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Abstract

A novel method using the Nelder-Mead algorithm is proposed to be used instead of the
first order model in moving the experiment in the response surface methodology toward the
neighbor of the optimum. A second order model similar to the second order model in the CCD
is constructed to estimate the optimum design point and the optimum response. From the
simulation using five published test functions and five different normal generators, it can be
concluded that the proposed method outperforms the traditional CCD in terms of the number of
experiments, the MAPEs of the estimated optimum design point and estimated optimum
response and the coverage probabilities.
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1. Introduction
Response surface methodology (RSM) is useful for experiments with n quantitative factors

that are under taken so as to determine the combination of levels of factors at which each of the
quantitative factors must be set in order to optimize the response in some sense. The traditional
response surface method originally proposed by Box and Wilson (1951) is based on initially
conducting steepest ascent or descent searches until a significant curvature is detected. Box and
Wilson (1951) use this method of interest to maximize the response based on experiments
conducted on the direction defined by the gradient of an estimated main effects model. The
observed responses along the steepest ascent direction are used to locate the neighborhood of
the maximum. This method can theoretically locate the maximum through numerous iterations
as long as it exists.

However, if it is used on a badly scaled system, the rate of convergence may become too
slow and the method is impractically to be used. Normally, the step size is estimated by using
the coefficient of regression in the first order model based on the results from the experiments.
In the other word, the effectiveness of the traditional response surface method depends on the
step sizes given by the first order models.
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This study proposes an alternative to solve the step size problem in the traditional RSM by
using only the values in the experiments without using the steepest direction in searching the
optimum of the response surface. The best-known methods in the direct search class include
genetic algorithms (Holland 1992), simulated annealing (Brooks and Morgan 1995), Tabu
search (Glover and Laguna 1997), neural networks (Sexton et al. 1998) and Nelder-Mead (NM)
algorithm (Nelder and Mead 1965). The NM algorithm is quite simple to understand and very
easy to use (Gavin 2016). This leads to its wide applications in many fields of science and
technology, especially in chemistry and medicine.

The Nelder-Mead (NM) method is a derivative free method for searching a local optimum
of a function. In this optimization process, the initial simplex adapts itself iteratively to the
local surface landscape by varying its size and orientation. The NM algorithm is especially
suitable for exploring the “unwieldy” terrains and has been widely accepted as the most robust
and efficient of current sequential techniques for unconstrained optimization (Lagarias et al.
1998). Numerous software packages include the NM algorithm as an optimization solver such
as Mathematica, MultiSimplex, PROC IML in SAS, etc. The idea behind the NM algorithm is
to “crawl” to the optimum in the selected direction by moving one vertex of the simplex at each
iteration. The vertices are moved by performing four basic operations: Reflection, Expansion,
Contraction, and Multiple Contraction (shrink).

Aimed at having better convergence, several variants of the simplex method have been
proposed (Torczon 1989; Dennis and Torczon 1991; Torczon 1997; McKinnon 1998; Byatt
2000; Kelley 2000; Tseng 2000; Price et al. 2002). The NM algorithm generally performs well
for solving small dimensional real life problems and continuously remains as one of the most
popular direct search methods (Wright 1996; Lagarias et al. 1998; Kolda et al. 2003; Han and
Neumann 2006; Gavin 2016). It has been observed by many researchers that the NM algorithm
may become inefficient for large dimensional problems (Parkinson and Hutchinson 1972, Byatt
2000; Torczon 1989). However, for the usual problems arising from the RSM practice, the
number of influential process factors included in the final model is rarely larger than half a
dozen (Olsson and Nelson 1975, and Myers and Montgomery 2002). Typically, a “pre-
experiment” via fractional factorial is carried out in the earlier phase to eliminate the irrelevant
factors, leaving only a small number of relevant factors.

The NM algorithm has demonstrated its wide versatility, accuracy and ease of use for
solving different types of optimization problems in the noise-free environments in the area of
applied statistics (Olsson 1974; Olsson and Nelson 1975; Copeland and Nelson 1996; Khuri
and Cornell 1996). But the application of the NM algorithm in the response surface
optimization in the presence of errors has been scarcely reported in the RSM literature.

This study proposes to use the NM algorithm searching for the optimum region instead of
the steepest direction in the traditional RMS. The second order model similar to the traditional
RMS is still used to estimate in the optimum. This paper is structured as follows. The next
section summarizes the 2% factorial design in the traditional RMS. The NM algorithm is
proposed to be used in the 2% factorial design in Section 3. Section 4 is the simulation study of
experimental designs by the traditional RMS and the proposed NM algorithm using the five
published functions with the random noises and the comparisons of simulation results are also
presented. The final section is conclusions.
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2. Response Surface Methodology (RSM)

The response surface methodology (RSM) is a collection of mathematical and statistical
techniques for the analysis of problems in many fields such as engineering, manufacturing,
agricultural, etc. in which a response is influenced by several independent variables. The
objective is to determine the optimum design point in an experiment (Montgomery 2005). In
general, such a relationship between a response of interest and independent variables, which are
the factors in an experiment, is unknown and is approximated by a low-degree polynomial
model (Box and Draper 1987) of the form

y=F" 0B+ @)
where X' = (X, %,,.., %), f(X) is a vector function of p elements that consists of a d™ order
polynomial of x;,X,,...,X,, d =1 B isa vector of p unknown constant parameters, and ¢ is a
random experimental error distributed as N(0,?). The expected response is E(y)=f" (x)p but
the vector function f and the parameter vector B are unknown and are to be estimated.

Frequently, in the first experiment of a 2 factorial design where k is the number of factors, the
initial 2% vertices might be far from the optimum region. Additional experiments of a 2
factorial design without replication at a group of center points of the simplex are performed to
construct the first order model, d = 1, consisting of only k first order terms of the independent
variables and can be written as

k
y=Fo+ 2 Bxi+e, )
i-1

in order to estimate the error, to test the hypothesis of the existence of the cross product terms
in the model and the quadratic effect which indicate the existence of the curvature. The random

error, &, is assumed to be normally distributed with mean 0 and variance o.

If no curvature is detected, the experiment will move to the points sequentially in the
steepest direction to optimize the change in the response. The steepest direction method is a
procedure for moving sequentially along the path of steepest direction toward the neighborhood
of the optimum. Consider the fitted first-order response surface model,

A k A
9:ﬁo+2ﬂixiv 3)
i=1
where ¥ is the predicted response, x, represents the coded variable of the i" independent

factor, 3, is the estimated intercept, and the individual f,’s are the estimated coefficients of

the i" coded variable. The steepest direction method seeks for a point determined by a set of
independent variables that produce the estimated optimum response over all points that are a
fixed distance r from the center of the design which is the point x=0. As a result; the

optimization problem involves the use of a Lagrange multiplier (1) subject to the restraint

k
given by fo =r?. Taking partial derivatives the Lagrangian function
i=1

A ~ k
L= By + B+t BX — A X —1?),
i=1
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with respect to X; and setting it equal to zero yield

B
Xi=—, j=12,...,k. 4
=50 4)

The expression % may be viewed as a constant of proportionality o and (4) becomes

X; = pB;, 1 =12,....K, (5)
where

p=—t ©®)

el

The positive (negative) value of p in (6) is used when searching for the minimum (maximum)

on the response surface. The origin of independent variables is moved to the point given by (5)
which is the point where the largest absolute change of (4) occurs on the hyper-sphere of radius

r. The value of X; in (5) can be considered as an increment of X, A, moving away from

the origin. Let| g |= 1rna>§|ﬂj |. The increment of Xj, AXj, in term of the largest absolute
<j<

increment Ax; can be written as

__h
M ﬁAi/AXi

The incremental Ax; in (7) is converted back to the increment of the corresponding natural

i=12,..k, i=#]. )

variable before running the next experiment. After the experiment moves toward the
neighborhood of the optimum along the steepest direction, step by step given by (7), until a
curvature is detected by direct comparison of the successive responses, the 2% vertices of the
current simplex with a number of center points are performed as in the initial experiment to test
the hypothesis of the existence of a curvature. If the test cannot reject the null hypothesis, a
number of axial points by using the central composite design (CCD) are added in the
experiment to construct the second order model, d =2, for estimating the optimum design
point. The second order model consists of k first order terms, k second order terms and
k(k —1)/2 interaction terms and can be written as

Kk k k Kk
yzﬂo+2ﬁixi+ZZﬂinixj+ZﬂiiXi2+5v (8)
i=1 i=1 j>i i=1

which is used to approximate the response surface in the neighborhood of the optimum. After
the parameters of the second order model are estimated, the optimum design point in terms of
the coded variables can be written as (Anderson, et al. 2009)

1__
Xopt :_EB 'b, 9)

op!

where
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Bl 811 1812 / 2 - Blk / 2
b= ﬂ‘Z and B= ﬁlz/z ﬂzz ﬂ2k/2 ,
Bk Blk/z sz/z Bkk
and the predicted response at the optimum design point is given by
. ~ 1,
Yopt = Bo+ Exoptb' (10)

which is to be converted back in terms of the natural variables.

3. The Proposed Method

The proposed method consists of two phases to search for the optimum design point in an
experiment of a 2 factorial design. The first phase is to move the experiment from the initial
points toward the neighborhood of the optimum in the direction given by the NM algorithm
instead of the steepest direction as in the first order model in the traditional RSM. After the
experiment approaches the vicinity of the optimum by moving in the directions given by the
NM algorithm, the first phase is terminated and the second phase of the proposed method is to
construct a second order model without using CCD as in the traditional RSM such that the
variances of the estimated parameters can be estimated.

The NM algorithm is a heuristic, iterative and derivative free procedure for
multidimensional unconstrained optimization problems. The movement is determined by
comparing the responses of the experiments at the vertices of the simplex. The simplex adapts
itself to the local landscape and moves on to the final optimum.

A simplex is described in a geometric figure with k dimensions which is a convex hull of
k+1 vertices, i.e. a simplex with vertices of the natural variables, x;,X,,...,X,,; denoted by
A. The method iteratively generates a sequence of simplexes to approximate an optimal design
point of the response in the experiment. In minimization problem, the simplexes are ordered in
an iteration according to the responses with y(x,) <y(X,)<...<y(X,,,). In maximization
problem, the simplexes are ordered reversely with y(x;) > y(X,) =... > y(X,,;). Let x, be the
best vertex and x,,, be the worst vertex.

Four possible operations are determined in the algorithm: reflection, expansion,
contraction, and shrink, each being associated with a scalar parameter: « (reflection), f
(expansion), y (contraction), and & (shrink) (see Figure 1). These parameters should satisfy
a>0, f>1 p>a, 0<y<l and 0<o<1 (Lagarias et al. 1998). In the standard

implementation of the NM algorithm, the parameters are chosen to be {«, 5,7,6} = {1, 2, 1/2,

Kk
1/2}. Let X be the centroid of the first k best vertices, excluding the worst vertex, X = iin.
i=1
Each iteration in the NM algorithm starts with a simplex specified by k +1 vertices in a k
dimensional space and can be described, for a minimization problem, as follows.
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1. Sort. Perform the experiment at the k +1 vertices of A and sort the vertices such that
Y(X) S Y(X,) .Sy (X)) 1T y(X) — Y(X,.1) <@ where e is the specified tolerance, then

stop the algorithm; otherwise, go to Step 2.
2. Reflection. Compute the reflection point x, =X+a(X—-X,,;) and perform the

experiment at X,. Ify(x;) <y(x,)<y(x,), then replace x,,with X, and terminate the

iteration.
3. Expansion. If y(x,) < y(x,), then compute the expansion point x, =X+ £(x, —X) and

perform the experiment at x,. If y(x.) < y(x,), then replace x,,, with X,; otherwise replace
X, With X.. Terminate the iteration.

4. Outside Contraction. If y(x,) < y(X,) < ¥(X,,;), compute the outside contraction point
Xoe =X+ y(X, —X) and perform the experiment at x,.. If y(X,)<y(X,), then replacex,,,
with X, and terminate the iteration; otherwise go to step 6.

5. Inside Contraction. If y(x,) = y(X,,;), compute the inside contraction point

Xjc =X =y (X, —X),

and perform the experiment at Xx;.. If y(x)<y(X.,), then replace x,,with x; and

terminate the iteration; otherwise go to step 6.
6. Shrink. Compute the shrinkage point v; =X, +9(X; —X;), 2<i<k+1 and perform the

experiment at v;, 2<i<k+1. The new vertices of the simplex at the next iteration are
X35V, Vayeens Vi
The possible operations in a two-dimensional space are shown in Figure 1.

Reflection  Expansion Outside Contraction Inside Contraction Shrink

Figure 1 Possible operations performed on a simplex in a two-dimensional space

In a 2 factorial design, the initial experiment is performed at 2% vertices and a group of
center points. But in the first phase of the proposed method, the initial experiment is performed
at only k +1points which may be randomly selected from the 2% vertices in the 2* factorial
design. For example, in a 22 factorial design, any three of the four starting points as shown in
Figure 2. In the next experiment, only one additional point given by one of the five operations:
reflection, expansion, outside contraction, inside contraction and shrink is required to be

Ith

performed. Let y(x:) be the response of the experiment at the i"™ vertex in the iteration.

th

The first phase is terminated at the I™ iteration if |y(x'1)—y(xL+1)|< e, the acceptable

tolerance.
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In an iteration in the NM algorithm, the number of points required to perform the
experiment depends on the operation in the iteration as shown in Table 1. The numbers of
points in Table 1 are in accordance with the NM algorithm as described above. A shrink
operation may lead to an increase in every response, y(X;), except y(x;). However, the shrink

operation very rarely happens in practice (Torczon 1989). In the non-shrink iteration I, it can
be shown that
y(x ™) <y(x), for 1<i<k+1,

with strict inequality for at least one value of i if the response is bounded below (Lagarias et al.
1998). In other words, in a minimization problem in the experimental design and no shrink

operation occurs, the difference y(xLﬂ)—y(x{) approaches to 0 as | becomes large since, in
practice, the response is bounded below. Therefore, under the condition that no shrink
operation occurs, it can be concluded that when y(xLﬂ)— y(x{) <e, the experiment has moved

to a neighborhood of the minimum. No statistical hypothesis testing is required in the proposed
method.

(2)

L

(1) () (1) (3) (1} (z) (1) (2)

(2) 4) (2)

Figure 2 Four possible starting points in the first phase of the proposed method

Table 1 Number of points required performing the experiment under different operations in the

NM algorithm
Operation Reflection Expansion Out5|d_e In3|de_ Shrink
contraction contraction
No. of points 1 2 2 2 k

The second phase of the proposed method constructs the second order model in which the

k(k +3)

total number of parameters including the intercept term is equal to +1. The responses

at the last +2 points in the first phase are used to estimate the parameters in the second

k(k +3)
2

order model. The optimum design point is given by (9) and the predicted response at the
optimum design point is also given by (10) and are in terms of the natural variables. However,
if the estimates of the parameters are also of interests, the number of points used in the
parameter estimation should be increased to the same as in the case of CCD second order
model.

4. Simulation Study
Five published test functions are used in the simulation to compare the efficiency between
the classical RSM with CCD and the proposed method. The first four test functions,
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f.(X,%,), i =1,2,3,4 are published in Fan and Zahara (2004) and the last one, fs(X;,X,), in

Myers and Montgomery (2002). The responses and the contours of the five test functions are
illustrated in Figures 3-7 respectively with the corresponding the minimum points and the
minimum response shown in Table 2.

f(%,%,) =2+0.01(X, = X*)* + (L— %) +2(2— X,)* +7sin(%]sin[7?oxz j 1%, %, €[1,4]

Figure 3 The response surface and the contour of f,

f,06,%) = =(%" +% —11)° = (% +%,° =7)*; X, %, € [_2’ 2]

Figure 4 The response surface and the contour of f,

f (%, %,) =4x° - 2.1x* +%x16 +X X, —4%,° +4x%," ;% €[-1,0.5],x, €[0,1]

K;

Figure 5 The response surface and the contour of f,
f, (%, %,) = X, sin(4x,) +1.1x, sin(2x,); X, X, €[1.5,3.5]
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Figure 6 The response surface and the contour of f,
fs (%, X,) =1431-7.81x, —13.3x, +0.0551x,” +0.0401x,” —0.01xX,; X, &[50,120], X, & [150, 200]

Figure 7 The response surface and the contour of f,

Table 2 The minima and the minimum responses of the test functions
Minimum points Minimum response

Test function

miny Xmin2 Ymin
f; 3.200 2.100 -6.510
f, -0.270 -0.920 -181.600
fs -0.092 0.713 -1.032
f, 2.770 2.460 -5.410
g 86.900 176.670 -83.220

In simulation, the response is evaluated at a specific point by using a stochastic function
which is the sum of one of the five test functions and a normal random generator. The random

generators associated with the corresponding test functions are &, ~ N(0,0.01%), &, ~ N(0,1),
g ~N(0,0.01%), &, ~N(0,0.01*) and &, ~ N(0,1). The variances of the random generators
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are specified by considering the corresponding ranges of the independent variables of the
function.

4.1. RSM with CCD simulation

For each response given by the test function and the associated random generator, one
hundred simulation runs are conducted, each of which consists of 50 replications. The natural
variable, x;, is generated by the uniform generator U(a;,b;) where a; and b, are the lower

bound and upper bound of X. Let L; be the low level of x; in the j" replication of a
simulation run generated by the uniform generator U[a,(a +b)/2] for i=12;
j=12,...,50. The high level of x, inthe j" replication H; isgivenby L; +¢; where g;
is generated by the uniform generator U (0,b, —(a; +b;)/2), i=12; j=12,...,50. The low
level and high level of the natural variables are converted to the coded variables L(-) and
H (+) respectively for analysis in the factorial design in the CCD.

The center point in a 22 factorial design, C; is given by (L +Hij)/2 for i=1 2,
j=12,...,50. Initially, the experiment is performed at four axial points and five center points

for statistical testing of the curvature existence. The simulation follows the procedure as
described in Section 2 until the curvature is detected. The experiment is performed at five
center points and four axial points and four additional axial points for constructing the second
order model. The axial point in the simulation is determined by using
a = (number of factorial runs)¥* =1.414 for a 22 factorial design. After the parameters of the

second order model have been estimated by the ordinary least squares (OLS) method, the
minimum design point in terms of coded variables is calculated by (9) and the minimum
response is given by (10). Then, the coded minimum design point and the coded minimum
response are converted back to in terms of the natural variables. After 50 replications have
been completed, the 95% confidence intervals (CI) for the mean of minimum design point and
the mean of the minimum response can be estimated.

For each of the five stochastic test functions, the simulation runs 100 times for statistical
analysis of the simulation results.

4.2. Simulation by the proposed method

Generally, the proposed method may start with any k +1 vertices in a 2 factorial design
selected from the vertices in the initial experiment in the traditional RSM with CCD for the
sake of performance comparisons. However, in this simulation of a 22 factorial design, all four
possible set of three vertices: NM(1), NM(2), NM(3) and NM(4) as shown in Figure 2 are used
as the starting points of the simulation by the proposed method for analysis of the performances
of the proposed method. The stochastic test functions, the number of replications in a run and
the number of runs are the same as in the RSM simulation. The acceptable tolerance e in the
stopping criterion of the NM algorithm is set to be a reasonable small value of 0.10 since the
NM algorithm converges to a minimum provided that no shrink operation occurs during the
search. Furthermore, the objective of NM search is to locate the neighborhood of the minimum
for constructing the second order model in the second phase.
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The same statistics of the minimum design point and the minimum response are calculated
as in the CCD simulation.

4.3. Analysis of the simulation results

In each run of both simulations under one of the five test functions, the means of the
absolute percentage errors (MAPE) of the natural variables at the estimated minimum design
point and of the estimated minimum response are given by

o o
Xminli - Xmin1 Xminzj - Xminz

1 50
x100; MAPE(X >

1 0
MAPE(X ;. ) = )=
( > ) =552,

min, ) = == x100;
504

Xminl Xminz

50 (g _y
MAPE(§,,,) = = 5| In ~Yain | 100,

50 =

The means and standard deviations of the estimated minimum design points and the

estimated minimum responses from the 100 runs, each of which has 50 replications in both

simulations under each of the five test functions are summarized in Table 3 and the averages of

the MAPEs of the estimated minimum design point and the estimated minimum response are
shown in Table 4 and 5 respectively.

min

Table 3 The true value, mean and standard deviation of the estimated values of the minimum
design points and the minimum responses in the simulation by the CCD and the proposed

method

Tes_t Variables  True value Methods
function CCD NM(1) NM(2) NM(3) NM(4)
f, X, 3.200 3.085 3.210 3.198 3.194 3.195
(0.049) (0.036) (0.019) (0.018) (0.029)
X, 2.100 2.208 2.113 2.103 2.120 2.119
(0.034) (0.023) (0.016) (0.026) (0.031)
y -6.510 -4.089 -6.396 -6.504 -6.493 -6.519
(0.352) (0.168) (0.044) (0.052) (0.017)
f, X, -0.270 -0.383 -0.284 -0.290 -0.282 -0.280
(0.070) (0.009) (0.005) (0.008) (0.010)
X, -0.920 -0.993 -0.955 -0.945 -0.940 -0.945
(0.099) (0.034) (0.039) (0.050) (0.045)
y -181.600  -178.537 -181.603 -181.243 -181.255 -181.645
(1.140) (0.424) (0.657) (0.453) (0.447)
f, X, -0.092 -0.032 -0.096 -0.097 -0.095 -0.096
(0.015) (0.005) (0.006) (0.003) (0.006)
X, 0.713 0.334 0.716 0.710 0.709 0.708
(0.094) (0.021) (0.012) (0.013) (0.019)
y -1.032 -0.514 -1.038 -1.038 -1.017 -1.017
(0.102) (0.050) (0.051) (0.022) (0.016)
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Table 3 (Continued)
Tesﬁ Variables  True value Methods

function CCD  NM(1) NM(@2)  NM@)  NM(@)
f, X, 2.770 2.747 2.746 2.776 2.758 2.767
(0.030) (0.025) (0.018) (0.024) (0.018)
X, 2.460 2.376 2.454 2.455 2.455 2.456
(0.045) (0.025) (0.029) (0.024) (0.009)
y -5.410 -4.828 -5.272 -5.442 -5.413 -5.414
(0.171) (0.117) (0.034) (0.006) (0.008)
f X, 86.900 86.816 86.572 86.818 86.650 86.801
(0.044) 0.477) (0.436) (0.483) (0.463)
X, 176.670 176.655  176.628  176.624  176.470  176.613
(0.055) (0.666) (0.588) (0.815) (0.582)
y -83.220 -82.353  -83.131  -83.152  -83.119  -83.234
(0.112) (0.184) (0.196) (0.218) (0.030)

Note: The number in the parenthesis is the standard deviation of the estimated mean.

From Table 3, it is obvious that the estimated minimum responses and the minimum points
of the five test functions given by the proposed NM method from all four possible starting
points are closer to the true values than the ones given by the CCD.

It can be seen from the averages of the MAPEs of the estimated minimum design point,
and the estimated minimum response, ¢.., in Tables 4 and 5 that the proposed method

Xmin '

with any one of the four possible starting vertices clearly outperforms the CCD when the
stochastic test functions are f,, i=1,2,3 and 4 which are not quadratic functions. But in the

case of a quadratic function f, the averages of the MAPES of X, and X, in the proposed

ing in,

method are 0.415-0.514% and 0.253-0.340% while those in the CCD are 0.097% and 0.025%
respectively. However, in the case of quadratic function f., the averages of the MAPEs of the

estimated minimum response in the proposed method are 0.026-0.211% less than 1.042% in the
CCD. This leads to the conclusion that the proposed method using any one of the possible four
vertices as the starting vertices yields the better estimates than the traditional RSM with CCD
since most of the responses in practice are not quadratic.
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Table 4 The average MAPEs of the estimated minimum design point in the simulation by the
CCD and the proposed method

Average MAPE of X

%

Test Average MAPE of X, , % min, »
function  ccp NM@L) NM@)  NM@E) NM@) CCD  NM() NM(@2) NM@E) NM(4)
f, 3.697 0.866 0451 0481 0.687 5361 0.936 0483 1267 1423
f, 40.779 5.188 7.386 4.643 4325 10.237 4.312 4.155 4900 4581
fs 64.970 5946 6.541 4.139 6.237 53.166 2512 1522 1643 2413
f, 1.281 0.903 0579 0.763 0557 3.296 0.832 0.338 0.808 0.331
f 0.097 0514 0415 0485 0440 0.025 0.281 0.257 0.340 0.253

5

Table 5 The average MAPES of the estimated minimum response in the simulation by the CCD
and the proposed method

Test Average MAPE of ¥, %
function  ccD  NM(@1) NM@2) NM@) NM(@4)
f, 36.822 1.879 0.382  0.693  0.239
f, 1.805  0.198 0345 0256  0.211
f, 50.119  4.209 4414 1957  1.624
f, 12.409 0909 0717 0104  0.134
f 1.042 0198 0189 0211  0.026

5

The average number of points performed before estimating the minimum design points in
the CCD and the proposed method from the 100 runs of simulation are shown in Table 6. The
number of points in the proposed method is 80.85-92.77%, 55.67-60.62%, 68.25-75.52%, and
66.01-71.07%, of the corresponding one in the CCD for of the non-quadratic test functions, f;,

i=1,2,3,4, respectively. But in the case of quadratic test function f., the number of required
experiments in the proposed method is 6.85-12.38% more than the CCD.

Table 6 The average number of required points in the CCD and the proposed method

Test Average number of required points in
function — ccp NM(1) NM(2) NM(3) NM(4)
f, 13.00 12.06(92.77) 11.95(91.92) 10.97(84.38)  10.51(80.85)
f, 19.83  11.04(55.67) 12.02(60.62) 11.12(56.08)  11.51(58.04)
f5 13.89 9.48(68.25) 10.49(75.52)  10.41(74.95)  10.36(74.59)
f, 14.83 9.79(66.01) 10.54(71.07) 9.91(66.82)  10.46(70.53)
f. 13.00 14.19(109.15) 14.61(112.38) 14.23(109.46) 13.89(106.85)

Note: The number in the parenthesis is the percentage of the required points relative to the
one in the CCD.
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Let define the coverage probability be the probability that the true value is in the 95%
confidence interval of the estimate. The coverage probabilities in the CCD and the proposed
method in the cases of the stochastic functions, f,, i=1, 2,...,5 are summarized in Table 7. It

can be seen that the coverage probabilities of the 95% CI of the estimates in the proposed
method are higher than in the traditional RSM except the coverage probability of kminz in the

case of quadratic function f; which equals 0.94 in the CCD higher than 0.77-0.84 in the
proposed method, and the coverage probability of X .

in;

the CCD higher than 0.82 and 0.76 in the proposed method with the starting vertices NM(2)
and NM(4) respectively. However, from the coverage probability of the estimated minimum
design point, it can be concluded that the proposed method performs much better than the
CCD.

in the case of f, which equals 0.88 in

5. Conclusions

In this study, a novel method using the NM algorithm with the starting k +1 vertices in the
k dimensional space to move the experiment toward the neighborhood of the optimum is
proposed to be used instead of the first order model in the traditional RMS. A second order

model is constructed based on the last k(k2+ 3)

+2 points before the termination of the NM

algorithm. The response in the simulation is given by a stochastic test function which is a
combination of the published test function and a normal generator. From the simulation results,
the average MAPE of ¥, in the proposed method is less than the corresponding values in the

CCD for five stochastic test functions as shown in Tables 5. Also, the coverage probabilities in
the proposed method are higher than the corresponding values in the CCD except the case X, in

the quadratic stochastic test function f;. The average MAPEs of X, and X in the

proposed method and the number of required experiments are clearly less than the ones in the
CCD except in the case of the quadratic stochastic test function f; for which the CCD slightly

outperforms the proposed method as shown in Tables 4 and 6. It can be concluded from the
simulation that the proposed method may randomly select k +1 vertices from 2% vertices in a

2% factorial design for the initial experiment and outperforms the CCD for a non-quadratic
response from the points of view of the minimum design point within the smaller neighborhood
of the true minimum, the smaller number of points required performing the experiment and the
higher coverage probabilities of the estimates. However, in the case of a quadratic response, the
CCD slightly outperforms the proposed method in terms of the number of points required
performing the experiment and the MAPE of the estimate of the minimum design point. One
should be noted that the less the number of points required performing the experiment, the less
the experiment cost and the time taken.
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Table 7 The coverage probabilities in the CCD and the proposed method under the stochastic
functions, f;,i=1,2,...,5

Test Coverage probability of
- Method

function X X, Both x, X,  Response(y)
f, CCD 027 001 0.00 0.00
NM(1) 096 098 0.95 0.93

NM(2) 099 099 0.98 0.85

NM(3) 098 096 0.94 0.84

NM(4) 088 093 0.87 0.98

f, CCD 0.60 0.65 0.28 0.16
NM(1) 096 091 0.89 0.84

NM(2) 089 0.86 0.84 0.78

NM(3) 098 0.96 0.94 0.80

NM(4) 095 0091 0.89 0.82

f CCD 0.08 0.08 0.04 0.01
NM(1) 094 0.89 0.83 0.89

NM(2) 097 087 0.85 0.88

NM(3) 097 095 0.95 0.95

NM(4) 096 094 0.91 0.97

f, CCDh 0.88  0.46 0.37 0.04
NM(1) 099 084 0.83 0.93

NM(2) 082 0.79 0.73 0.90

NM(3) 088 0.83 0.74 0.88

NM(4) 076 084 0.72 0.82

f CCDh 055 094 0.53 0.01
NM(1) 095 0.83 0.78 0.94

NM(2) 093 084 0.78 0.95

NM(3) 092 0.77 0.69 0.91

NM(4) 097 081 0.79 0.89

From the simulation results, it can be observed that in the case of non-quadratic response,
the first order model may not move the experiment sufficiently close to the minimum even
though a curvature is statistically detected. Consequently, the second order model in the CCD
cannot satisfactorily fit the curvature of the non-quadratic response. But, in the case of
quadratic response, the second order model in the CCD will give a better result. Since the
objective of this study is to locate the minimum design point and the minimum response the
degree of freedom of the error in the proposed method in the simulation is only 1. If the
estimates of parameters in the second order model is of interests the number of points used in
the construction of the second order model in the proposed method should be increased to in
the same order in the CCD.
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For the future research, other direct search, such as Tabu search, pattern search, Powell’s
method, etc., should be explored to search the optimum design point and different designs in
the RSM also should be investigated.
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