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Abstract 

The Empirical Bayes estimator (EB) of odds ratio in rare data is considered in this paper. The 
proposed estimate of odds ratio based on EB in Poisson distribution to approximate binomial 
distribution is then compared to conventional method, modified maximum likelihood estimator 
(MMLE), using the Estimated Relative Error (ERE) as a criterion of comparison. The result 
indicated that the EB estimator is a more efficient method than MMLE. 
______________________________ 
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1. Introduction 

A measure of association provides an index of how strongly the two factors under study were 
related. The odds ratio is a measure of association between two independent groups with binary 
outcome. Binary outcome usually refers to success or failure for example passing or failing an 
exam, good or bad conditions: two independent groups can be either treatment and control groups, 
or two treatment groups. The outcome in each group can be obtained by counting the number of 
successes in entire trials. The odds ratio is then used to compare the relative odds of the occurrence 
of the outcomes of interest (e.g. disease or disorder) in both groups, given exposure to the variable 
of interest (e.g. health characteristic, aspect of medical history). 
The usual maximum likelihood estimator of odds ratio is defined as 
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where 1 1 1/p x n=   and 2 2 2/p x n=  are probabilities of success in group 1 and group 2 and 1x  and 

2x  are number of successes in group 1 and 2, respectively. The odds ratio can be 0 or ∞  if one or 

two of the observed data is 0 ( 0MLEOR =  if the numerator is 0, and MLEOR = ∞  if the denominator 

is 0). If there is a 0 in both the numerator and denominator, then MLEOR  is undefined. Haldane 
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(1955), and Gart and Zweifel (1967) preferred solutions by adding 0.5 to each cell, and calculate 
the odds ratio called the modified maximum likelihood estimate (MMLE) 

               ( )( )
( )( )

1 2 2

2 1 1

0.5 0.5
.

0.5 0.5
MMLE

x n x
OR

x n x
+ − +

=
+ − +

                                            (2) 

Even though MMLE solves the problem of having zeroes in the observed data, Bishop, 
Fienberg, and Holland (1975) and Agresti and Yang (1987) argued that original data is perturbed by 
adding 0.5 to each cell. Hitchcock (1962) suggested adding 0.25 to each cell instead of 0.5, similar 
to the study by Hauck, Anderson and Leahy (1982). Jewell (1984, 1986) recommended adding 1 in 
the cells 2x  and 1 1n x− . As we can see, several attempts to search for an appropriate correction term 
have been mainly studied in order to make an odds ratio estimation with zero cell count plausible. 
However, there is no obvious conclusion and some researchers still disagree on the concept of data 
perturbation by adding a correction term to each cell. 

This paper is concerned with estimating the odds ratio when the outcome under study is rare 
resulting in which a situation whereby the incidence of the outcome for both independent groups is 
less than 10% (a mathematical cutoff point) (Wu 2002) or small proportions. Wakeel and Aslam 
(2013) estimated mean of rare sensitive attribute using Bayes estimator, which Gamma distribution 
has been used as prior information. They compared Bayes estimator to the maximum likelihood 
estimator using mean square error, and found that Bayes estimator is more efficient than maximum 
likelihood estimator. The Poisson distribution is most often invoked for binomial approximation in 
a rare event, of which the rate of occurrence is small. Subsequently, EB is utilized to obtain the 
probability of success in each group. Our purposed estimation does not interfere with the original 
data, and the result of this study tends to outperform the conventional estimator, MMLE. 

The remainder of this paper has been arranged in the following sequence. Section 2 discusses 
the odds ratio estimation using EB method. Section 3 illustrates simulated results, and the efficiency 
of EB is compared with MMLE. The application to real data set is presented in Section 4, and some 
concluding remarks are given in Section 5. 

2. Approximation Solution of Odds Ratio: The EB Method 
In this section, a new approximation method for rare data is proposed using EB. Data are 

assumed to be Poisson distribution. Let 1x  and 2x  be random variables, distributed as Binomial, but 

approximated as Poisson with equal and unequal sample sizes, ( )1 1x poi λ  and ( )2 2 ,x poi λ  

where 1λ  and 2λ denote unknown mean of occurrence. The informative prior is adopted on 

( ), , , 1, 2i i i igamma iλ λ η τ =  where iη  and iτ  denote hyper-parameters. The estimation of hyper-

parameters can be obtained from the posterior marginal distribution function as follow, 
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Then, both hyper-parameters in each group can be estimated using maximum likelihood method. 
The likelihood function of posterior marginal distribution function is displayed as 
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Applying Newton-Raphson method to solve a nonlinear equation, therefore the ( )1 thr +  maximum 

likelihood estimator of hyper-parameters ( )1, 2, 3,r =   can be obtained from 
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taking the partial derivatives of ( )ln ,l η τx , where ( )L   denotes log likelihood function, 
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The parameters η  and τ  are initially estimated by the method of moments Fisher ( 1941) , and 
Thom (1957) defined as 

2
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and                                                            
2

,s x
x

τ ∗ −
=                                                                      (5) 

where x  and 2s are the sample mean and variance, respectively. The posterior distribution of λ  is 
thus calculated, yielding 
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Substituting the estimators of η  and ,τ  we obtain 
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Let 1λ′  and 2λ′  be estimators of 1λ  and 2λ  respectively, where 
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The EB of odds ratio can be obtained as following 
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where 1 1 1/p nλ′ ′=  and 2 2 2/p nλ′ ′=  denote estimators for success probabilities in group 1 and 2, 
respectively. 

3. Simulation Study and Result 
In this section, performance of the proposed method in comparison with MMLE method is 

assessed. The approximate solutions are given in equation (2) and (8), respectively. Data in both 
groups are generated as independent binomial distributions with sample sizes ( ) ( )1 2, 10, 10n n =  

and ( )10, 50 ,  and success probabilities of 0.01, 0.03, 0.05 and 0.10. Each situation is repeated 

5,000 times after 1,000 burn-ins, using R program (version 3.2.0) (2010). The efficiency of 
estimators is evaluated using the Estimated Relative Error (ERE) (%), defined as 


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                                                    (9) 

where OR  denotes the usual maximum likelihood estimator of odds ratio, and  iOR  denotes the 
estimate of odds ratio using EB and MMLE, respectively. 

The estimated odds ratios resulted from simulation for sample sizes ( ) ( )1 2, 10, 10n n =  and 

( )10, 50  are given in Tables 1-2. The numerical results of comparison using the performance 

indicator, ERE, are shown in Tables 3-4 and also illustrated in Figure 1 for the cases 
( ) ( )1 2, 10, 50n n =  and 2 0.01, 0.03, 0.05, 0.10,p =  which are similar for the other cases not shown 

here. Based on the performance indicator, it can be seen that, for both equal and unequal sample 
sizes, the proposed estimator mostly outperforms the MMLE, except for the sample sizes 
( ) ( )1 2, 10, 10n n =  with ( ) ( )1 2, 0.01, 0.01 .p p =  In addition, 31 out of 32 situations (96.875%) 

indicate smaller EREs for the EB method than MMLE method. 
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Table 1 The estimated values of odds ratio for ( ) ( )1 2, 10, 10n n =  

( )1 2,p p  OR  

EBOR  

MMLEOR  
(0.01, 0.01) 1.0000 1.1626 1.1486 
(0.01, 0.03) 0.3266 0.3270 2.3733 
(0.01, 0.05) 0.1919 0.0571 0.4472 
(0.01, 0.10) 0.0909 0.0925 0.6227 
(0.03, 0.01) 3.0619 3.5741 1.5989 
(0.03, 0.03) 1.0000 1.0518 1.3940 
(0.03, 0.05) 0.5876 0.6067 1.2145 
(0.03, 0.10) 0.2784 0.2837 0.8676 
(0.05, 0.01) 5.2105 6.1144 2.0736 
(0.05, 0.03) 1.7018 1.7865 1.8013 
(0.05, 0.05) 1.0000 1.0287 1.5718 
(0.05, 0.10) 0.4737 0.4780 1.1174 
(0.10, 0.01) 11.0000 13.0139 3.3491 
(0.10, 0.03) 3.5926 3.7891 2.9181 
(0.10, 0.05) 2.1111 2.1743 2.5410 
(0.10, 0.10) 1.0000 1.0141 1.8097 

 
Table 2 The estimated values of odds ratio for ( ) ( )1 2, 10, 50n n =  

( )1 2,p p  OR  

EBOR  

MMLEOR  
(0.01, 0.01) 1.0000 1.0219 4.2689 
(0.01, 0.03) 0.3266 0.3270 2.3733 
(0.01, 0.05) 0.1919 0.1935 1.4491 
(0.01, 0.10) 0.0909 0.0915 0.6185 
(0.03, 0.01) 3.0619 3.1678 5.9543 
(0.03, 0.03) 1.0000 1.0144 3.3149 
(0.03, 0.05) 0.5876 0.5917 2.0234 
(0.03, 0.10) 0.2784 0.2781 0.8556 
(0.05, 0.01) 5.2105 5.3877 7.7032 
(0.05, 0.03) 1.7018 1.7246 4.2890 
(0.05, 0.05) 1.0000 1.0069 2.6134 
(0.05, 0.10) 0.4737 0.4748 1.1093 
(0.10, 0.01) 11.0000 11.3334 12.4201 
(0.10, 0.03) 3.5926 3.6340 6.9040 
(0.10, 0.05) 2.1111 2.1198 4.2136 
(0.10, 0.10) 1.0000 1.0048 1.7914 
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Table 3 The percentage of the estimated relative error of odds ratio estimation for
( ) ( )1 2, 10, 10 .n n =  

( )1 2,p p  EBERE  MMLEERE  

(0.01, 0.01) 16.2590 14.8613 
(0.01, 0.03) 3.7609 205.8135 
(0.01, 0.05) 70.2297 133.0545 
(0.01, 0.10) 1.7158 585.0082 
(0.03, 0.01) 16.7271 47.7824 
(0.03, 0.03) 5.1779 39.3969 
(0.03, 0.05) 3.2457 106.6910 
(0.03, 0.10) 1.8939 211.6315 
(0.05, 0.01) 17.3471 60.2028 
(0.05, 0.03) 4.9754 5.8475 
(0.05, 0.05) 2.8739 57.1837 
(0.05, 0.10) 0.9175 135.8892 
(0.10, 0.01) 18.3080 69.5535 
(0.10, 0.03) 5.4695 18.7745 
(0.10, 0.05) 2.9936 20.3649 
(0.10, 0.10) 1.4068 80.9732 

 
Table 4 The percentage of the estimated relative error of odds ratio estimation for 

( ) ( )1 2, 10, 50n n =  

( )1 2,p p  EBERE  MMLEERE  

(0.01, 0.01) 2.1866 326.8888 
(0.01, 0.03) 0.1127 626.6820 
(0.01, 0.05) 0.8355 655.1393 
(0.01, 0.10) 0.6896 580.3816 
(0.03, 0.01) 3.4588 94.4649 
(0.03, 0.03) 1.4432 231.4878 
(0.03, 0.05) 0.6918 244.3420 
(0.03, 0.10) 0.0962 207.3378 
(0.05, 0.01) 3.4013 47.8408 
(0.05, 0.03) 1.3383 152.0266 
(0.05, 0.05) 0.6860 161.3386 
(0.05, 0.10) 0.2367 134.1791 
(0.10, 0.01) 3.0306 12.9102 
(0.10, 0.03) 1.1532 92.1720 
(0.10, 0.05) 0.4110 99.5920 
(0.10, 0.10) 0.4794 79.1387 
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Figure 1 A comparison of the percentage of ERE for odds ratio estimation using EB and MMLE 
when ( ) ( )1 2, 10, 50n n =  

4. Application 
Our example is taken from the A to Z trial by Blazing et al. ( 2004) , which compared two 

treatments of enoxaparin and un-fractionated heparin in 3,905 patients with acute coronary 
syndrome.  The count of patients with TIMI ( The thrombolysis in Myocardial Infarction)  major 
bleeding in each treatment group was considered as outcome measure, resulting in ( ) ( )1 2, 18, 8x x =  

out of ( ) ( )1 2, 1940, 1965n n =  for enoxaparin and un-fractionated, respectively. The true odds ratio 

and their estimates using EB and MMLE methods are shown in Table 5. The results reveal that the 
estimate of the odds ratio using EB method yields the least ERE percentage with 0.3361 while that 
using MMLE method results in ERE percentage with 3.2693. 

 
Table 5 True odds ratio and their estimates using EB and MMLE, with corresponding percentages 

of ERE 

 
Methods 

True EB MMLE 
OR 2.2910 2.2987 2.2161 
ERE - 0.3361 3.2693 
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5. Conclusions 
This paper presents the odds ratio estimation in rare data with binomial distribution, and 

provides a Poisson approximate to the binomial distribution. The results obtained from simulated 
data indicate that the proposed method performs rather wells. The EB estimator of odds ratio is 
more efficient than the MMLE estimator. Hence our purposed estimator is an alternative to the 
MMLE method without interfering with initial data. 
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