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Abstract  

The cumulative sum (CUSUM) control chart is widely used in a great variety of practical 
applications such as finance, medicine, engineering, psychology and in other areas. There are many 
situations in which the process is serially correlation such as in the manufacturing industry, for 
example, the dynamics of the process will induce correlations in observations that are closely 
spaced in time. The average run length (ARL) is a traditional measurement of the performance of 
control chart. In this paper we derive explicit formula for the ARL of CUSUM control chart when 
observations are seasonal autoregressive and moving average, SARMA(1,1)L process with 
exponential white noise. We use Fredholm integral equation approach to derive an explicit formula 
for the ARL and use the Gauss-Legendre quadrature rule to approximate the numerical integration 
which both methods based on the Banach’s fixed point theorem which is used to guarantee the 
existence and uniqueness of the solution. Finally, we compare numerical results obtained from the 
explicit formula for the ARL of SARMA(1,1)L processes with results obtained from a numerical 
solution of an integral equation for the ARL. The results show that the ARL from explicit formula 
is close to the numerical integration with an absolute percentage difference less than 0.1%. In 
addition, the explicit formula can reduce in the computational time better than the numerical 
integration. 
______________________________ 
Keywords: Seasonal autoregressive and moving average, cumulative sum, average run length, Fredholm 
integral equation, explicit formula. 

 
1. Introduction 

The aim of statistical process control (SPC) consists in detecting deviations within a process 
over time. The SPC is examined whether the present observations can be considered as realizations 
of a given target process. The observations are analyzed consecutively. The SPC is desirable to 
detect a change as quickly as possible after its occurrence. Control charts are one of the efficient 
tools of SPC for detecting changes in mean or variations of the process. Control charts are 
prosperously applied in engineering, public health, economics and in other areas of applications.  

Shewhart (1931) was introduced the first control chart for statistical process control, namely 
Shewhart control chart. Recently, the cumulative sum (CUSUM) and exponentially weighted 



Suvimol Phanyaem 185 

moving average (EWMA) control charts have been proposed as good alternatives to the Shewhart 
control chart for detecting small shifts in the process. The CUSUM control chart was initially 
proposed by Page (1954). Many researchers such as Basseville and Nikiforov (1993), and Brodsky 
and Darkhovsky (1993) for an introduction to CUSUM control chart and its applications. These 
control charts are based on the assumption that a process being monitored is independent and 
identically distributed (Smiley and Keoagile 2005). However the choice of control charts depend on 
the quality characteristics to be measured in the process.  

In applications we are frequently faced with time series data which, for a variety of different 
reasons have characteristics not compatible with the usual assumptions of linearity or Gaussian errors. 
Processes with non-Gaussian white noise are useful for modelling a wide range of phenomena that 
do not allow negative values or have a highly skewed distribution. Many problems such as daily 
flows of a river, wind speeds, amount of dissolved oxygen in a river, etc. Since 1980 several time 
series models with non-Gaussian white noise have been suggested. Some references are Gaver and 
Lewis (1980), Lawrance and Lewis (1985), Bell and Smith (1986), Andel (1988), Davis and 
McCormick (1989), Andel and Garrido (1991), and McCormick and Mathew (1993).  

Usually, traditional control chart methodology is based on the standard assumption that random 
observations are statistically independent and uniformly distributed. However, for the random data 
of interest in practical applications the observations are usually serially correlation. In many practical 
processes such as in chemical processes, the random variables are always serially-correlated. The 
research related to control charts for serially-correlated processes has been proposed in the work of 
Wardell et al. (1992), Zhang (1998), Lu and Reynolds (1999), Chen and Elsayed (2002), 
Rosolowski and Schmid (2006), Vermaat et al. (2008) and Torng et al. (2009). 

The average run length (ARL) is a traditional measurement of control chart’s performance.  
Generally, the ARL is the expected number of observations taken from an in-control process until 
the control charts falsely signal out-of-control is denoted by ARL0. A second common characteristic 
is the expected number of observations taken from an out-of-control process until the control chart 
signals that the process is out-of-control is denoted by ARL1, ideally it should be small. There are 
several methods that can be utilized to find the ARL for control charts have been discussed in the 
literatures. Mastrangelo and Montgomery (1995) have been evaluated the performance of EWMA 
control charts for serially-correlated process based on Monte Carlo simulation technique. Brook and 
Evans (1972) proposed the method to approximate the ARL for CUSUM control chart by using the 
Markov Chain approach (MCA) with finite state. Vanbrackle and Reynold (1997) were estimated 
the ARL by using an integral equation and Markov chain approach to evaluate EWMA and 
CUSUM control charts when the observations are first order autoregressive (AR(1)) process with 
additional random error.  

Sukparungsee and Novikov (2008) used the martingale approach to derive close-form formulae 
for the ARL for EWMA control chart for a variety of light-tailed distributions. Areepong and 
Novikov (2009) derived an analytical expression for the ARL of EWMA control chart when 
observations are from an exponential distribution. Later, Mititelu et al. (2010) presented the explicit 
analytical solutions for the ARL by using the Fredholm integral equation approach for EWMA 
control chart when observations have a Laplace distribution and CUSUM control chart when 
observations have a hyperexponential distribution. Petcharat et al. (2011) evaluated the ARL of 
CUSUM procedure by fitting Pareto and Weibull distributed with hyperexponential distribution. 

Recently, Busaba et al. (2012) was derived the analytical solutions of ARL for CUSUM control 
chart, its corresponding in the case of first order stationary autoregressive (AR(1)) process with 
exponential white noise.  Phanyaem et al. (2014) used the integral equation technique to derive the 



186                                                                   Thailand Statistician, 2017; 15(2): 184-195 

explicit formula for the ARL of CUSUM control chart for an autoregressive and moving average 
(ARMA(1,1)) process with exponential white noise. Petcharat et al. (2015) derived an analytical 
expression for the ARL of CUSUM control chart when the random observations are modeled as a 
moving average of order q (MA(q)) process. 

Consequently, the aim of paper is to derive the explicit formulas of average run length (ARL) 
of CUSUM control chart for a seasonal autoregressive and moving average, SARMA(1,1)L process 
with exponential white noise and compare it with the numerical integration. The organization of this 
paper is as follows: In Section 2, the characteristic of CUSUM control chart for SARMA(1,1)L is 
described. The explicit formula for ARL of CUSUM control chart is proposed in Section 3 and the 
numerical integration of ARL of CUSUM control chart is presented in Section 4. In Section 5, we 
compare numerical results obtained from the explicit formula for the ARL of SARMA(1,1)L 

processes with results obtained from a numerical solution of an integral equation for the ARL. 
Conclusions are provided in the final section. 
 
2. The Cumulative Sum Control Chart for SARMA(1,1)L 

In this paper, the CUSUM control chart is considered under the assumption that sequential 

observation 1 2, ,X X  of a some process are modeled as a seasonal autoregressive and moving 

average (SARMA(1,1)L) with exponential white noise.  
The recursive equation of SARMA(1,1)L process with exponential white noise is defined as: 

   ;       t t L t t LX X  =  1, 2, ...t    (1) 

where t  is assumed to be a white noise process with exponential distribution.  The initial value 

 t L  is usually to be the process mean, an autoregressive coefficient 0 1,   a moving average 

coefficient 0   1 and an initial value of SARMA(1,1)L  process t LX = 1. 

The CUSUM statistics based on SARMA(1,1)L process is defined by the following recursion: 

 1 =  max( + ,  0);t t tC C X a   =  1, 2, ...,t    (2) 

where tX  is a sequence of SARMA(1,1)L process, and a is a reference value of CUSUM chart.  

Let   denoted the stopping time of CUSUM control chart and it is given by: 

   inf 0 ; ,   h tt C h  ,h u    (3) 

where h is a constant parameter known as the upper control limit. 

Let (.) denoted the expectation under density function ( , )f x   that the change-point occurs 

at point , where .   Thus by definition, the ARL for SARMA(1,1)L process with an initial value 

0C u  is as follow 

 ( ) ( ) .hARL H u        (4) 

 
3. Explicit Formulas for Average Run Length of CUSUM Control Chart for SARMA(1,1)L 

This section is devoted to our analytical derivation as applied to the CUSUM procedure based 
on SARMA(1,1)L process with exponential white noise. Crowder (1987) proposed numerical 
method to evaluate ARL of EWMA chart with Guassian distribution and showed that the ARL can 
be presented in the form of Fredholm integral equation of the second kind. Consequently, we used 
as integral equation approach and solved a Fredholm integral equation of the second kind for 
finding the ARL.  
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Supposed that function ( )H u  is the ARL of CUSUM chart for SARMA(1,1)L process with the 

initial value 0 .C  We assume that the lower control limit is zero and upper control limit is .h   Let 

c  denote the probability measure and c denote the expectation corresponding to initial value 

0 .C u   

The ARL of CUSUM chart for SARMA(1,1)L process after it is reset at  0,u h  as follows: 

 ( )H u = 1 +  1 1 1{0 } ( ) + { = 0} (0).c cI C h H C C H      (5) 

 Let 1 = + ;t t tC C X a   =  1, 2, ...t  where          t t L t t LX X  and 0 .C u   
 

First, to calculate  1 1{0 } ( ) c I C h H C   for  t = 1. 

   1 1{0 } ( )   =  c I C h H C
  

1 1

1 1

1 1(  + )
  



  

   
 

 

    


 
   

   
L L

L L

h a u X
y

L L
a u X

H u X y a e dy  

      =   1 1( )

0

( )           L L

h
u a X yH y e dy  

 =   1 1( )

0

( )          L L

h
u a X ye H y e dy  

                1{ = 0} (0)  =c C H
 1 1 1{  +   =  0} (0)       c L Lu X a H     

   =   1 1 11 { } (0)         c L La u X H
 

   =  1 1( )[1 ] (0)         L La u Xe H
    

In this case the (5) can be written as
 

   ( )

0

( ) 1 + ( ) + 1 (0).          
          t L t Lt L t L

h
a u Xu a X yH u e H y e dy e H  (6) 

 In this section, we show that the ARL for CUSUM control chart is the unique solution to the 

integral equation. On the metric space of all continuous functions ( ( ),|| || )C I   where I denotes the 

compact interval and the norm || || = sup | ( )|u IH H u   and the operator T is named on contraction, if 

it exists a number of 0 1q   such that 

 1 2 1 2( ) ( )  T H T H q H H
  

for all  1 2, .H H I
 

Now, let 1( )C I be the class of all continuous functions defined on a compact interval 

 1 0,I h  and define the operator T  by  

       ( )

0

( ( )) 1 + ( )  + 1 (0).          
          t L t Lt L t L

h
a u Xu a X yT H u e H y e dy e H   (7) 

Therefore, the integral equation can be written as  ( )T H u = ( ).H u  According to the Banach’s 

fixed point theorem, if the operator T is a contraction, then fixed point equations  ( )T H u = ( )H u   

have a unique solution.  

For any u I and 1 2, ( )H H C I we have the inequality 1 2 1 2( ) ( )T H T H q H H    where 

1.q   According to (7), we get 
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 1 2( ) ( )T H T H  =   
( )

1 20,sup | (0) (0) | (1 )t L t La u X
u h H H e         
  

   

    

 ( )
1 2

0

( ) ( )t L t L

h
u a X ye H y H y e dy             

     
( )

1 20,sup (0) (0) (1 )t L t La u X
u h H H e         
  

  

   

( )
1 2

0

t L t L

h
u a X yH H e e dy              

  =    
( )

1 2 0,sup (1 )t L t La u X h
u hH H e           
 

 

  
1 2 , q H H where ( )= (1 ) 1.           t L t La u X hq e  

 
We used the Fredholm integral equation to derive the explicit formula of the ARL of CUSUM 

control chart for SARMA(1,1)L process.  

Let 
0

 = ( ) ,
h

yk H y e dy  we obtain that   

 ( ) ( )( )  =  1 + (1 ) (0).t L t L t L t Lu a X a u XH u e k e H                        (8) 

Now, we let  = 0,u then we have 

   ( )(0)  =  1 + (1 ) (0)t L t Lt L t L a Xa XH e k e H                       

        
( )

( )

1 +( )
=  

( )

   

   


 

 

   

   

t L t L

t L t L

a X

a X

e
k

e
 

    ( )=  .t L t La Xe k             (9) 

Then, on substituting (9) into (8); we obtain that 
( ) ( ) ( )( )   =  1 + (1 )t L t L t L t L t L t Lu a X a u X a XH u e k e e k                                            

           ( ) ( )=  1 +                    t L t L t L t Lu a X a Xk e e k  

        ( )=  1+  + .t L t La X uk e e            (10) 

To find a constant k  as following form 

0

 = ( )
h

yk H y e dy  

       

0

=  (1 +  + ) t L t L

h
a X y yk e e e dy            

       

0 0

=  (1 +  + )t L t L

h h
a X y y yk e e dy e dy               

       =  (1 )(1 ) .t L t L

h
a Xh he

e e he


    


       

Thus, a constant k  can be found as follows 

   = (1 )(1 ) .t L t L

h
a Xh he

k e e he


    


          

Substituting a constant k  into (10) as follows 
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           ( )( )  = 1 + (1 )(1 ) +  t L t L t L t L

h
a X a Xh h ue

H u e e he e e


         


         
    

 
 

 ( ) ( )= 1 + ( (1 )(1 ) ) +                       t L t L t L t La X a Xh h h ue e e he e e
 

 ( ) ( )( )= 1 + ( )(1 +  )t L t L t L t La X a Xh h h h ue e e he e e                       
 

 ( ) ( )= 1 + ( 1)(1 +  )t L t L t L t La X a Xh h ue e he e e                    
 

 ( ) ( ) ( )= +  +                               t L t L t L t L t L t Lh a X a X a Xh h ue e e he e e  

 ( )= (1 ) .t L t La Xh ue e h e           

Consequently, the explicit formulas of the ARL of CUSUM control chart for SARMA( 1,1) L 

process for 1,2,...,t L  is given by 

 ( )( )= (1 ) .t L t La Xh uH u e e h e              (11) 

Suppose that the process produces readings that in-control, have mean 0   which is 

assumed known. The explicit formula of ARL0 of CUSUM control chart for SARMA(1,1)L process 
as follows: 

  00 0
0 0= (1 ) .t L t La Xh uARL e e h e             (12) 

Since an assignable cause event occurs, it will lead to a change in mean of exponential 

distribution. This situation is called an out-of-control state, with exponential parameter 1   

where 1 0 (1 ).     The explicit formula of ARL1 of CUSUM control chart for SARMA(1,1)L 

process as follows: 

  11 1
1 1= (1 ) ,t L t La Xh uARL e e h e             (13) 

where   is a parameter of exponential white noise, h  is upper control limit, , t L t LX  are the 

initial values,   is an autoregressive coefficient; 0 1   and   is a moving average coefficient; 

0 1.   

 
4. Numerical Integration of Average Run Length of CUSUM Chart for SARMA(1,1)L 

In this section we present the scheme to evaluate numerically the solutions of the integral 
equation by using Gauss-Legendre quadrature rule.  

Since ( ),y Exp  then ( ) =  1  uF u e  and 
( )

( ) =   = .  udF u
f u e

du
  

Consequently, the integral equation in (6) can be rewritten as follows 

 
0

( ) =  1 (0) ( ) ( ) ( ) .
h

t L t L t L t LH u H F a u X H y f y a u X dy                      (14) 

The numerical approximation to integral equation is denoted by ( ),iH a  which can be found as 

the solution of linear equations as follows:  

 1( ) =  1  ( ) ( )        
i i t L t LH a H a F a a X  

                                           
1

( ) ( ).   


      
m

j j j i t L t L
j

w H a f a a a X   (15) 

Thus 
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  1 1 1 1( ) =  1 ( ) ( )  ( )                 
t L t L t L t LH a H a F a a X w f a X  

         1
2

( ) ( )   


      
m

j j j t L t L
j

w H a f a a a X  

  2 1 2 1 1 2( ) =  1  ( ) ( )  ( )                   
t L t L t L t LH a H a F a a X w f a a a X  

         2
2

( ) ( )   


      
m

j j j t L t L
j

w H a f a a a X  

    
  

  1 1 1( ) =  1  ( ) ( )  ( )                   
m m t L t L m t L t LH a H a F a a X w f a a a X  

         
2

( ) ( )   


      
m

j j j m t L t L
j

w H a f a a a X
 

or in matrix form as 

 1 1 1    m m m m mH 1 R H    (16) 

where  

1

2
1

( )

( )
 = ,

( )

m

m

H a

H a

H a



 
 
 
 
  
 

H







 1

1

1
 = 

1

m

 
 
 
 
 
 

1


   

1 1 1

1 1 1 2

( ) ( )            ... ( )

( ) ( )
 = 

                                                                 

t L t L t L t L m m t L t L

t L t L t L t L

F a a X w f a X w f a a a X

F a a X w f a a a X

        

     
     

   

            

         
R 2

1 1

( )...

                                                         

( ) ( ) ... ( )

m m t L t L

m t L t L m t L t L m m m t L t L

w f a a a X

F a a X w f a a a X w f a a a X

  

        

 

     

 
 

     
 
 
                

 

and   = diag 1,1,...,1 .mI  If 1( )m m m


I R  there exist  

 1
1 1( ) .m m m m m


   H I R 1    (17) 

Here ( )H u denotes the numerical integration solution of ( ),H u  then the integral equation in (6) 

can be approximated by 

 1
1

( ) 1  ( ) ( ) ( ) ( )
m

t L t L j j j t L t L
j

H u H a F a u X w H a f a a u X        


                (18) 

where  = j

h
w

m
 and 

1
= ;  = 1, 2,..., .

2j

h
a j j m

m
  
 

  

 
5. Numerical Result 

In this section, we present the results obtained from the explicit formulas of ARL for CUSUM 
control chart when observations are SARMA(1,1)4 process with exponential white noise and 
compare to the ARL from numerical integral equation with 500m   nodes. The explicit formula 

solution is denoted by ( )H u  and the numerical integration solution is denoted by ( ).H u  We use 

the absolute percentage difference of ARL to measure of accuracy of comparison defined as 

 
( ) ( )

Diff %   100.
( )

H u H u

H u
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In Table 1, the value of parameters a  and h for CUSUM control chart were chosen by setting 

the desired ARL0 = 370 and the value of exponential parameter 0 1   in the case of SARMA(1,1)4 

process with parameter ( , )  = (0.10,0.10), (0.10,0.20) and (0.10,0.30) respectively. 

The results from Table 1 present the value of parameters for CUSUM control chart and show 
that the ARL0 from analytical solution is close to the numerical integration with the absolute 
percentage difference less than 0.1% for the case of division points 500m   nodes. However, the 

results also show that the computational time for evaluating the purposed explicit formula is much 
less than the computational time required for numerical integral equation method. 

 
Table 1 Comparison of ARL0 computed using explicit formulas against numerical integration 

for SARMA(1,1)4 process with parameter 0 1   and 1u   for ARL0 = 370 

  a  h  

SARMA(1,1)4 Process with 0.10   and 0.10   

Explicit
Formulas

Numerical
Integration

Diff (%) 

  2.00 4.585 370.091 369.790 (49.63)a 0.08133 

 2.50 3.669 370.331 370.033 (49.84) 0.08047 

 3.00 3.028 370.276 369.990 (49.58) 0.07724 

a  h  SARMA(1,1)4 Process with 0.10   and 0.20   

 2.00 4.349 370.136 369.833 (49.97)a 0.08186 

2.50 3.529 370.045 369.814 (49.94) 0.06242 

3.00 2.911 370.058 369.783 (49.94) 0.07431 

a  h  SARMA(1,1)4 Process with 0.10   and 0.30   

 2.00 4.151 370.276 369.964 (49.94)a 0.08426 

2.50 3.397 370.195 369.917 (49.94) 0.07510 

3.00 2.797 370.040 369.772 (49.85) 0.07242 

 a The values in parentheses are CPU times in numerical integration methods (minutes). 
 
In Table 2 to Table 4, we compare the results of ARL0 = 370 and ARL1, which obtained by 

analytical formula with the results by numerical integration method for CUSUM control chart. We 

assume that process starts with in-control state, the value of the in-control parameter 0 1.   For 

example, in Table 2 if we fixed an ARL0 = 370 for SARMA(1,1)4 process with parameter 0.10 

and 0.10   then the parameter of CUSUM control chart are 2.00a   and 4.585.h   In the case 

of SARMA(1,1)4 process with parameter 0.10   and 0.20,   we use the parameter of CUSUM 

chart are 2.50a   and 3.529.h   Finally, in the case of SARMA(1,1)4 process with parameter 

0.10   and 0.30,   then the parameter of CUSUM control chart are 3.00a   and 2.797.h   

Numerical values for ARL0 are computed for an in-control parameter value and numerical values 

for ARL1 are computed for range of out-of-control parameter values 1 0 (1 )     where  = 0.01, 

0.03, 0.05, 0.07, 0.09, 0.10, 0.20, 0.30, 0.40, 0.50 and 1.00 respectively.  
 



192                                                                   Thailand Statistician, 2017; 15(2): 184-195 

Table 2 Comparison of ARL computed using explicit formulas against numerical integration 

for SARMA(1,1)4 process with parameter 0.10,  0.10,  2.00a   and 4.585h   

Shift size
( )

Explicit
Formulas

Numerical
Integration

Diff (%)

0.00 370.091  369.790 (49.63)a 0.08133
0.01 344.256 343.971 (49.44) 0.08279
0.03 299.160 298.925 (49.04) 0.07855
0.05 261.413 261.212 (49.25) 0.07689
0.07 229.633 229.438 (49.24) 0.08492
0.09 202.728 202.571 (49.71) 0.07744
0.10 190.825 190.686 (49.58) 0.07284
0.20 110.602 110.477 (49.52) 0.11302
0.30  70.319  70.217 (49.43) 0.14505
0.40  48.139  48.046 (49.40) 0.19319
0.50  34.975  34.894 (49.67) 0.23159
1.00  12.466  12.397 (49.67) 0.55351

  a The values in parentheses are CPU times in numerical integration methods (minutes). 
 

Table 3 Comparison of ARL computed using explicit formulas against numerical integration        

for SARMA(1,1)4 process with parameter 0.10,   0.20,   2.50a   and 3.529h   

Shift size
( )

Explicit
Formulas

Numerical
Integration

Diff (%)

0.00 370.045 369.814 (49.94)a 0.06242
0.01 347.159 346.933 (49.81) 0.06510
0.03 306.669 306.456 (49.75) 0.06946
0.05 272.172 271.963 (49.63) 0.07679
0.07 242.627 242.448 (49.59) 0.07378
0.09 217.199 217.049 (49.48) 0.06906
0.10 205.812 205.689 (49.39) 0.05976
0.20 126.213 116.094 (49.30) 0.09429
0.30  83.519  83.414 (49.23) 0.12572
0.40  58.710  58.617 (49.17) 0.15841
0.50  43.332  43.280 (49.10) 0.12000
1.00  15.311  15.295 (49.03) 0.10450

  a The values in parentheses are CPU times in numerical integration methods (minutes). 
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Table 4 Comparison of ARL computed using explicit formulas against numerical integration        

for SARMA(1,1)4 process with parameter 0.10,  0.30,  3.00a   and 2.797h   

Shift size

()
Explicit

Formulas
Numerical
Integration

Diff (%)

0.00 370.040 369.772 (49.85)a 0.07242
0.01 348.126 347.869 (49.72) 0.07382
0.03 309.192 308.943 (49.68) 0.08053
0.05 275.834 275.602 (49.52) 0.08411
0.07 247.109 246.900 (49.40) 0.08458
0.09 222.257 222.079 (49.32) 0.08009
0.10 211.085 210.929 (49.29) 0.07390
0.20 132.052 131.911 (49.17) 0.10678
0.30 88.735   88.609 (49.03) 0.14200
0.40 63.099   59.601 (49.12) 0.13788
0.50 46.961   44.070 (49.04) 0.08731
1.00  16.793   15.576 (49.01) 0.10719

  a The values in parentheses are CPU times in numerical integration methods (minutes). 
 

The results from Table 2 to Table 4, show that the absolute percentage difference up to 0.1% 
for shift size less than 0.20 by the numerical integration for the case of division points 500m   

nodes, and the computational times of approximately 49-50 minutes. However, the computational 
times from the proposed explicit formulas are less than 1 second.  
 

6. Conclusions 
In this paper, we have proposed the explicit formula for the average run length (ARL) of 

cumulative sum (CUSUM) control chart for the seasonal autoregressive and moving average, 
SARMA(1,1)L process with exponential distribution white noise. We derived the explicit formulas 
by using Fredholm integral equation technique and used the Banach’s Fixed Point theorem to 
guarantee the existence and uniqueness of solution. In addition, we developed numerical integration 
for evaluating the ARL of CUSUM control chart for SARMA(1,1)L process with exponential 
distribution white noise by using Gauss-Legendre quadrature rule. We checked the accuracy of the 
proposed explicit formulas in term of absolute percentage difference between the explicit formula 
solution and the numerical integration solution.  

The results show that the ARL from the proposed explicit formulas is close to the numerical 
integration with an absolute percentage difference less than 0.1% for shift size ( ) < 0.20. In 

another word, it give an absolute percentage difference greater than 0.1% when the process has a 
large shift size ( )   0.20. However, for all magnitude of shift size give an absolute percentage 

difference less than 1.0%. Consequently, the proposed analytical formula is sufficiently high 
accuracy and easy to calculate in comparison with numerical integration technique. In addition, the 
computational times for evaluating the proposed explicit formula takes less than 1 second while the 
numerical integration method takes approximately 49-50 minutes in the case of SARMA(1,1)L 
process. Therefore, the explicit formulas can reduce in the computational times much better than the 
numerical integration. 
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