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Abstract
It is possible that the probability-based distributions can effectively explain risk exposure. The level of risk exposure is typically expressed as one number, or at the very least, a small number of numbers. These risk exposure numbers, which unquestionably represent the results of a particular model, are commonly referred to as crucial critical risk indicators. Value-at-risk, tail-value-at-risk, tail variance, and tail mean-variance were the other four major risk indicators that were utilized to describe the risk exposure in the reinsurance revenues data. This paper gives a novel distribution for this use since these measurements were made using the suggested model. In this work, first we introduced a new compound G family with a strong physical motivation. Various structural mathematical and statistical properties are derived. The new density can be “asymmetric right skewed with heavy tail”, “symmetric” and bimodal density with different shapes. The new hazard function can be “upside-down-constant”, “increasing-constant”, “upside-down-increasing”, “increasing”, “decreasing” and “constant”. Many bivariate types have been also derived via different copulas. The estimation of the model parameters is performed by maximum likelihood method. Second, the usefulness and flexibility of the new family is illustrated by an application to real data set. Finally, the reinsurance revenues dataset’s risk level is examined using five major risk indicators. Along with an application, pertinent numerical analyses, and plots are included. There are certain noticeable and highlighted useful results.
______________________________
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1. Introduction 
Reinsurance is the insurance that a company buys from another insurer to protect itself (at least in part) from the possibility of a sizable claim. Reinsurance is often referred to as stop-loss insurance, insurance for insurers, and reinsurance. Reinsurance is the procedure through which insurers, through some kind of arrangement, transfer a portion of their risk portfolios to other parties to lessen the possibility that they may have to shoulder a sizable burden as a result of an insurance claim. It is referred to as the diverse insurance portfolio party when someone surrenders. The person that consents to assume a portion of the possible liability in exchange for a share of the insurance premium is known as the reinsurer. Recovering all or a portion of the money given to claimants allows insurers to continue making money. Reinsurance provides protection against catastrophic losses and reduces the net liability for individual risks in the case of significant or widespread losses.
Reinsurance seekers, or ceding companies, can improve their capability for accepting all kinds of risks through this approach. In other words, the company that issues the reinsurance coverage is the reinsurer. After significant claims occurrences, such as severe catastrophes like hurricanes and wildfires, reinsurance often enables insurance companies to continue operating. Reinsurance occasionally performs tasks unrelated to its main role in risk management, such as reducing the cascade company’s capital requirements, tax mitigation, or other tasks.
An actuarial estimate of the possible loss that could arise in the future as a result of a particular action or set of circumstances is the risk exposure. Risks are often graded in accordance with their propensity to occur in the future multiplied by the potential loss if they did as part of a review of the business's risk exposure. By assessing the likelihood of expected future losses, the company may distinguish between little and significant losses. Speculative risks frequently lead to losses including failing to adhere to regulations, a decrease in brand value, security vulnerabilities, and liability issues. The examination of historical insurance data using time series analysis or continuous distributions has, nevertheless, received a lot of attention. Actuaries have recently used continuous distributions, especially ones with broad tails, to reflect actual insurance data. Using continuous heavy-tailed Probability distributions, real data has been modelled in a number of real-world applications, including engineering, risk management, dependability, and the actuarial sciences. The skewedness of the insurance data sets can be left, right, or right with huge tails.
[bookmark: _Hlk199679091]Risk exposure might be well explained by probability-based distributions (Probability-based G families of distributions). Usually, one number, or at the very least, a limited number of numbers, are used to describe the level of risk exposure. These obviously model-derived risk exposure figures are sometimes referred to as essential key risk indicators (KRIs) (see Artzner 1999, and Klugman et al. 2012).
Actuaries and risk managers can learn from such KRIs how exposed a company is to various dangers. Value-at-risk (VAR), tail-value-at-risk (TVAR), conditional-value-at-risk (CVAR), tail variance (TV), and tail Mean-Variance (TMV) are just a few of the KRIs that can be taken into account and investigated. Specific to the quantile distribution of aggregate losses is the VAR. The majority of the time, actuaries and risk managers focus on estimating the likelihood of a negative result, which can be calculated using the VAR indicator at a specific probability/confidence level. Typically, this indicator is used to calculate how much cash will be needed to deal with such prospective bad circumstances. Actuaries, policymakers, investors, and rating agencies are concerned about the insurance company’s capacity to handle.


A unique Probability-based class known as the Poisson Inverse Generalized Rayleigh G (PIGR-G) family is offered for this primary goal in order to provide an adequate explanation of risk exposure under the data set for reinsurance revenues. Suppose that a system has  subsystems functioning independently at a given time where N has ZTP distribution with parameter  
It is the conditional probability distribution of a Poisson-distributed random variable (r.v.), given that the value of the r.v. is not zero (see Maurya and Nadarajah 2021 for more details). The probability mass function (PMF) of N is given by

		 (1)






[bookmark: MTBlankEqn]where  Note that for ZTP r.v., the expected value  and variance  are, respectively, given by   and  Suppose that the failure time of each subsystem has the inverse generalized Rayleigh (“IGR-G ()” for short) defined by the cumulative distribution function (CDF) and probability density function (PDF) given by

		(2)
and 

		(3)









respectively, where  the parameter  is a shape parameter,  is the parameter vector of the baseline model and  is the survival function of the baseline model. Let  denote the failure time of the  subsystem and let . Due to Ramos et al. (2015), Aryal and Yousof (2017), Korkmaz et al. (2018d), Yousof et al. (2018a), Abouelmagd et al. (2019a, b) and Yousof et al. (2020), the conditional CDF of  given  is

		(4)
Therefore, the unconditional CDF of the PIGR-G density function, as described in Ramos et al. (2015), can be expressed as

		(5)

where . The corresponding PDF can be expressed as



	(6)



[bookmark: _Hlk116304690][bookmark: _Hlk199749519]for  the PIGR-G family reduces to the quasi PIGR-G (QPIGR-G) family, for  the PIGR-G family reduces to PIR-G family, for  the PIGR-G family reduces to the QPIR-G family. Many compound G families are recently presented and employed in statistical modeling such as Merovci et al. (2017), Hamedani et al. (2018), Sen et al. (2018a, b), Korkmaz et al. (2018c, d), Lak et al. (2019), Korkmaz et al. (2018b), Nasir et al. (2019), Merovci et al. (2020), Elsayed and Yousof (2021) and Hamed et al. (2022).
[bookmark: _Hlk116304640]We are motivated to introduce the PIGR-G family for the following reasons:
1. [bookmark: _Hlk112184914]Creating new Probability density functions that may take on several beneficial forms, such as “asymmetric and right skewed,” “asymmetric and left skewed,” “symmetric,” “symmetric and bimodal,” "uniformed,” or “right skewed with a heavy tail.” 
1. Any new model may be used to analyze a variety of data environmental sets because to the great flexibility of the Probability density function. But the new family has shown flexibility and high efficiency in the statistical and mathematical modeling processes of different sets of environmental data and reinsurance data (as a type of actuarial data important in actuarial and risk analysis).
1. Introducing a few new, unique models with various hazard rate functions, including “increasing-constant,” “constant,” “bathtub,” "monotonically declining,” “decreasing-increasing-decreasing,” and “J-shaped.” The distribution's elasticity increases with the number of different failure rate types. The job of many practitioners who may employ the new distribution in statistical modelling and mathematical analysis is made easier by these forms. We have paid a lot of attention to the issue of checking the failure rate function for this particular purpose.
1. The degree of the new distribution's flexibility depends on the skew coefficient, kurtosis coefficient, failure rate function, and variety of the PDF and failure rate functions. In this context, it is also critical to consider how well the probability distribution can be used and modelled statistically. The innovative PGF was extremely adaptive in the and other domains, as we realized after carefully studying it. We looked at this Probability distribution in detail because of this. It is worth mentioning in this paper that the new family had individual characteristics, including the wideness of the skew coefficient as well as the widening of the kurtosis coefficient. This high flexibility gives the new family a competitive advantage against all related families. This widening of the skewness and kurtosis coefficients is one of the most important factors that can be relied upon to know the extent of the elasticity of the distribution, and it can also be relied upon in distinguishing a probability distribution from another probability distribution.
1. Putting out new continuous models to represent real data that is “over-dispersed,” “equal-dispersed,” and “under-dispersed.” As will be seen, the new family has demonstrated a surprising advantage in modelling various forms of data, regardless of whether they are symmetric or asymmetric or whether they contain outliers or not.
1. In statistical modeling of the bathtub hazard rate count data, the PIGR-G family under the exponential baseline model provided adequate results and hence the PIGR-G family under the exponential baseline is recommended for modeling the monotonically increasing hazard rate survival data. 
1. The new family under the exponential baseline model fits the reinsurance data in an appropriate and satisfactory manner, as the new family under the exponential baseline model was used in analyzing the future risks facing the reinsurance companies.
1. Reinsurance is examined using a novel, adaptable statistical distribution in the field of actuarial science. The novel G family of distributions demonstrated its superiority and flexibility in modelling the reinsurance and actuarial data under specified criteria, even though several competitive distributions may be used in statistical modelling.
1. The primary risk indicators are most frequently estimated using the maximum likelihood, ordinary least squares, weighted least squares, and Anderson-Darling methods in risk analysis and its estimation techniques. However, for various sample sizes and particular confidence levels, the maximum likelihood is used to estimate the unknown parameters.

2. Mathematical properties
2.1.	Useful expansions
[bookmark: _GoBack]Using the power series, the PDF in (6) can be written as

		(7)


If  and  is a real non-integer, the following power series holds 

		(8)
Applying (8) to (7) we have

		(9)
which can be written as

	(10)

Applying the power series to the term  (10) becomes

		(11)

Applying the expansion in (8) to (11) for the term  (11) becomes

		(12)
where

	



and  is the PDF of the exp-G family with power parameter  Equation (12) reveals that the density of  can be expressed as a linear mixture of exp-G densities. So, several mathematical properties of the new family can be obtained from those of the exp-G distribution. Similarly, the CDF of the PIGR-G family can also be expressed as a mixture of exp-G CDFs given by

		(13)


where  is the CDF of the exp-G family with power parameter .

2.2.	Quantile and random number generation



The quantile function (QF) of  where PIGR-G is obtained by inverting (5) as 

	



Simulating the PIGR-G r.v. is straightforward. If  is a uniform variate on the unit interval  then the r.v.  follows (6).
2.3.	Moments





Let  be a r.v. having density  The ordinary moment of , say  follows from (12) as

		(14)





where  can be evaluated numerically in terms of the baseline QF   as   Setting  in (14) gives the mean of 

2.4.	Incomplete moments



The  incomplete moment of  is defined by  We can write from (12) 

	



where   For particular models with closed-form equations for  the integral  can be calculated analytically or, for the majority of baseline distributions, at least numerically. The mean deviations around the mean and median, as well as the Bonferroni and Lorenz curves, are two significant uses of the first incomplete moment.

2.5.	Moment generating functions


The moment generating function of  say  is obtained from (12) as 

	


where  is the generating function of  given by 

	
The last two integrals can be computed numerically for most parent distributions.

3. Bivariate versions via copula
A copula is a multivariate CDF in probability theory where each variable’s marginal probability distribution is uniform on the interval [0,1]. Copulas are used to explain how random variables are dependent on one another (for more applications see Elgohari and Yousof 2020a, 2020b, 2021, and Elgohari et al. 2021). Using the Farlie Gumbel Morgenstern (FGM) copula, we derive a few novel bivariate PIGR (B-PIGR) type distributions in this section, modified FGM copula (see Rodriguez-Lallena and Ubeda-Flores 2004), Clayton copula, Renyi’s entropy and Ali-Mikhail-Haq copula (Ali et al. 1978). The multivariate PIGR (M-PIGR) type is also presented. However, future works may be allocated to the study of these new models. First, we consider the joint CDF of the FGM family, where 

	








and the marginal function    is a dependence parameter and for every   which is "grounded minimum" and  and  which is "grounded maximum", .  

3.1.	Via FGM copula


A copula is continuous in  and  actually, it satisfies the stronger Lipschitz condition, where

	


For  and  we have 

	


Then, setting  and  we can easily obtain the joint CDF of the PIGR using the FGM family 



where  The joint PDF can then be derived from 


 or from  

3.2.	Via modified FGM copula








The modified FGM copula is defined as  or  where  and and  and  are two continuous functions on  with  Let 






Then,  where  


 and 


where   and  are exists.

3.2.1 Type-I


Consider the following functional form for both  and  Then, the B-PIGR-FGM (Type-I) can be derived from 



3.2.2 Type-II





Let  and  be two functional forms satisfying all the conditions stated earlier where  and  Then, the corresponding B-PIGR-FGM (Type-II) can be derived from  Thus



3.2.3 Type-III





Let  and  for all  and  which satisfy all the conditions stated earlier. In this case, one can also derive a closed form expression for the associated CDF of the B-PIGR-FGM (Type-III) from  Then



3.3.	Via Clayton copula




The Clayton copula can be considered as  Setting  and  the B-PIGR type can be derived from  Then


Similarly, the M-PIGR can be derived from 



3.4.	Via Renyi’s entropy copula

The Renyi’s entropy copula can be expressed as  the associated B-PIGR can be derived from

	

3.5.	Via Ali-Mikhail-Haq copula
Under the stronger Lipschitz condition, the Archimedean Ali-Mikhail-Haq copula can be expressed as




then for any  and  we have



4. KRIs
4.1.	VAR indicator
For any insurance company, risk exposure is an inevitable occurrence. As a result, actuaries created a number of risk indicators to gauge risk exposure. The VAR indicator evaluates the amount that a set of investments could lose and establishes the risk of a potential loss for the insurance company with a given likelihood. This indicator is a widely used benchmark risk parameter for calculating risk exposure. The VAR frequently calculates the amount of capital necessary, given a particular likelihood, to guarantee that the business won’t formally go out of business. The confidence level used is arbitrary. Therefore, a large VAR amount may be taken into account for different confidence levels. For the entire company, it may be a high proportion like 99.95% or greater. The inter-unit or inter-risk type of diversification that exists can be represented by these different percentages.









Definition 1. Let   denote a loss random variable, The VAR of   at the level, say 
VaRq  or   , is the    quantile (or percentile (  )) of the distribution of  

Then, based on definition 1 for the PIGR-G family, we can simply write





From definition 1, for a one-year time when  the interpretation is that there is only a very small chance () that the insurance company will be bankrupted by an adverse outcome over the next year. The quantity VAR  does not satisfy one of the four criteria for coherence (see Wirch 1999).

4.2.	TVAR risk indicator

The VAR indicator is commonly employed as a tool for assessing financial risk over a predetermined, condensed period of time. The normal distribution is frequently used in these scenarios to explain gains and losses. The quantity VAR  satisfies all coherence requirements if the distribution of gains (or losses) is restricted to the normal distribution.






Definition 2. Let   denote a loss random variable, then the TVAR of    at the    confidence level is the expected loss given that the loss exceeds the    of the distribution of   namely 




Thus, the quantity  is an average of all VAR values above at the confidence level which provides more information about the tail of the PIGR-G family. Further, it can also be expressed as 









where  is the mean excess loss function evaluated at the   th quantile. So, is larger than its corresponding  by the amount of average excess of all losses that exceed the value of The has been independently developed and is also known as the conditional tail expectation in the insurance literature (Wirch  1999). According to Tasche (2002) and Acerbi and Tasche (2002), it has also been referred to as the expected shortfall (ES) or the tail conditional expectation (TCE).

4.3.	TV risk indicator
The TV risk indicator, which measures the loss’s departure from the mean along a tail, was developed by Furman and Landsman in 2006. The TV risk indicator has been explicitly calculated by Furman and Landsman (2006) using the multivariate normal distribution.



Definition 3. Letdenote a loss random variable, then the TV risk indicator can be expressed as




Thus, the quantities  and  can be evaluated using any software like R and MATHCAD among others and we will give a numerical example under the reinsurance data with all details and plots below.

4.4.	TMV risk indicator
Landsman (2010) created the TMV risk indicator, which is based on the TCE risk indicator and the TV risk indicator, as a metric for the optimum portfolio selection.


Definition 4. Letdenote a loss random variable, then the TMV risk indicator can then be expressed as












Then, for any LRV, TMV TV and, for   TMV TVAR for   TMV TVARTV 

5. Special PIGR-G sub models with graphical and numerical analysis 
Table 1 provides some new sub models based on the new PIGR-G family. 

Table 1	New sub models based on the new PIGR-G family
	No.
	Baseline model
	

	Sub model

	1
	Log-logistic (LL)
	

	PIGRLL

	2
	Weibull (W)
	

	PIGRW

	3
	Exponential (Ex)
	

	PIGREx

	4
	Rayleigh (R)
	

	PIGRR

	5
	Lomax (Lx)
	

	PIGRLx











Figure 1 gives some plots of the PDF of the Poisson inverse generalized Rayleigh exponential (PIGREx) model. Figure 2 provides different plots of the HRF of the PIGREx model. Based on Figure 1, the new density can be “asymmetric right skewed with heavy tail”, “symmetric” and bimodal density with different shapes. Due to Figure 2, the new hazard function can be “upside-down-constant”, “increasing-constant”, “upside-down-increasing”, “increasing”, “decreasing” and “constant”. Numerical analysis for the mean  variance  skewness  and kurtosis  are calculated in Table 2 for the PIGRF model. Based on Table 2 we note that, the  Further, the spread for the  is ranging from nearly 2.987858 to nearly 
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Figure 1 Plots of the PDF of the PIGREx model
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Figure 2 Plots of the HRF of the PIGREx model.

[bookmark: _Hlk66091582]





Table 2 , , Skew() and Kur() of the PIGREx model
	

	

	

	
	
	
	
	
Skew
	
Kur

	1
	0.8
	20
	0.043811
	0.000512
	2.561894
	14.18661

	5
	0.8
	20
	0.030016
	0.000103
	3.73154
	36.86824

	20
	0.8
	20
	0.022589
	0.000012
	0.47437
	3.647148

	200
	0.8
	20
	0.01779
	
2.51
	
	
	2.987858

	20
	1
	10
	0.043869
	
3.844
	0.395287
	3.482453

	20
	10
	10
	0.035051
	
9.565
	
	
	3.059151

	20
	20
	10
	0.033346
	
7.028
	
	
	3.084764

	20
	500
	10
	
1.1
	
6.6
	
	
	
	

	5
	3
	0.01
	46.457716
	73.305028
	1.463467036
	9.188543487

	5
	3
	1
	0.464577
	0.0073305
	1.463467035
	9.188543489

	5
	3
	5
	0.092915
	0.0002932
	1.463467035
	9.188543488

	5
	3
	10
	0.046458
	0.000073
	1.463467036
	9.188543473



6. Parameter Estimation








[bookmark: _Toc84089273][bookmark: _Toc84092956][bookmark: _Toc84714067]Maximum likelihood estimation (MLE) is a statistical method for estimating the parameters of a Probability distribution that has been assumed given some observed data. This is accomplished by maximising a likelihood function to make the observed data as probable as possible given the assumed statistical model. The maximum likelihood estimate is the location in the parameter space where the likelihood function is maximised. Maximum likelihood is a popular approach for making statistical inferences since its rationale is clear and adaptable. Here, we will consider the estimation of the unknown parameters  of the new G family from complete samples by maximum likelihood method. Let  be a random sample (r.s.) from the PIGR-G models parameter vector  The log-likelihood function for () can be maximized numerically by using R (optim), SAS (PROC NLMIXED) or Ox program (sub-routine MaxBFGS), among others. For confidence interval (C.I) estimation of the parameters, the elements of the observed information matrix  can be evaluated numerically. Setting the nonlinear system of equations  and solving them simultaneously yields the MLE of  These equations can be solved numerically using convenient iterative method such as the Newton-Raphson type algorithms. 

7. Simulation study




The performance of the maximum likelihood method for estimating the PIGREx parameters is assessed using a simulation study. The simulation study is repeated 1000 times each with sample sizes 20, 50, 100, 200 and parameter true values  and  Table 3 and 4 gives the average value (AV) of the MLEs, bias, and mean square errors (MSEs) for the parameters  and  under some selected initial values. All calculations are produced using Mathematica program by the following algorithm:


i. Determine the sample size n and the supposed true values of the parameters.

ii. Generate a random sample depending on equation (6) and the QF with size n from PIGREx 
iii. Calculate the MLE, Bias, MSE of the three parameters.
iv. Repeat steps from i to iii 1000 times for each sample size and for the different true values of parameters. 
v. Calculate the average of AV, Bias, MSE for each parameter.
According to the simulation results, we can observe:
i. The AV of the MLEs tend approximately to the true values of the parameters.
ii. The bias decreases and tends to zero as the sample size increase.

iii. The MSEs also decrease and tend to zero when  
It can be concluded that the MLEs perform well in estimating the parameters of the PIGREx distribution. The MLEs and their asymptotic results can be adopted for estimating the model parameters.


[bookmark: _Ref83846865][bookmark: _Toc84090058][bookmark: _Toc84093377][bookmark: _Toc84714117][bookmark: _Toc84714631]Table 3 AV, Bias and MSEs of the MLEs for 
	

	Parameter
	AV
	Bias
	MSE

	20
	

	0.37698
	0.37302
	3.56914

	
	

	1.51518
	0.21518
	0.35687

	
	

	0.61758
	0.01758
	0.01155

	50
	

	1.08748
	0.33748
	1.86055

	
	

	1.33215
	0.03215
	0.22100

	
	

	0.59521
	0.00480
	0.00236

	100
	

	1.00833
	0.25833
	1.80467

	
	

	1.29110
	0.00890
	0.11344

	
	

	0.59869
	0.00130
	0.00115

	200
	

	0.93327
	0.18327
	1.24036

	
	

	1.27775
	0.02230
	0.06937

	
	

	0.60012
	0.00012
	0.00076


[bookmark: _Ref83906765][bookmark: _Toc84090059][bookmark: _Toc84093378][bookmark: _Toc84714118][bookmark: _Toc84714632]

Table 4 AV, Bias and MSEs of the MLEs for 
	

	Parameter
	AV
	Bias
	MSE

	20
	

	1.598908
	0.398908
	4.359913

	
	

	2.046308
	0.196308
	1.166248

	
	

	0.440322
	0.000322
	0.002142

	50
	

	1.393727
	0.193727
	3.206085

	
	

	1.946700
	0.096700
	0.392539

	
	

	0.441535
	0.001535
	0.000934

	100
	

	1.405862
	0.205862
	2.229651

	
	

	1.871187
	0.021187
	0.366333

	
	

	0.442094
	0.002094
	0.000593

	200
	

	1.338254
	0.138254
	1.785520

	
	

	1.850733
	0.000733
	0.212873

	
	

	0.442583
	0.002583
	0.000340



8. Real Data Applications
We shall compare the fits of the PIGREx distribution with those of other competitive exponential models. In the statistical literature there are many versions of the exponential distribution which can be used in comparison such as Marshall-Olkin exponential (MOE) distribution (Ghitany et al. 2005), Beta exponential (BE) distribution (Lee et al. 2007), Kumaraswamy exponential (KE) distribution (Cordeiro et al. 2010), Poisson-exponential (PE) distribution (Cancho et al. 2011), Moment exponential (ME) distribution (Dara and Ahmad 2012), Generalized Marshall-Olkin exponential (GMOE) distribution (Chakraborty and Handique 2017), transmuted exponentiated generalized exponential (TEGE) distribution (Yousof et al. 2017a), Marshall-Olkin Kumaraswamy exponential (MOKE) distribution (Chakraborty and Handique 2017), Burr XII exponential (BXIIE) distribution (Cordeiro et al. 2018), odd Lindley exponential (OLE) distribution (Almamy et al. 2018), Burr-Hatke exponential (BHE) distribution (Yousof et al. 2018b), Kumaraswamy Marshall-Olkin exponential (KMOE) distribution (George and Thobias 2019), quasi Poisson Burr X exponentiated exponential (QPBXEE) distribution (Mansour et al. 2020b), generalized odd log-logistic exponentiated exponential (GOLLEE) distribution (Mansour et al. 2020b) and the Burr X exponential (BXE) distribution (Yousof et al. 2017a, and Mansour et al. 2020c), among others.






In this section, some competitive models are selected as competitive exponential extensions such as the odd Lindley exponential  (OLEx), Marshall-Olkin exponential (MOEx), Moment exponential (MEx), The Logarithmic Burr-Hatke exponential (LBHEx), Generalized Marshall-Olkin exponential (GMOEx), Beta exponential (BEx), Marshall-Olkin Kumaraswamy exponential (MOKEx), Kumaraswamy exponential (KEx), the Burr X exponential (BXEx), Kumaraswamy Marshall-Olkin exponential (KMOEx) and standard exponential (Ex) model. Some details related to these competitive models are available in Ibrahim et al. (2020, 2022) and El-Morshedy et al. (2022).  For comparing models, we consider the Cramér-von Mises  and the Anderson-Darling  and the Kolmogorov-Smirnov (KS) statistic. Moreover, and for more accuracy, we consider another five goodness-of-fit measures called the Akaike Information Criterion  Bayesian Information Criterion  consistent Akaike Information Criterion  and Hannan-Quinn Information Criterion 







The failure times data set: {1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2}. The data represents the lifetime data relating to relief times (in minutes) of patients receiving an analgesic (see Gross and Clark 1975). This data was recently analysed by Al-Babtain et al. (2020). Table 5 lists the MLEs and SEs. Table 6 lists the  K.S. and p-value. Figure 3 gives the total time test (TTT) plot for the relief times data along with the corresponding box plot, quantile-quantile (Q-Q) plot and the nonparametric Kernel estimation (NKDE) plot. Based on Figure 3 (first plot, second and third), the HRF of the relief times is "increasing HRF" and this data has only one EV observation. Based on the NKDE, it is noted that the relief times data is bimodal and right skewed.  Figure 4 gives the estimated PDF, estimated CDF, estimated HRF and P-P plot for relief times data. Based on Table 6, we conclude that the proposed lifetime PIGREx model is much better than the exponential, odd Lindley exponential, Marshall-Olkin exponential, moment exponential, the logarithmic Burr-Hatke exponential, generalized Marshall-Olkin exponential, Beta exponential, Marshall-Olkin Kumaraswamy exponential, Kumaraswamy exponential, the Burr X exponential and  Kumaraswamy Marshall-Olkin exponential models with      and p-value = 0.99 so the new lifetime model is a good alternative to these models in modelling relief times data set. According to Figures 4, the PIGREx distribution provides adequate fits to the empirical functions.
The proposed PIGREx lifetime model is much better than the exponential, odd Lindley exponential, Marshall-Olkin exponential, moment exponential, the logarithmic Burr-Hatke exponential, generalized Marshall-Olkin exponential, Beta exponential, Marshall-Olkin Kumaraswamy exponential, Kumaraswamy exponential, the Burr X exponential and Kumaraswamy Marshall-Olkin exponential models so the new lifetime model is a good alternative to these models in modeling relief times data.

Table 5 MLEs, SEs, C.I.s (in parentheses) values for the relief times data
	Models
	
	Estimates

	

	MLE
	0.526

	
	SE
	(0.117)

	

	MLE
	0.6044

	
	SE
	(0.0535)

	

	MLE
	0.950

	
	SE
	(0.150)

	

	MLE
	0.5263

	
	SE
	(0.118)

	

	MLE
	54.474, 2.316

	
	SE
	(35.582), (0.374)

	

	MLE
	0.519, 89.462, 3.169

	
	SE
	(0.256), (66.278), (0.772)

	

	MLE
	83.756, 0.568, 3.330

	
	SE
	(42.361), (0.326), (1.188)

	

	MLE
	81.633, 0.542, 3.514

	
	SE
	(120.41), (0.327), (1.410)

	
MOKEx(α, β, λ, b) 
	MLE
	0.133, 33.232, 0.571, 1.669

	
	SE
	(0.332), (57.837), (0.721), (1.814)

	

	MLE
	8.868, 34.826, 0.299, 4.899

	
	SE
	(9.146), (22.312), (0.239), (3.176)

	
 
	MLE
	1.1635, 0.3207

	
	SE
	(0.33), (0.03)

	

	MLE
	2.355, 1.250, 0.3402

	
	SE
	(2.982), (1.1054), (0.0358)













Table 6  for the relief times data
	Models
	

	

	

	

	

	

	K.S.
	p-value

	Ex
	67.67
	68.67
	67.89
	67.87
	4.60
	0.96
	0.44
	0.004

	OLEx
	49.12
	50.11
	49.32
	49.30
	1.33
	0.22
	0.85
	<0.001

	MEx
	54.32
	55.31
	54.54
	54.50
	2.76
	0.53
	0.32
	0.07

	LBHEx
	67.67
	68.67
	67.89
	67.87
	0.62
	0.105
	0.44
	<0.001

	MOEx
	43.51
	45.51
	44.22
	43.90
	0.84
	0.14
	0.18
	0.55

	GMOEx
	42.75
	45.74
	44.25
	43.34
	0.51
	0.08
	0.15
	0.78

	KEx
	41.78
	44.75
	43.28
	42.32
	0.45
	0.07
	0.14
	0.86

	BEx
	43.48
	46.45
	44.98
	44.02
	0.70
	0.12
	0.16
	0.80

	MOKE
	41.58
	45.54
	44.25
	42.30
	0.60
	0.11
	0.14
	0.87

	KMOE
	42.83
	46.84
	45.55
	43.60
	1.08
	0.19
	0.15
	0.86

	BXE
	48.13
	50.12
	48.81
	48.52
	1.39
	0.24
	0.25
	0.17

	PIGREx
	36.81
	39.79
	38.31
	37.39
	0.15
	0.03
	0.09
	0.99
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Figure 3 The TTT plot, box plot, Q-Q plot and NKDE plot for the relief times data
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Figure 4 EPDF, ECDF, EHRF, P-P plots for relief times data

9. Risk analysis under the reinsurance revenues data
This Section deals with a reinsurance company's reinsurance revenue in the American insurance market. A monthly time series of reinsurance income is being shown. Our data, which span a recent time series starting in February 2015 and concluding in April 2020, is a blessing. The information on reinsurance revenues must be examined first. Real-world data analysis can be done using both numerical and graphical techniques. We explore a variety of graphical techniques, including the skewness-kurtosis plot, for examining early fits of theoretical distributions such the normal, logistic, uniform, exponential, beta, lognormal, and Weibull (also known as the Cullen and Frey plot). For more accuracy, the bootstrapping results are applied and also shown. Although the Cullen and Frey plot is a fantastic depiction of distributional properties, it only contrasts distributions in the space of squared skewness and kurtosis. The total time on test (TTT) plot, the nonparametric Kernel density estimation (NKDE) approach, and the box plot for finding the extreme reinsurance revenues are further graphical tools. The TTT plot is used to examine the initial form of the empirical hazard rate function. Figure 5 displays the Cullen and Frey plot for the reinsurance revenue data.
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Figure 5 The Cullen and Frey plot for the data of reinsurance revenues

The NKDE plot for the reinsurance revenue data is shown in Figure 6. (First figure). The second plot in Figure 6 displays the Q-Q plot for the reinsurance revenue data. The data for reinsurance revenues are shown in Figure 6's third plot as a TTT plot, and in Figure 6's fourth plot as a box plot. The reinsurance revenue data are not overly skewed and are almost symmetric (see Figure 6). Additionally, the HRF for the reinsurance revenues data is monotonically increasing, as shown in Figure 6’s bottom left plot.

In this application, we analyze a recent time series of the revenue of reinsurance companies. Since we are very interested in learning the shape of the spread by assessing how closely the values of the time series are related to one another, we have drawn the scattergram at lag k = 1. A scattergram is a graphic that shows points corresponding to two separate variables. By observing two variables and visualizing their data, a scattergram is created. The resulting graphic depiction demonstrates how the variables are related. Where the points are firmly grouped together, the link is strongest. The results of statistical surveys or laboratory experiments are occasionally presented using scattergrams. The terms scatter plot, scatter diagram, scatter chart, and scatter graph can all be used to describe a scattergram. The ACF is an example of how the correlation between any two signal values changes as separation changes. Theoretical ACF offers some insight into the distribution of hills and valleys on the surface by evaluating stochastic process memory in the time domain rather than the frequency content of the process. The ACOF is a set of covariances for a stationary process. Figure 7’s left plot shows the theoretical ACF, right plot shows the theoretical ACOF, and last plot shows the theoretical PACF for the reinsurance sales data with lag =  = 1.
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Figure 6 NKDE, Q-Q, TTT and box plots for the data of reinsurance revenues
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Figure 7 The theoretical ACF, the theoretical ACOF and the theoretical PACF




For the reinsurance data, we propose an application for risk analysis using VAR, TVAR, TV, and TMV metrics. The risk analysis is done for some confidence levels (CLs):  50%, 40%, 30%, 20%, 15%, 10%, 5%, 1%, 0.1%.

Table 8 KRIs for the PIGREx and Ex models
	Model
	

	VAR
	TVAR
	TV
	TMV
	EL

	PIGREx
	50%
	0.04951051
	0.1209391
	0.005102041
	0.1259901
	0.07142857

	
	40%
	0.06544934
	0.1368779
	0.005102041
	0.1419289
	0.07142857

	
	30%
	0.08599806
	0.1574266
	0.005102041
	0.1624776
	0.07142857

	
	20%
	0.11495990
	0.1863884
	0.005102041
	0.1914394
	0.07142857

	
	15%
	0.13550860
	0.2069371
	0.005102041
	0.2119882
	0.07142857

	
	10%
	0.16447040
	0.2358989
	0.005102041
	0.2409500
	0.07142857

	
	5%
	0.21398090
	0.2854094
	0.005102041
	0.2904605
	0.07142857

	
	1%
	0.32894070
	0.4003693
	0.005102041
	0.4054203
	0.07142857

	
	0.1%
	0.49341110
	0.5648397
	0.005102041
	0.5698907
	0.07142857

	Ex
	50%
	0.03077021
	0.1021988
	0.005102041
	0.1072498
	0.07142857

	
	40%
	0.03648754
	0.1079161
	0.005102041
	0.1129671
	0.07142857

	
	30%
	0.04270264
	0.1141312
	0.005102041
	0.1191822
	0.07142857

	
	20%
	0.05095356
	0.1223821
	0.005102041
	0.1274332
	0.07142857

	
	15%
	0.05864147
	0.1300700
	0.005102041
	0.1351211
	0.07142857

	
	10%
	0.06911314
	0.1405417
	0.005102041
	0.1455927
	0.07142857

	
	5%
	0.09092612
	0.1623547
	0.005102041
	0.1674057
	0.07142857

	
	1%
	0.12248560
	0.1939142
	0.005102041
	0.1989652
	0.07142857

	
	0.1%
	0.17199610
	0.2434247
	0.005102041
	0.2484757
	0.07142857
































The five measures are estimated for the PIGREx and  models, the  model is the baseline model for this application. Table 8 reports the KRIs for the PIGREx and Ex models. For the PIGREx model, the quantity VAR ranges from 0.04951051|  to 0.49341110|TVAR ranges from 0.1209391|  to 0.5648397|  TV  is a constant at 0.005102041  TMV  ranges from 0.1259901|  to 0.5698907|   and the EL  is a constant at 0.07142857 For the  model, VAR  ranges from 0.03077021|  to 0.17199610| TVAR ranges from 0.1021988|  to 0.2434247|  TV is a constant at 0.005102041  TMV  ranges from 0.1072498| to 0.2484757|  and the EL   is a constant at 0.07142857 . Generally, for the two models we have the following results:

	

	

and  The following results are worthy of note and reflection for comparing the PIGREx and Ex models:








and


Therefore, we favor the model with a heavier tail for assessing risk and disclosure-related issues.

10. Conclusions
Continuous distributions can be used to describe and assessment the risk exposure in an efficient manner. It is preferable to use a singular number, or at the very least, a narrow range of numbers, to demonstrate the extent of exposure to a certain threat. These risk exposure values, often known as major risk indicators, are undoubtedly the result of a specific methodology. The risk exposure under the reinsurance revenues data was also described using four critical risk indicators, including value-at-risk, tail-value-at-risk, tail variance, and tail mean-variance. These measurements were created for the proposed model; hence, this paper presents a novel family of distribution for this purpose called the PIGR-G family. Then, various structural mathematical and statistical properties including explicit expressions for the ordinary moments, quantile function, moment generating function, incomplete moments are derived. The new density can be “asymmetric right skewed with heavy tail”, “symmetric” and bimodal density with different shapes. The new hazard function can be “upside-down-constant”, “increasing-constant”, “upside-down-increasing”, “increasing”, “decreasing” and “constant”. Many bivariate PIGR-G type models have been also derived using Farlie Gumbel Morgenstern copula, modified Farlie Gumbel Morgenstern copula, Clayton copula, Renyi’s entropy and Ali-Mikhail-Haq copula. The estimation of the model parameters is performed by maximum likelihood method. A simulation study is conducted to assess the performance of the maximum likelihood method for estimating the unknown parameters. According to the simulation results, the maximum likelihood estimates, and their asymptotic results can be adopted for estimating the model parameters.
[bookmark: _Hlk116304754]The usefulness and flexibility of the new family is illustrated by means of a real data set. The new family based on the exponential model as a baseline model is much better than the exponential, odd Lindley exponential, Marshall-Olkin exponential, moment exponential, the logarithmic Burr-Hatke exponential, generalized Marshall-Olkin exponential, Beta exponential,  Marshall-Olkin Kumaraswamy exponential, Kumaraswamy exponential, the Burr X exponential and  Kumaraswamy Marshall-Olkin exponential models with Akaike Information Criterion = 36.81, Bayesian Information Criterion = 39.79, consistent Akaike Information Criterion = 38.31, Hannan-Quinn Information Criterion = 37.39, Anderson-Darling = 0.15, Cramér-Von Mises = 0.03, Kolmogorov-Smirnov = 0.09 and p-value = 0.99 so the new lifetime model is a good alternative to these models in modeling relief times data set.
The following risk analysis results can be highlighted:













i. For the new family under the exponential model, the quantity VAR ranges from 0.04951051|  to 0.49341110|  TVAR ranges from 0.1209391|  to 0.5648397|  TV  is a constant at 0.005102041  TMV  ranges from 0.1259901|   to 0.5698907|   and the EL  is a constant at 0.07142857   

ii. 

iii. 

iv. 

v. 

vi. 
The following results are worthy of note and reflection for comparing the new family under the exponential and Ex exponential models:

i. 

ii. 

iii. 

v. 

vi. 
The Nikulin-Rao-Robson (NRR), modified NRR, Bagdonaviius-Nikulin (BN), and modified BN goodness-of-fit tests to the new proposed under some selected special cases as performed by Goual et al. (2019, 2020), Ibrahim et al. (2019), Mansour et al. (2020a, 2020b, 2020c), Goual and Yousof (2019) and Yadav et al. (2020) are just a few new useful goodness-of-fit tests we can take into consideration for future potential work for validation in case of right censored real data. As a future potential work, one can consider the Bayesian and classical inference for generalized stress-strength reliability under new family, the generalized stress-strength reliability and the multicomponent stress-strength models are recently studied by Saber and Yousof (2023) and Saber et al. (2021, 2022, 2023). More insurance applications under the family can be consider as recently performed by Mohamed et al. (2023, 2024, 2025). One can use the family in acceptance sampling plans and quality control applications (Ahmed et al. 2024, Ahmed and Yousof 2023). More advanced risk analysis can be perforemed foloowing Alizadeh et al. (2024), Yousof et al. (2024), Shehata et al. (2024), Aljadani et al. (2024), Khan et al. (2024), and Das et al. (2025).
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