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Abstract  

A simulation study was performed to analyze the effects of violations of the normality 

assumption on the t -test of the Pearson correlation coefficient when the variables are not 

independent, even though the population correlation is zero.  Large effects for violations of 

normality were found. The Type I error rate can be either inflated or deflated with respect to the 

assumed error rate.  A recommendation is made that the use of the t -test be avoided where 

there are good reasons to believe that a nonlinear relationship exists between the variables.  
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1.  Introduction 

Correlation analysis, expressed by correlation coefficients, is of paramount importance in 

statistics and psychometric research, and the associated literature is huge. It is widely known 

among researchers that uncorrelatedness does not imply independence, but the full importance of 

this fact  is not quite as widely appreciated. The goal of this paper is to show that, when there is a 

nonlinear relationship between variables, the correlation analysis must be utilized more 

carefully. In particular, we will consider the performance of the traditional t -test for the null 

hypothesis that the population correlation is zero, when variables are uncorrelated but not 

independent. In this case the assumption of bivariate normality is necessarily violated. Using a 

Monte Carlo simulation study, we will show that the effect of non-normality is very serious. The 

null distribution theory is clearly non-robust. 

It is well known that, often, the dependence between the variables inflates Type I error rates 

for tests of the Pearson correlation coefficient. In these cases, some authors have proposed to 

consider the t -test as a crude test of the hypothesis of independence (Edgell and Noon 1984). 

However, this practice can be incorrect since we find situations of nonindependent variables 

where Type I error rates for Pearson’s r  are substantially deflated. In our view, this is the major 

contribution of the article. 
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The rest of the paper is organized as follows. Section 2 briefly describes the t -test of zero 

correlation. Section 3 presents the Monte Carlo study.  Section 4 is the conclusion.  

 

2.  The t -test of the Pearson Product-Moment Correlation Coefficient 

For a wide class of problems, a matter of primary interest is whether or not two random 

variables X  and Y  are correlated. The most common measure of correlation between the 

random variables X  and Y  is Pearson’s product-moment correlation coefficient,  

 
2 2

[( )( )]
= ,

[( ) ] [( ) ]

X Y

X Y

E X Y

E X E Y

 


 

 

 
 

where = ( )X E X  and = ( ).Y E Y  

Given a random sample  ( , ), = 1,...,i iX Y i n  from a bivariate random variable ( , ),X Y   

is customarily estimated by the sample correlation coefficient,  
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Y n Y .   The sample correlation coefficient is the maximum 

likelihood estimate of the population correlation coefficient for bivariate normal data, and is 

asymptotically unbiased and efficient. Because of the variability of the correlation estimations, it 

is usually desirable to verify that a nonzero value of the sample correlation coefficient indeed 

reflects the existence of a statistically significant correlation between the variables of interest. 

This may be accomplished by testing the null hypothesis 0 : = 0,H  where a significant 

correlation is indicated if the hypothesis is rejected. A test statistic used for testing = 0  is  
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It is well known that if ( , )X Y  is a bivariate Gaussian random variable and = 0,
 
then the test 

statistic t  follows a t -distribution with ( 2)n   degrees of freedom. For a proof of this result 

see Ravishanker and Dey (2002, p. 200). 

Unfortunately, the assumption of bivariate normality is hardly verified in practice: real data 

are rarely normal (Micceri 1989). Nevertheless, the correlation coefficient is used by 

practitioners even though their data are nonnormal. 

Many studies have investigated the robustness of the t -test of zero correlation to violations 

of the normality assumption. The results are controversial. Some studies (e.g., Pearson 1929, 

1931, Rider 1932, Nair 1941, and Gayen 1951) claim the robustness of the distribution of r  to 

nonnormal populations, while others claim the opposite (e.g., Baker 1930, Chesire et al. 1932, 

Kowalski 1972, Duncan and Layard 1973, and Zimmerman et al. 2003). 

 

3.  A Monte Carlo Study 

In this section, we investigate the robustness of the t -test for the null hypothesis that the 

population correlation is zero, when variables are uncorrelated but not independent through 

Monte Carlo experiments. All the numerical calculations have been performed using the GNU 
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Regression, Econometric and Time-series Library (GRETL), a free, open-source software. 

In order to obtain a pair of uncorrelated dependent random variables, first we consider a 

standard normal random variable Z  and a uniform random variable, ,U  over the symmetric 

interval  , .   Then the bivariate random vectors ( , )X Y  are constructed in the following 

manner: 

DGP 1. Let =X Z  and 2= .Y Z  

DGP 2. Let =X Z  and =| | .Y Z  

DGP 3. Let =X Z  and =cos .Y Z  

DGP 4. Let sinX U  and 2= .Y U  

DGP 5. Let sinX U  and =| | .Y U  

DGP 6. Let sinX U  and cos .Y U  

We note that in every case the components X  and Y  are not independent with zero 

correlation. The scatter plots of the different patterns of dependence are reported in Figure 1. For 

each DGP the sample correlation coefficient and the test statistic are computed. The t -test was 

repeated 100,000 times. The actual significance level of the test  is estimated by the proportion 

of rejections with nominal  significance level = 0.05  and = 0.01  and for sample sizes of 

= 30,50,70,100n and 200. 

The results presented for = 0.05  in Table 1 and for = 0.01  in Table 2 show that there 

is a considerable size distortion (the difference between the nominal level of the test and its actual 

rejection probability). This seems not to depend on the sample size. Further, as it can be seen 

from the Tables 1 and 2, there are DGPs for which Type I error rates for Pearson’s r  are inflated 

and DGPs with deflated Type I error rates. In particular, focusing on the results for DGP1, DGP2 

and DGP3, we observe that the test exhibits a severe oversizing with the error of rejection 

probability measure reaching values around 40% (DGP1, = 0.05). On the contrary, when the 

DGPs 4, 5 and 6  are considered, the t -test is very conservative. It is important to give some 

description about why this happens. Our speculation is that the sample data patterns from 

DPG1-3 tend to be more linear-like than the other three due to the type of nonlinear relationship. 

For instance, DPG1-3 have one Y values to every X  whereas DGP4-6 have two. 

We observe that in the DGPs 1-6 there is an exact nonlinear relationship between the 

variables. Of course we may wonder whether this is too trivial. We consider, for instance, the 

DGPs 1 and 6. In order to get more "realistic" patterns of dependence (see Figure 2), we replace 

them by considering the following modified DGPs: 

DGP 7. Let = ,X Z
2= 0.2 ,Y X V  where V  is a standard normal random variable, 

independent of .Z  

DGP 8. Let cos ,X U sin 0.2 ,Y U W   where W  is a standard normal random 

variable, independent of .U  

Basically, the results of the simulation experiment for DGPs 7 and 8, summarized in Table 3, 

are similar to those generated by DGPs 1 and 6. 

Summarizing, in accordance with the literature (for example, Duncan and Layard 1973, and 

Edgell and Noon 1984), we find that there are many cases where the dependence between the 

variables inflates Type I error rates for tests of the Pearson correlation coefficient. However, 

interestingly, and in contrast to previous studies, we also find situations of nonindependent 
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variables where Type I error rates for Pearson’s r  are substantially deflated. 

Thus, for the nonindependent variables case, the researcher must be concerned not only with 

the possibility of inflated Type I error rates but also with deflated Type I error rates. In 

conclusion, caution should be used in interpreting the results of the standard t -test when there is  

a nonlinear relationship between variables. 

 

 

Figure 1 Scatter plots of different patterns of dependence between uncorrelated variables,    

DGP 1 - DGP 6 
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Table 1 Proportions of t-values which are significant at the 0.05 level     

      DGP  
     n       

 30   50   70   100   200 

DGP 1   0.3797  0.3806  0.3823  0.3818   0.3812 

DGP 2  0.2619  0.2567  0.2592  0.2589   0.2576  

DGP 3  0.3017  0.2916 0.2908  0.2867   0.2833  

DGP 4  0.0039  0.0029  0.0029  0.0028   0.0026 

DGP 5   0.0033  0.0026  0.0020  0.0021   0.0020  

DGP 6  0.0075  0.0063  0.0064  0.0063   0.0058  

   

Table 2 Proportions of t-values which are significant at the 0.01 level     

      DGP  
     n       

 30   50   70   100   200 

DGP 1  0.2347   0.2399   0.2453  0.2457   0.2483 

DGP 2  0.1381   0.1375   0.1364   0.1382   0.1389 

DGP 3   0.1745   0.1664   0.1644   0.1620   0.1609 

DGP 4   0.0002   0.0001   0.0001  0.0001   0.0001 

DGP 5   0.0001   0.0001   0.0001   0.0001   0.0001  

DGP 6   0.0005   0.0003   0.0003   0.0004   0.0002  

 

 

Figure 2 Scatter plots of different patterns of dependence between uncorrelated variables,    

DGP 7 and DGP 8 

 

Table 3 Proportions of  t-values which are significant at the  =0.05, 0.01 level   

      DGP    
     n       

 30   50   70   100   200 

DGP 7  0.05 0.3722   0.3837   0.3801  0.3758   0.3769 

DGP 7  0.01  0.2349   0.2432   0.2368   0.2414   0.2408  

DGP 8  0.05  0.0078   0.0086   0.0079   0.0073   0.0077 

DGP 6  0.01 0.0004  0.0006  0.0004   0.0002   0.0003 
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4. Conclusions and Recommendation 
In this paper we investigated the robustness of the traditional t -test for testing the 

hypothesis that a population correlation equals zero. By a Monte Carlo study, we showed that 

when X  and Y  are uncorrelated but nonindependent, the null distribution theory is 

non-robust. The presence of a nonlinear relationship can lead to a significant value of r  even if 

X  and Y  are uncorrelated. It happens even for large sample sizes. Thus, as suggested by Edgell 

and Noon (1984), the t -test could be considered a crude test of the hypothesis of independence. 

However, based on our results, it is important to note that this practice can lead to misleading 

inference. In fact, despite previous studies, we found situations of nonindependent variables 

(DGPs 4 - 6) where Type I error rates for Pearson’s r  are substantially deflated. 

Another critical issue is that, when X  and Y are uncorrelated but not independent, the t

-test can be very conservative. Since a conservative test is less likely to find statistical 

significance (even when it does truly exist), it follows that the t -test can suffer from loss of 

power. 

In conclusion, the message of this paper is that the practitioner needs to worry about the 

presence of a nonlinear relationship between the variables when using the t -test. If there is a 

nonlinear relationship, the correlation value r  may be deceptive. Nonlinear associations can 

exist that are not revealed by this statistic. Thus, the use of the t -test should be avoided where 

there are good reasons to believe that a nonlinear relationship between variables exists. In this 

case, the Pearson correlation coefficient should be used only to establish the extent to which the 

existing relationship can be approximated by a linear relationship. 
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