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Abstract

A simulation study was performed to analyze the effects of violations of the normality
assumption on the t-test of the Pearson correlation coefficient when the variables are not
independent, even though the population correlation is zero. Large effects for violations of
normality were found. The Type | error rate can be either inflated or deflated with respect to the
assumed error rate. A recommendation is made that the use of the t-test be avoided where
there are good reasons to believe that a nonlinear relationship exists between the variables.
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1. Introduction

Correlation analysis, expressed by correlation coefficients, is of paramount importance in
statistics and psychometric research, and the associated literature is huge. It is widely known
among researchers that uncorrelatedness does not imply independence, but the full importance of
this fact is not quite as widely appreciated. The goal of this paper is to show that, when there is a
nonlinear relationship between variables, the correlation analysis must be utilized more
carefully. In particular, we will consider the performance of the traditional t -test for the null
hypothesis that the population correlation is zero, when variables are uncorrelated but not
independent. In this case the assumption of bivariate normality is necessarily violated. Using a
Monte Carlo simulation study, we will show that the effect of non-normality is very serious. The
null distribution theory is clearly non-robust.

It is well known that, often, the dependence between the variables inflates Type | error rates
for tests of the Pearson correlation coefficient. In these cases, some authors have proposed to
consider the t -test as a crude test of the hypothesis of independence (Edgell and Noon 1984).
However, this practice can be incorrect since we find situations of nonindependent variables
where Type | error rates for Pearson’s r are substantially deflated. In our view, this is the major
contribution of the article.
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The rest of the paper is organized as follows. Section 2 briefly describes the t -test of zero
correlation. Section 3 presents the Monte Carlo study. Section 4 is the conclusion.

2. The t-test of the Pearson Product-Moment Correlation Coefficient

For a wide class of problems, a matter of primary interest is whether or not two random
variables X and Y are correlated. The most common measure of correlation between the
random variables X and Y is Pearson’s product-moment correlation coefficient,
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where u, =E(X) and g, =E(Y).
Given a random sample {(X,.Y;), i =1,...,n} from a bivariate random variable (X,Y), p

is customarily estimated by the sample correlation coefficient,
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where X =n*>"" X; and Y =n™)"Y,. The sample correlation coefficient is the maximum

likelihood estimate of the population correlation coefficient for bivariate normal data, and is
asymptotically unbiased and efficient. Because of the variability of the correlation estimations, it
is usually desirable to verify that a nonzero value of the sample correlation coefficient indeed
reflects the existence of a statistically significant correlation between the variables of interest.
This may be accomplished by testing the null hypothesis H,:p =0, where a significant

correlation is indicated if the hypothesis is rejected. A test statistic used for testing o =0 is
r
\1-r?

It is well known that if (X,Y) isabivariate Gaussian random variable and p =0, then the test

t=+n-2

statistic t follows a t -distribution with (n—2) degrees of freedom. For a proof of this result

see Ravishanker and Dey (2002, p. 200).

Unfortunately, the assumption of bivariate normality is hardly verified in practice: real data
are rarely normal (Micceri 1989). Nevertheless, the correlation coefficient is used by
practitioners even though their data are nonnormal.

Many studies have investigated the robustness of the t -test of zero correlation to violations
of the normality assumption. The results are controversial. Some studies (e.g., Pearson 1929,
1931, Rider 1932, Nair 1941, and Gayen 1951) claim the robustness of the distribution of r to
nonnormal populations, while others claim the opposite (e.g., Baker 1930, Chesire et al. 1932,
Kowalski 1972, Duncan and Layard 1973, and Zimmerman et al. 2003).

3. A Monte Carlo Study

In this section, we investigate the robustness of the t -test for the null hypothesis that the
population correlation is zero, when variables are uncorrelated but not independent through
Monte Carlo experiments. All the numerical calculations have been performed using the GNU
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Regression, Econometric and Time-series Library (GRETL), a free, open-source software.
In order to obtain a pair of uncorrelated dependent random variables, first we consider a
standard normal random variable z and a uniform random variable, U, over the symmetric

interval [—7:,”]. Then the bivariate random vectors (X,Y) are constructed in the following

manner:
DGP1.Let X=Z and Y = Z2.
DGP 2. Let x=z and Y = Z].

DGP 3. Let X=7 and Y =cosZ.

DGP 4. Let X =sinU and Y =u?.
DGP 5. Let X =sinU and Y =|U|.

DGP 6. Let X =sinU and Y =cosU.

We note that in every case the components X and Y are not independent with zero
correlation. The scatter plots of the different patterns of dependence are reported in Figure 1. For
each DGP the sample correlation coefficient and the test statistic are computed. The t -test was
repeated 100,000 times. The actual significance level of the test is estimated by the proportion
of rejections with nominal significance level « =0.05 and « =0.01 and for sample sizes of
n = 30,50, 70,100 and 200.

The results presented for « =0.05 in Table 1 and for « =0.01 in Table 2 show that there
is a considerable size distortion (the difference between the nominal level of the test and its actual
rejection probability). This seems not to depend on the sample size. Further, as it can be seen
from the Tables 1 and 2, there are DGPs for which Type | error rates for Pearson’s r are inflated
and DGPs with deflated Type | error rates. In particular, focusing on the results for DGP1, DGP2
and DGP3, we observe that the test exhibits a severe oversizing with the error of rejection
probability measure reaching values around 40% (DGP1, ¢« = 0.05). On the contrary, when the
DGPs 4, 5 and 6 are considered, the t -test is very conservative. It is important to give some
description about why this happens. Our speculation is that the sample data patterns from
DPG1-3 tend to be more linear-like than the other three due to the type of nonlinear relationship.
For instance, DPG1-3 have one Y values to every X whereas DGP4-6 have two.

We observe that in the DGPs 1-6 there is an exact nonlinear relationship between the
variables. Of course we may wonder whether this is too trivial. We consider, for instance, the
DGPs 1 and 6. In order to get more "realistic" patterns of dependence (see Figure 2), we replace
them by considering the following modified DGPs:

DGP 7. Let X =2,Y = X2+0.2v, where V is a standard normal random variable,

independent of Z.
DGP 8. Let X =cosU, Y =sinU +0.2W, where W is a standard normal random

variable, independent of U.

Basically, the results of the simulation experiment for DGPs 7 and 8, summarized in Table 3,
are similar to those generated by DGPs 1 and 6.

Summarizing, in accordance with the literature (for example, Duncan and Layard 1973, and
Edgell and Noon 1984), we find that there are many cases where the dependence between the
variables inflates Type | error rates for tests of the Pearson correlation coefficient. However,
interestingly, and in contrast to previous studies, we also find situations of nonindependent
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variables where Type | error rates for Pearson’s r are substantially deflated.

Thus, for the nonindependent variables case, the researcher must be concerned not only with
the possibility of inflated Type | error rates but also with deflated Type | error rates. In
conclusion, caution should be used in interpreting the results of the standard t -test when there is
a nonlinear relationship between variables.
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Figure 1 Scatter plots of different patterns of dependence between uncorrelated variables,
DGP1-DGP 6
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Table 1 Proportions of t-values which are significant at the 0.05 level
n
bGP 30 50 70 100 200
DGP 1 0.3797 0.3806 0.3823 0.3818  0.3812
DGP 2 0.2619 0.2567 0.2592 0.2589  0.2576
DGP 3 0.3017 0.2916 0.2908 0.2867  0.2833
DGP 4 0.0039 0.0029 0.0029 0.0028  0.0026
DGP 5 0.0033 0.0026 0.0020 0.0021  0.0020
DGP 6 0.0075 0.0063 0.0064 0.0063 0.0058
Table 2 Proportions of t-values which are significant at the 0.01 level
n
bGP 30 50 70 100 200
DGP 1 0.2347 0.2399 0.2453 0.2457  0.2483
DGP 2 0.1381 0.1375 0.1364 0.1382  0.1389
DGP 3 0.1745 0.1664 0.1644 0.1620 0.1609
DGP 4 0.0002 0.0001 0.0001 0.0001 0.0001
DGP 5 0.0001 0.0001 0.0001 0.0001  0.0001
DGP 6 0.0005 0.0003 0.0003 0.0004 0.0002
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Figure 2 Scatter plots of different patterns of dependence between uncorrelated variables,
DGP 7 and DGP 8

Table 3 Proportions of t-values which are significant at the « =0.05, 0.01 level

n

bGP “ 30 50 70 100 200
DGP 7 0.05 0.3722 0.3837 0.3801 0.3758  0.3769
DGP 7 0.01 0.2349 0.2432 0.2368 0.2414  0.2408
DGP 8 0.05 0.0078 0.0086 0.0079 0.0073  0.0077
DGP 6 0.01 0.0004 0.0006 0.0004 0.0002  0.0003
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4. Conclusions and Recommendation

In this paper we investigated the robustness of the traditional t -test for testing the
hypothesis that a population correlation equals zero. By a Monte Carlo study, we showed that
when X and Y are uncorrelated but nonindependent, the null distribution theory is
non-robust. The presence of a nonlinear relationship can lead to a significant value of r even if
X and Y areuncorrelated. It happens even for large sample sizes. Thus, as suggested by Edgell
and Noon (1984), the t -test could be considered a crude test of the hypothesis of independence.
However, based on our results, it is important to note that this practice can lead to misleading
inference. In fact, despite previous studies, we found situations of nonindependent variables
(DGPs 4 - 6) where Type | error rates for Pearson’s r are substantially deflated.

Another critical issue is that, when X and Y are uncorrelated but not independent, the t
-test can be very conservative. Since a conservative test is less likely to find statistical
significance (even when it does truly exist), it follows that the t -test can suffer from loss of
power.

In conclusion, the message of this paper is that the practitioner needs to worry about the
presence of a nonlinear relationship between the variables when using the t -test. If there is a
nonlinear relationship, the correlation value r may be deceptive. Nonlinear associations can
exist that are not revealed by this statistic. Thus, the use of the t -test should be avoided where
there are good reasons to believe that a nonlinear relationship between variables exists. In this
case, the Pearson correlation coefficient should be used only to establish the extent to which the
existing relationship can be approximated by a linear relationship.
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