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Automatic Thai Folk Wisdom Classification using Data Mining Approach
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Abstract
This research aims to propose the automatic Thai folk wisdom classification using data mining approaches from text
description. The process consists of 4 steps, 1) word extraction and stop words elimination 2) feature selection 3) classification
of model construction and 4) model evaluation. In order to compare the accuracy results of Decision Tree, K-Nearest Neighbor,
Distance-Weight K-Nearest Neighbor and Naive Bayes, K-folds cross validation technique over 500 Thai folk wisdom data
were used. The comparison result of this study showed that the highest performance is Naive Bayes with accuracy 93.5%. As
this result, we selected the Naive Bayes classifier for implementing a web-based application using WEKA API and PHP. This

tool supports the ease of use when predicting the unseen data.
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3 5 7 9 11
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