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Abstract 

A novel method using the Nelder-Mead algorithm is proposed to be used instead of the 

first order model in moving the experiment in the response surface methodology toward the 

neighbor of the optimum. A second order model similar to the second order model in the CCD 

is constructed to estimate the optimum design point and the optimum response. From the 

simulation using five published test functions and five different normal generators, it can be 

concluded that the proposed method outperforms the traditional CCD in terms of the number of 

experiments, the MAPEs of the estimated optimum design point and estimated optimum 

response and the coverage probabilities. 

______________________________ 

Keywords: Response surface methodology, central composite design, Nelder-Mead algorithm. 

 

1. Introduction 
Response surface methodology (RSM) is useful for experiments with n quantitative factors 

that are under taken so as to determine the combination of levels of factors at which each of the 

quantitative factors must be set in order to optimize the response in some sense. The traditional 

response surface method originally proposed by Box and Wilson (1951) is based on initially 

conducting steepest ascent or descent searches until a significant curvature is detected. Box and 

Wilson (1951) use this method of interest to maximize the response based on experiments 

conducted on the direction defined by the gradient of an estimated main effects model. The 

observed responses along the steepest ascent direction are used to locate the neighborhood of 

the maximum. This method can theoretically locate the maximum through numerous iterations 

as long as it exists.  

However, if it is used on a badly scaled system, the rate of convergence may become too 

slow and the method is impractically to be used. Normally, the step size is estimated by using 

the coefficient of regression in the first order model based on the results from the experiments. 

In the other word, the effectiveness of the traditional response surface method depends on the 

step sizes given by the first order models.  

http://www.scirp.org/journal/articles.aspx?searchCode=Jirawan+Jitthavech&searchField=authors&page=1
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This study proposes an alternative to solve the step size problem in the traditional RSM by 

using only the values in the experiments without using the steepest direction in searching the 

optimum of the response surface. The best-known methods in the direct search class include 

genetic algorithms (Holland 1992), simulated annealing (Brooks and Morgan 1995), Tabu 

search (Glover and Laguna 1997), neural networks (Sexton et al. 1998) and Nelder-Mead (NM) 

algorithm (Nelder and Mead 1965). The NM algorithm is quite simple to understand and very 

easy to use (Gavin 2016). This leads to its wide applications in many fields of science and 

technology, especially in chemistry and medicine.  

The Nelder-Mead (NM) method is a derivative free method for searching a local optimum 

of a function. In this optimization process, the initial simplex adapts itself iteratively to the 

local surface landscape by varying its size and orientation. The NM algorithm is especially 

suitable for exploring the “unwieldy” terrains and has been widely accepted as the most robust 

and efficient of current sequential techniques for unconstrained optimization (Lagarias et al. 

1998). Numerous software packages include the NM algorithm as an optimization solver such 

as Mathematica, MultiSimplex, PROC IML in SAS, etc. The idea behind the NM algorithm is 

to “crawl” to the optimum in the selected direction by moving one vertex of the simplex at each 

iteration.  The vertices are moved by performing four basic operations: Reflection, Expansion, 

Contraction, and Multiple Contraction (shrink). 

Aimed at having better convergence, several variants of the simplex method have been 

proposed (Torczon 1989; Dennis and Torczon 1991; Torczon 1997; McKinnon 1998; Byatt 

2000; Kelley 2000; Tseng 2000; Price et al. 2002). The NM algorithm generally performs well 

for solving small dimensional real life problems and continuously remains as one of the most 

popular direct search methods (Wright 1996; Lagarias et al. 1998; Kolda et al. 2003; Han and 

Neumann 2006; Gavin 2016). It has been observed by many researchers that the NM algorithm 

may become inefficient for large dimensional problems (Parkinson and Hutchinson 1972, Byatt 

2000; Torczon 1989). However, for the usual problems arising from the RSM practice, the 

number of influential process factors included in the final model is rarely larger than half a 

dozen (Olsson and Nelson 1975, and Myers and Montgomery 2002). Typically, a “pre-

experiment” via fractional factorial is carried out in the earlier phase to eliminate the irrelevant 

factors, leaving only a small number of relevant factors.                                                                                      

The NM algorithm has demonstrated its wide versatility, accuracy and ease of use for 

solving different types of optimization problems in the noise-free environments in the area of 

applied statistics (Olsson 1974; Olsson and Nelson 1975; Copeland and Nelson 1996; Khuri 

and Cornell 1996). But the application of the NM algorithm in the response surface 

optimization in the presence of errors has been scarcely reported in the RSM literature. 

This study proposes to use the NM algorithm searching for the optimum region instead of 

the steepest direction in the traditional RMS. The second order model similar to the traditional 

RMS is still used to estimate in the optimum. This paper is structured as follows. The next 

section summarizes the 2k factorial design in the traditional RMS. The NM algorithm is 

proposed to be used in the 2k factorial design in Section 3. Section 4 is the simulation study of 

experimental designs by the traditional RMS and the proposed NM algorithm using the five 

published functions with the random noises and the comparisons of simulation results are also 

presented. The final section is conclusions.  
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2. Response Surface Methodology (RSM) 

The response surface methodology (RSM) is a collection of mathematical and statistical 

techniques for the analysis of problems in many fields such as engineering, manufacturing, 

agricultural, etc. in which a response is influenced by several independent variables. The 

objective is to determine the optimum design point in an experiment (Montgomery 2005). In 

general, such a relationship between a response of interest and independent variables, which are 

the factors in an experiment, is unknown and is approximated by a low-degree polynomial 

model (Box and Draper 1987) of the form 

                                                         ( )Ty  f x β                                              (1) 

where 1 2( , ,..., ),T
kx x xx ( )f x  is a vector function of p elements that consists of a dth order 

polynomial of 1 2, ,..., ,kx x x  1,d  β  is a vector of p unknown constant parameters, and   is a 

random experimental error distributed as 2(0, ).N  The expected response is ( ) ( )TE y  f x β  but 

the vector function f  and the parameter vector β  are unknown and are to be estimated. 

Frequently, in the first experiment of a 2k factorial design where k is the number of factors, the 

initial 2k vertices might be far from the optimum region. Additional experiments of a 2k 

factorial design without replication at a group of center points of the simplex are performed to 

construct the first order model, d = 1, consisting of only k first order terms of the independent 

variables and can be written as 
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                                                (2)                                                                                                   

in order to estimate the error, to test the hypothesis of the existence of the cross product terms 

in the model and the quadratic effect which indicate the existence of the curvature. The random 

error, ,  is assumed to be normally distributed with mean 0 and variance 2 .  

If no curvature is detected, the experiment will move to the points sequentially in the 

steepest direction to optimize the change in the response.  The steepest direction method is a 

procedure for moving sequentially along the path of steepest direction toward the neighborhood 

of the optimum. Consider the fitted first-order response surface model, 
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where ŷ  is the predicted response, ix  represents the coded variable of the 
thi  independent 

factor, 0̂  is the estimated intercept, and the individual ˆ
i ’s are the estimated coefficients of 

the 
thi  coded variable. The steepest direction method seeks for a point determined by a set of 

independent variables that produce the estimated optimum response over all points that are a 

fixed distance r from the center of the design which is the point .x 0  As a result; the 

optimization problem involves the use of a Lagrange multiplier ( )  subject to the restraint 

given by 2 2
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with respect to
jx  and setting it equal to zero yield  

 
ˆ

2

j

jx



 , 1,2, , .j k         (4) 

The expression 
1

2
 may be viewed as a constant of proportionality  and (4) becomes  

 ˆ , 1,2, , ,j jx j k          (5)                           
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The positive (negative) value of   in (6) is used when searching for the minimum (maximum) 

on the response surface. The origin of independent variables is moved to the point given by (5) 

which is the point where the largest absolute change of (4) occurs on the hyper-sphere of radius 

r.  The value of 
jx  in (5) can be considered as an increment of 

jx , ,jx  moving away from 

the origin.  Let
1

| | max | | .i j
j k

 
 

 The increment of 
jx , ,jx  in term of the largest absolute 

increment ix  can be written as 
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                        (7)      

The incremental jx in (7) is converted back to the increment of the corresponding natural 

variable before running the next experiment. After the experiment moves toward the 

neighborhood of the optimum along the steepest direction, step by step given by (7), until a 

curvature is detected by direct comparison of the successive responses, the 2k vertices of the 

current simplex with a number of center points are performed as in the initial experiment to test 

the hypothesis of the existence of a curvature. If the test cannot reject the null hypothesis, a 

number of axial points by using the central composite design (CCD) are added in the 

experiment to construct the second order model, 2,d   for estimating the optimum design 

point. The second order model consists of k first order terms, k second order terms and 

( 1) / 2k k   interaction terms and can be written as 

2
0

1 1 1

,
k k k k

i i ij i j ii i

i i j i i

y x x x x    
   

                                     (8)  

which is used to approximate the response surface in the neighborhood of the optimum. After 

the parameters of the second order model are estimated, the optimum design point in terms of 

the coded variables can be written as (Anderson, et al. 2009) 

11
,

2
opt

 x B b                                                         (9) 

where 
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and the predicted response at the optimum design point is given by 

 0

1ˆˆ ,
2

opt opty    x b       (10) 

which is to be converted back in terms of the natural variables.   

 

3. The Proposed Method   

The proposed method consists of two phases to search for the optimum design point in an 

experiment of a 2k factorial design. The first phase is to move the experiment from the initial 

points toward the neighborhood of the optimum in the direction given by the NM algorithm 

instead of the steepest direction as in the first order model in the traditional RSM. After the 

experiment approaches the vicinity of the optimum by moving in the directions given by the 

NM algorithm, the first phase is terminated and the second phase of the proposed method is to 

construct a second order model without using CCD as in the traditional RSM such that the 

variances of the estimated parameters can be estimated.  

The NM algorithm is a heuristic, iterative and derivative free procedure for 

multidimensional unconstrained optimization problems. The movement is determined by 

comparing the responses of the experiments at the vertices of the simplex.  The simplex adapts 

itself to the local landscape and moves on to the final optimum.  

A simplex is described in a geometric figure with k dimensions which is a convex hull of 

1k   vertices, i.e. a simplex with vertices of the natural variables, 1 2 1, , , kx x x  denoted by 

.  The method iteratively generates a sequence of simplexes to approximate an optimal design 

point of the response in the experiment. In minimization problem, the simplexes are ordered in 

an iteration according to the responses with 1 2 1( ) ( ) ( ).ky y y   x x x  In maximization 

problem, the simplexes are ordered reversely with 1 2 1( ) ( ) ( ).ky y y   x x x  Let 1x  be the 

best vertex and 1kx  be the worst vertex.  

Four possible operations are determined in the algorithm: reflection, expansion, 

contraction, and shrink, each being associated with a scalar parameter:  (reflection), 

(expansion),  (contraction), and   (shrink) (see Figure 1). These parameters should satisfy 

0,   1,   , 
 

0 1,   and 0 1   (Lagarias et al. 1998). In the standard 

implementation of the NM algorithm, the parameters are chosen to be { , , , }     = {1, 2, 1/2, 

1/2}. Let x  be the centroid of the first k best vertices, excluding the worst vertex, 
1

1
.

k

i

ik 

 x x  

Each iteration in the NM algorithm starts with a simplex specified by 1k   vertices in a k  

dimensional space and can be described, for a minimization problem, as follows. 
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1. Sort. Perform the experiment at the 1k   vertices of   and sort the vertices such that

1 2 1( ) ( ) ( ).ky y y   x x x   If 1 1| ( ) ( ) |ky y e x x  where e  is the specified tolerance, then 

stop the algorithm; otherwise, go to Step 2. 

2. Reflection. Compute the reflection point 1( )r k   x x x x  and perform the 

experiment at .rx  If 1( ) ( ) ( ),r ky y y x x x  then replace 1kx with rx  and terminate the 

iteration. 

3. Expansion. If 1( ) ( ),ry yx x  then compute the expansion point ( )e r  x x x x and 

perform the experiment at .ex  If
 

( ) ( ),e ry yx x  then replace 1kx with ;ex  otherwise replace 

1kx with  .rx  Terminate the iteration. 

4. Outside Contraction. If 1( ) ( ) ( ),k r ky y y  x x x  compute the outside contraction point 

( )oc r  x x x x  and perform the experiment at .ocx  If ( ) ( ),oc ry yx x  then replace 1kx

with ocx  and terminate the iteration; otherwise go to step 6. 

5. Inside Contraction. If 1( ) ( ),r ky y x x  compute the inside contraction point 

( ),ic r  x x x x  

and perform the experiment at .icx  If 1( ) ( ),ic ky y x x  then replace 1kx with
 icx  and 

terminate the iteration; otherwise go to step 6. 

6. Shrink. Compute the shrinkage point 1 1( ),i i  v x x x  2 1i k    and perform the 

experiment at ,iv  2 1.i k    The new vertices of the simplex at the next iteration are

1 2 3 1, , , , .kx v v v   

The possible operations in a two-dimensional space are shown in Figure 1.  

 
 

 

Figure 1 Possible operations performed on a simplex in a two-dimensional space 
 

In a 2k factorial design, the initial experiment is performed at 2k  vertices and a group of 

center points. But in the first phase of the proposed method, the initial experiment is performed 

at only 1k  points which may be randomly selected from the 2k  vertices in the 2k factorial 

design. For example, in a 22 factorial design, any three of the four starting points as shown in 

Figure 2.  In the next experiment, only one additional point given by one of the five operations: 

reflection, expansion, outside contraction, inside contraction and shrink is required to be 

performed. Let ( )l
iy x  be the response of the experiment at the 

thi  vertex in the 
thl  iteration. 

The first phase is terminated at the 
thl  iteration if  1 1| ( ) ( ) | ,l l

ky y e x x the acceptable 

tolerance. 

Reflection Expansion 

 
Outside Contraction   Inside Contraction 

 

Shrink 
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In an iteration in the NM algorithm, the number of points required to perform the 

experiment depends on the operation in the iteration as shown in Table 1. The numbers of 

points in Table 1 are in accordance with the NM algorithm as described above. A shrink 

operation may lead to an increase in every response, ( ),iy x  except 1( ).y x  However, the shrink 

operation very rarely happens in practice (Torczon 1989). In the non-shrink iteration ,l  it can 

be shown that 

1( ) ( ),l l
i iy y x x   for 1 1,i k    

with strict inequality for at least one value of i if the response is bounded below (Lagarias et al.           

1998). In other words, in a minimization problem in the experimental design and no shrink 

operation occurs, the difference 1 1( ) ( )l l
ky y x x  approaches to 0 as l becomes large since, in 

practice, the response is bounded below. Therefore, under the condition that no shrink 

operation occurs, it can be concluded that when 1 1( ) ( ) ,l l
ky y e  x x  the experiment has moved 

to a neighborhood of the minimum. No statistical hypothesis testing is required in the proposed 

method.  

 

 
Figure 2 Four possible starting points in the first phase of the proposed method 

 

Table 1 Number of points required performing the experiment under different operations in the 

NM algorithm 

Operation Reflection Expansion 
Outside 

contraction 

Inside 

contraction 
Shrink 

No. of points 1 2 2 2 k 
  

 

The second phase of the proposed method constructs the second order model in which the 

total number of parameters including the intercept term is equal to 
( 3)

1.
2

k k 
  The responses 

at the last 
( 3)

2
2

k k 
  points in the first phase are used to estimate the parameters in the second 

order model. The optimum design point is given by (9) and the predicted response at the 

optimum design point is also given by (10) and are in terms of the natural variables. However, 

if the estimates of the parameters are also of interests, the number of points used in the 

parameter estimation should be increased to the same as in the case of CCD second order 

model. 

 

4. Simulation Study 

Five published test functions are used in the simulation to compare the efficiency between 

the classical RSM with CCD and the proposed method. The first four test functions,
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1 2( , ), 1, 2, 3, 4if x x i   are published in Fan and Zahara (2004) and the last one,
 5 1 2( , ),f x x  in 

Myers and Montgomery (2002). The responses and the contours of the five test functions are 

illustrated in Figures 3-7 respectively with the corresponding the minimum points and the 

minimum response shown in Table 2. 

 2 2 2 1 1 2

1 1 2 2 1 1 2 1 2

7
( , ) 2 0.01( ) (1 ) 2(2 ) 7sin sin ; , 1,4

2 10

x x x
f x x x x x x x x

   
           

   
 

 

Figure 3 The response surface and the contour of 1f  

 2 2 2 2

2 1 2 1 2 1 2 1 2( , ) ( 11) ( 7) ; , 2,2f x x x x x x x x          

 
Figure 4 The response surface and the contour of 2f  

   2 4 6 2 4

3 1 2 1 1 1 1 2 2 2 1 2

1
( , ) 4 2.1 4 4 ; 1,0.5 , 0,1

3
f x x x x x x x x x x x          

 
Figure 5 The response surface and the contour of 3f  

 4 1 2 1 1 2 2 1 2( , ) sin(4 ) 1.1 sin(2 ); , 1.5,3.5f x x x x x x x x    
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Figure 6 The response surface and the contour of 4f  

   2 2

5 1 2 1 2 1 2 1 2 1 2( , ) 1431 7.81 13.3 0.0551 0.0401 0.01 ; 50,120 , 150,200f x x x x x x x x x x       

 
 

Figure 7 The response surface and the contour of 5f  

 

Table 2 The minima and the minimum responses of the test functions 

Test function 

Minimum points Minimum response 

1minx  
  2minx  

miny  

1f  3.200 2.100      -6.510 

2f  -0.270 -0.920  -181.600 

3f  -0.092 0.713      -1.032 

4f  2.770 2.460      -5.410 

5f  86.900 176.670    -83.220 

 

 In simulation, the response is evaluated at a specific point by using a stochastic function 

which is the sum of one of the five test functions and a normal random generator. The random 

generators associated with the corresponding test functions are 2

1 (0,0.01 ),N  2 (0,1),N  

2

3 (0,0.01 ),N  
2

4 (0,0.01 )N  and 5 (0,1).N  The variances of the random generators 
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are specified by considering the corresponding ranges of the independent variables of the 

function.  

 

4.1. RSM with CCD simulation 

For each response given by the test function and the associated random generator, one 

hundred simulation runs are conducted, each of which consists of 50 replications. The natural 

variable, ,ix  is generated by the uniform generator ( , )i iU a b  where ia  and ib  are the lower 

bound and upper bound of .ix  Let 
ijL  be the low level of ix  in the thj  replication of a 

simulation run generated by the uniform generator [ , ( ) 2]i i iU a a b  for 1, 2;i 

1, 2, , 50.j   The high level of ix  in the thj  replication 
ijH  is given by 

ij ijL   where ij  

is generated by the uniform generator
 

(0, ( ) 2),i i iU b a b  1, 2;i  1, 2, , 50.j   The low 

level and high level of the natural variables are converted to the coded variables ( )L   and 

( )H   respectively for analysis in the factorial design in the CCD.  

The center point in a 22 factorial design, 
ijC  is given by ( ) 2ij ijL H  for 1, 2,i 

1, 2, , 50.j   Initially, the experiment is performed at four axial points and five center points 

for statistical testing of the curvature existence. The simulation follows the procedure as 

described in Section 2 until the curvature is detected. The experiment is performed at five 

center points and four axial points and four additional axial points for constructing the second 

order model. The axial point in the simulation is determined by using 
1 4(number of factorial runs) 1.414    for a 22 factorial design. After the parameters of the 

second order model have been estimated by the ordinary least squares (OLS) method, the 

minimum design point in terms of coded variables is calculated by (9) and the minimum 

response is given by (10).  Then, the coded minimum design point and the coded minimum 

response are converted back to in terms of the natural variables.  After 50 replications have 

been completed, the 95% confidence intervals (CI) for the mean of minimum design point and 

the mean of the minimum response can be estimated. 

For each of the five stochastic test functions, the simulation runs 100 times for statistical 

analysis of the simulation results. 

 

4.2. Simulation by the proposed method 

Generally, the proposed method may start with any 1k   vertices in a 2k factorial design 

selected from the vertices in the initial experiment in the traditional RSM with CCD for the 

sake of performance comparisons. However, in this simulation of a 22 factorial design, all four 

possible set of three vertices: NM(1), NM(2), NM(3) and NM(4) as shown in Figure 2 are used 

as the starting points of the simulation by the proposed method for analysis of the performances 

of the proposed method.  The stochastic test functions, the number of replications in a run and 

the number of runs are the same as in the RSM simulation. The acceptable tolerance e in the 

stopping criterion of the NM algorithm is set to be a reasonable small value of 0.10 since the 

NM algorithm converges to a minimum provided that no shrink operation occurs during the 

search. Furthermore, the objective of NM search is to locate the neighborhood of the minimum 

for constructing the second order model in the second phase.  
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The same statistics of the minimum design point and the minimum response are calculated 

as in the CCD simulation.  

 

4.3. Analysis of the simulation results 

In each run of both simulations under one of the five test functions, the means of the 

absolute percentage errors (MAPE) of the natural variables at the estimated minimum design 

point and of the estimated minimum response are given by  

1 1 2 2

1 2

1 2

50 50
min min min min

min min

1 1min min

ˆ ˆ1 1
ˆ ˆMAPE( ) 100; MAPE( ) 100;

50 50

j j

j j

x x x x
x x

x x 

 
      

50
min min

min

1 min

ˆ1
ˆMAPE( ) 100.

50 j

y y
y

y


   

The means and standard deviations of the estimated minimum design points and the 

estimated minimum responses from the 100 runs, each of which has 50 replications in both 

simulations under each of the five test functions are summarized in Table 3 and the averages of 

the MAPEs of the estimated minimum design point and the estimated minimum response are 

shown in Table 4 and 5 respectively.  

 

Table 3 The true value, mean and standard deviation of the estimated values of the minimum 

design points and the minimum responses in the simulation by the CCD and the proposed 

method 

Test 

function 
Variables True value 

Methods 

CCD NM(1) NM(2) NM(3) NM(4) 

1f  1x  3.200 3.085 3.210 3.198 3.194 3.195 

(0.049) (0.036) (0.019) (0.018) (0.029) 

2x  2.100 2.208 2.113 2.103 2.120 2.119 

(0.034) (0.023) (0.016) (0.026) (0.031) 

y  -6.510 -4.089 -6.396 -6.504 -6.493 -6.519 

(0.352) (0.168) (0.044) (0.052) (0.017) 

2f  1x  -0.270 -0.383 -0.284 -0.290 -0.282 -0.280 

(0.070) (0.009) (0.005) (0.008) (0.010) 

2x  -0.920 -0.993 -0.955 -0.945 -0.940 -0.945 

(0.099) (0.034) (0.039) (0.050) (0.045) 

y  -181.600 -178.537 -181.603 -181.243 -181.255 -181.645 

(1.140) (0.424) (0.657) (0.453) (0.447) 

3f  1x  -0.092 -0.032 -0.096 -0.097 -0.095 -0.096 

(0.015) (0.005) (0.006) (0.003) (0.006) 

2x  0.713 0.334 0.716 0.710 0.709 0.708 

(0.094) (0.021) (0.012) (0.013) (0.019) 

y  -1.032 -0.514 -1.038 -1.038 -1.017 -1.017 

(0.102) (0.050) (0.051) (0.022) (0.016) 
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Table 3 (Continued) 

Test 

function 
Variables True value 

Methods 

CCD NM(1) NM(2) NM(3) NM(4) 

4f  1x  2.770 2.747 2.746 2.776 2.758 2.767 

(0.030) (0.025) (0.018) (0.024) (0.018) 

2x  2.460 2.376 2.454 2.455 2.455 2.456 

(0.045) (0.025) (0.029) (0.024) (0.009) 

y  -5.410 -4.828 -5.272 -5.442 -5.413 -5.414 

(0.171) (0.117) (0.034) (0.006) (0.008) 

5f  1x  86.900 86.816 86.572 86.818 86.650 86.801 

(0.044) (0.477) (0.436) (0.483) (0.463) 

2x  176.670 176.655 176.628 176.624 176.470 176.613 

(0.055) (0.666) (0.588) (0.815) (0.582) 

y  -83.220 -82.353 -83.131 -83.152 -83.119 -83.234 

(0.112) (0.184) (0.196) (0.218) (0.030) 

Note: The number in the parenthesis is the standard deviation of the estimated mean. 

 

From Table 3, it is obvious that the estimated minimum responses and the minimum points 

of the five test functions given by the proposed NM method from all four possible starting 

points are closer to the true values than the ones given by the CCD.  

It can be seen from the averages of the MAPEs of the estimated minimum design point,

min
ˆ ,x  and the estimated minimum response, min

ˆ ,y  in Tables 4 and 5 that the proposed method 

with any one of the four possible starting vertices clearly outperforms the CCD when the 

stochastic test functions are , 1,2,3if i   and 4 which are not quadratic functions. But in the 

case of a quadratic function 5f  the averages of the MAPES of 
1minx̂  and 

2minx̂  in the proposed 

method are 0.415-0.514% and 0.253-0.340% while those in the CCD are 0.097% and 0.025% 

respectively. However, in the case of quadratic function 5 ,f the averages of the MAPEs of the 

estimated minimum response in the proposed method are 0.026-0.211% less than 1.042% in the 

CCD. This leads to the conclusion that the proposed method using any one of the possible four 

vertices as the starting vertices yields the better estimates than the traditional RSM with CCD 

since most of the responses in practice are not quadratic. 
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Table 4 The average MAPEs of the estimated minimum design point in the simulation by the 

CCD and the proposed method 

Test 

function 

Average MAPE of 
1min

ˆ ,x % Average MAPE of  
2min

ˆ ,x % 

CCD NM(1) NM(2) NM(3) NM(4) CCD NM(1) NM(2) NM(3) NM(4) 

1f  3.697 0.866 0.451 0.481 0.687 5.361 0.936 0.488 1.267 1.423 

2f  
40.779 5.188 7.386 4.643 4.325 10.237 4.312 4.155 4.900 4.581 

3f  64.970 5.946 6.541 4.139 6.237 53.166 2.512 1.522 1.643 2.413 

4f  1.281 0.903 0.579 0.763 0.557 3.296 0.832 0.338 0.808 0.331 

5f  
0.097 0.514 0.415 0.485 0.440 0.025 0.281 0.257 0.340 0.253 

 

Table 5 The average MAPEs of the estimated minimum response in the simulation by the CCD 

and the proposed method 

Test 

function 

Average MAPE of min
ˆ ,y % 

CCD NM(1) NM(2) NM(3) NM(4) 

1f  36.822 1.879 0.382 0.693 0.239 

2f  
1.805 0.198 0.345 0.256 0.211 

3f  50.119 4.209 4.414 1.957 1.624 

4f  12.409 0.909 0.717 0.104 0.134 

5f  
1.042 0.198 0.189 0.211 0.026 

 

The average number of points performed before estimating the minimum design points in 

the CCD and the proposed method from the 100 runs of simulation are shown in Table 6. The 

number of points in the proposed method is 80.85-92.77%, 55.67-60.62%, 68.25-75.52%, and 

66.01-71.07%, of the corresponding one in the CCD for of the non-quadratic test functions, ,if  

1,2,3,4,i   respectively. But in the case of quadratic test function 5 ,f  the number of required 

experiments in the proposed method is 6.85-12.38% more than the CCD.  

 

Table 6 The average number of required points in the CCD and the proposed method 

Test 

function 

Average number of required points in 

CCD NM(1) NM(2) NM(3) NM(4) 

1f  13.00 12.06(92.77) 11.95(91.92) 10.97(84.38) 10.51(80.85) 

2f  19.83 11.04(55.67) 12.02(60.62) 11.12(56.08) 11.51(58.04) 

3f  13.89 9.48(68.25) 10.49(75.52) 10.41(74.95) 10.36(74.59) 

4f  14.83 9.79(66.01) 10.54(71.07) 9.91(66.82) 10.46(70.53) 

5f  13.00 14.19(109.15) 14.61(112.38) 14.23(109.46) 13.89(106.85) 

Note: The number in the parenthesis is the percentage of the required points relative to the 

one in the CCD. 
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Let define the coverage probability be the probability that the true value is in the 95% 

confidence interval of the estimate. The coverage probabilities in the CCD and the proposed 

method in the cases of the stochastic functions, ,if 1, 2, , 5i   are summarized in Table 7. It 

can be seen that the coverage probabilities of the 95% CI of the estimates in the proposed 

method are higher than in the traditional RSM except the coverage probability of min2
x̂ in the 

case of quadratic function 5f  which equals 0.94 in the CCD higher than 0.77-0.84 in the 

proposed method, and the coverage probability of 
1minx̂  in the case of 4f  which equals 0.88 in 

the CCD higher than 0.82 and 0.76 in the proposed method with the starting vertices NM(2) 

and NM(4) respectively. However, from the coverage probability of the estimated minimum 

design point, it can be concluded that the proposed method performs much better than the 

CCD. 

 

5. Conclusions  

In this study, a novel method using the NM algorithm with the starting 1k   vertices in the 

k  dimensional space to move the experiment toward the neighborhood of the optimum is 

proposed to be used instead of the first order model in the traditional RMS. A second order 

model is constructed based on the last 
( 3)

2
2

k k 
  points before the termination of the NM 

algorithm. The response in the simulation is given by a stochastic test function which is a 

combination of the published test function and a normal generator. From the simulation results, 

the average MAPE of minŷ in the proposed method is less than the corresponding values in the 

CCD for five stochastic test functions as shown in Tables 5. Also, the coverage probabilities in 

the proposed method are higher than the corresponding values in the CCD except the case 2x in 

the quadratic stochastic test function 5.f  The average MAPEs of 
1minx̂  and 

2minx̂  in the 

proposed method and the number of required experiments are clearly less than the ones in the 

CCD except in the case of the quadratic stochastic test function 5f  for which the CCD slightly 

outperforms the proposed method as shown in Tables 4 and 6. It can be concluded from the 

simulation that the proposed method may randomly select 1k   vertices from 2k  vertices in a 

2k  factorial design for the initial experiment and outperforms the CCD for a non-quadratic 

response from the points of view of the minimum design point within the smaller neighborhood 

of the true minimum, the smaller number of points required performing the experiment and the 

higher coverage probabilities of the estimates. However, in the case of a quadratic response, the 

CCD slightly outperforms the proposed method in terms of the number of points required 

performing the experiment and the MAPE of the estimate of the minimum design point. One 

should be noted that the less the number of points required performing the experiment, the less 

the experiment cost and the time taken. 
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Table 7 The coverage probabilities in the CCD and the proposed method under the stochastic                    

functions, ,if 1, 2, , 5i   

Test 

function 
Method 

Coverage probability of 

1x  2x  Both 1,x 2x   Response( y ) 

1f  
CCD 0.27 0.01 0.00 0.00 

NM(1) 0.96 0.98 0.95 0.93 

NM(2) 0.99 0.99 0.98 0.85 

NM(3) 0.98 0.96 0.94 0.84 

NM(4) 0.88 0.93 0.87 0.98 

2f  CCD 0.60 0.65 0.28 0.16 

NM(1) 0.96 0.91 0.89 0.84 

NM(2) 0.89 0.86 0.84 0.78 

NM(3) 0.98 0.96 0.94 0.80 

NM(4) 0.95 0.91 0.89 0.82 

3f  CCD 0.08 0.08 0.04 0.01 

NM(1) 0.94 0.89 0.83 0.89 

NM(2) 0.97 0.87 0.85 0.88 

NM(3) 0.97 0.95 0.95 0.95 

NM(4) 0.96 0.94 0.91 0.97 

4f  CCD 0.88 0.46 0.37 0.04 

NM(1) 0.99 0.84 0.83 0.93 

NM(2) 0.82 0.79 0.73 0.90 

NM(3) 0.88 0.83 0.74 0.88 

NM(4) 0.76 0.84 0.72 0.82 

5f  CCD 0.55 0.94 0.53 0.01 

NM(1) 0.95 0.83 0.78 0.94 

NM(2) 0.93 0.84 0.78 0.95 

NM(3) 0.92 0.77 0.69 0.91 

NM(4) 0.97 0.81 0.79 0.89 

 

From the simulation results, it can be observed that in the case of non-quadratic response, 

the first order model may not move the experiment sufficiently close to the minimum even 

though a curvature is statistically detected. Consequently, the second order model in the CCD 

cannot satisfactorily fit the curvature of the non-quadratic response. But, in the case of 

quadratic response, the second order model in the CCD will give a better result. Since the 

objective of this study is to locate the minimum design point and the minimum response the 

degree of freedom of the error in the proposed method in the simulation is only 1. If the 

estimates of parameters in the second order model is of interests the number of points used in 

the construction of the second order model in the proposed method should be increased to in 

the same order in the CCD. 
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For the future research, other direct search, such as Tabu search, pattern search, Powell’s 

method, etc., should be explored to search the optimum design point and different designs in 

the RSM also should be investigated. 
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