effort generated by the researcher instead of the 

initial sample size. Therefore, it is appropriate to compare variances between two ACS designs when 

the effective sample sizes are similar (Turk and Borkowski 2005).  

Note that for the same initial sample size n in the population with 2 and 4 strata,  is smaller for 

stratified ACS-SCSU than stratified ACS for both conditions 0C  with 0y  , 1C  with 1y   and 2C  

with 2.y   Thus, stratified ACS-SCSU will, on average, be more efficient in terms of cost and time 

spent to observe the units in the final sample.  

The average estimated variances in Table 1 and 2 were plotted against the estimated expected 

effective sample size in the graphs in Figure 7. For the population with 2 and 4 strata and for both 

conditions, the graph of the estimated variances for stratified ACS-SCSU was below the graph for 

stratified ACS. This implies that the estimated variances of the estimator of the mean for stratified 

ACS-SCSU are smaller, on average, than the estimated variances under stratified ACS for the same 
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average effective sample size. Thus, when considering the same final sample size, stratified ACS-

SCSU is more efficient than stratified ACS. 

4. Discussion 

The stratified ACS-SCSU is a time and cost-effective sampling design to apply in rare and 

clustered population partitioned into strata. In practice, sampling cost and time are important factors 

for the sampler to consider when choosing an appropriate sampling design to use. Thus, this motivates 

the researcher to develop time and cost-effective sampling designs such as adaptive web sampling 

(Thompson 2006), path sampling (Patummasut and Dryver 2012), stratified ACS (Thompson 1991b), 

and ASC-SCSU (Patummasut and Borkowski 2014). Additionally, it is known that stratification can 

increase the precision of the estimator (Lohr 1999), thus stratified ACS-SCSU would be a sampling 

design that can save time, money and effort of the researchers with a higher statistical precision for a 

spatially aggregated population.  

To apply stratified ASC-SCSU in a geographical study area, the study area may be partitioned 

into smaller but similar areas according to a known variable such as soil or habitat type or plant 

species. Although a large area appears to be homogeneous, stratification based on geographical 

locations can be used to produce a sample aggregated over the entire area. Note that the overall 

variability in the estimation can be reduced when stratification leads to reduced variability within a 

stratum with larger variation across strata. Moreover, the most precise estimator will be obtained if 

the units in each stratum are as similar as possible (Thompson 2002). 

For stratified ACS-SCSU, ACS-SCSU is applied in every stratum in the population providing 

good spatial coverage and, hence a representative sample of the population. On the other hand, a 

sample from two-stage ACS will consist of sampling additional secondary units from a certain area 

because all secondary units in neighboring primary units must be sampled, which results in increased 

sampling effort and cost, and often less efficient estimation. 

In stratified ACS-SCSU, the unbiased estimator of the population mean and its variance were 

developed by applying the Horvitz-Thompson estimator based on network inclusion probabilities. 

Horvitz-Thompson estimation has been frequently used in estimation for a variety of sampling 

designs (Lucas and Seber 1977; Thompson 1990; Thompson 1991; Borkowski 2003; Akanisthanon 

et al. 2010; Mohammadi and Salehi 2011) because it is a general estimator of the population total or 

mean for any probability sampling design, and can be used as long as the inclusion probabilities can 

be provided (Horvitz and Thompson 1952). 

It is known that the estimator can be improved by using the Rao-Blackwell method (Rao 1945; 

Blackwell 1947) and, when possible, using ratio estimation. For example, Salehi (1999), Dryver and 

Thompson (2005), and Chao et al. (2011) used the Rao-Blackwell method to improve estimators in 

ACS, while Chao (2004) and Dryver and Chao (2007) offered ratio estimators in ACS. For ratio 

estimation, auxiliary information is utilized to get the better estimation. In addition, Chutiman (2010) 

proposed the new ratio estimator in stratified ACS. Possibly, a ratio estimator for stratified ACS-

SCSU could be developed based on the auxiliary information obtained from sampling survey, so this 

could be an interesting future research topic. 
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Figure 7 Graphs of average estimated variances from the simulation study on the California 

redwood trees data. SACS represents stratified ACS and SACS-SCSU represents stratified ACS-

SCSU 

5. Conclusions 

Stratified ACS-SCSU, or ACS-SCSU with stratification, was proposed in this paper when prior 

information allows stratification which can increase precision in estimation. In stratified ACS-SCSU, 

an initial stratified sample of primary units is selected by taking the initial sample of primary units 

from each stratum using simple random sampling without replacement. Then for each sampled 

primary unit, neighboring secondary units are added to the sample and observed whenever the 

variable of interest of a secondary unit satisfies a specific condition. This procedure continues until 

no adaptively sampled secondary units satisfy the condition. The estimator of the mean for this design 

was obtained by applying the Horvitz-Thompson estimator based on network inclusion probabilities. 
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The simulation results support that stratified ACS-SCSU can be a time and cost-effective sampling 

design, and it is appropriate for sampling in a spatially aggregated population. 
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