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Graphical Normality Tests on Residuals in Linear Regression
1Y) <3 Y] =
WY IUNTIY

Wanpen Chantarangsi'”

U |
YN
o A v A ' M ' A Y g K
aﬂ‘]ﬂmz‘ﬂ"lllﬂﬂﬁ"ll’fNﬂ1§LH]ﬂlLi]xﬂJi$‘]ﬂﬂi YU ANULY ﬂ’J'llII@N “HNsn'miammuuummimzy‘lmm
] I AR a a 19 9 ] yaa o
%Wﬂlmuﬂ"l‘wﬂ’ﬂlluﬁ]%!,‘]_]uﬂﬂ?]”D’Qﬂﬁ‘ﬂﬂﬁ’t‘)‘ﬂﬁllllﬂﬁ1uﬂ1’iL!%ﬂLLi]\11JﬂGlLL‘]J‘]J‘lllhl“]ﬂmuﬂTWi]zhlllﬁaniﬂﬁl‘]ﬂuﬂﬂEl

Y] 1 g o 1] aa 1 ] 3 g‘/
aﬂymsmmﬁ”lﬁ’ FMTUMINUNIUITTUNTTUNNADA B2ANN U UraFUIUIA 1— 0 VULHUATNADIY

4
& A ao &

] I~ Aa o [ % [ 1 [ [ aq Yo T g [ v o w 1% S W a A
uwmﬂuﬂﬂmmmumaﬂnqnaﬂwawamhnuagum W9 OB EAVUITINTY mqﬂﬁzmﬂwaﬂmmamnwuu 19
y_ ' g 3 ' 3 Ao W v |
M3as TNV unateFyuuuuruInaNNUId U AT T UIAEANA19INNITOAD UL TUTUIND
' Y a v A A A A 2 Y ¥ a v 9 A 1o 9 v A
ﬂﬂiﬁ!ﬂﬂﬂ'ﬁ@]ﬂﬁuiiﬁ/’llﬁh’@ﬂ@]lﬂ’ﬂlﬁﬂG]ﬂﬂ'lﬂuuﬁﬂﬂﬂu!ﬂul’duiﬂiﬂﬁiﬂqu DIUIINITINATOUAIHIUITNITNATDU

Tagldnmazgnufseuiisunumsnageuuuulildumuawiedsziiiviuwuylavzlisuemsnadounaninnu

Y A

MeNgaaregezgnuaauiioaznoudelsz@ninmuesmsnaaon

o o Y Il < a Y [ [l <3 H
AaInY: mynagov laglgn i urunmanuietulnd wyand1e szt uvateruy

Abstract

Non-normal features of the population distribution such as skewness, kurtosis, long or short tails can be easily
identified from the normal probability plot. The non-graphical hypotheses tests of normality do not have this diagnostic
feature. For the statistical literature, 1 — Q¢ simultaneous probability intervals for augmenting a normal probability plot for
a simple random sample are available where (v is a significance level. The main objective of this research is on
construction of simultaneous probability intervals on normal probability plots for residuals from linear regression
providing objective judgements whether on residuals fall close to a straight line. We then compare the powers of these
graphical tests and some non-graphical tests for residuals in order to assess the power performances of the graphical tests

and to identify the ones that have better power. Finally, the example is provided to illustrate the effectiveness of the tests.

Keywords: Graphical Test, Normal Probability Plot, Residuals, Simultaneous Probability Interval
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Introduction
First of all, the theoretical background of a linear regression model is introduced so that it enables to extend the
tests of normality for a simple random sample to the vector of residuals from a linear regression model. It is more
convenient to deal with multiple regression models if they are expressed in matrix notation. The model is given by

y=XPB +€ orin terms of matrix form as

Y, 1 X le B0 g
Y, 1 X XZp Bl g,
= . + | .
Yy, Lox . X Bp g,
Y, 1 X X]p B0 g
y2 1 X21 X2p Bl E_:2
where y=| . , X =|. . . ,B=| - ,and € .
yn 1 an Tt Xn B E:n
Iaxa P lax(p+1) Plop+nx X1

In general, y is an n X1 vector of the observations, X is an nx(p+1) matrix of the levels of the regressor variables or
the design matrix, Bisa (p-+1)x1 vector of the regression coefficients, and € is an nx1 vector of random errors.

The least squares estimator of [ results from minimizing the sum of squared residuals is given by
6 = (XTX)_] XTy provided that the inverse matrix (XTX)_] exists. Therefore, the vector of fitted values (y)

corresponding to the vector of observed values (y) is
~ A T —1 T
y=XB=X(X X) X y=Hy
—1
where H = X(XTX> XT is called the hat matrix. The vector of residuals can be written in matrix form as
e=y—y =y—Hy =(I-H)y = (I-H)e
then the residuals e=(e ,e,,....e, )T have the multivariate normal distribution since

Var(e) = Var[(1— H)e] = (I—H)Var(e)I—H)' =0 (I—H)

where Var(e)=0 Land I-H is symmetric and idempotent.

This leads to residuals which follow the normal distribution N(O,GZ(I —H)) . Therefore, the regression
residuals are neither independent nor homoscedastic because the covariance matrix 0‘2 (I—H) is not a diagonal
matrix. The variance of the k" residual is Var(ek )=0 ? (1- h, ) where h  is the K" diagonal element of the hat matrix

. 2, . .
fork =1,...,n. The unknown error variance O is assumed to be estimated by the mean residual sum of
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squaresS_ = . Note that the studentized residuals can be defined as 1, =

n—p-1 S \/1—h

e
which replaces the standardized residuals —- .
S

€
As known in general statistical textbooks, one of the major assumptions of the linear regression model which we
have concerned is the normality of random errors (€). Our objective is to test normality of the error vector with the

hypothesis
H :en N(0,0°T).

However, € is unobservable data, the residuals e will be the estimator of € to construct the tests on normality.

Basically, there are two types of procedures for assessing whether a population has a normal distribution based
on a random sample. One of them is the graphical tests (e.g., normal probability plots) and the other is non-graphical tests
(e.g., the Anderson-Darling and Shapiro-Wilk tests). The normal probability plot is a graphical technique for assessing
whether or not a data set is approximately normally distributed. The data are plotted against a theoretical normal
distribution in such a way that the points should form an approximate straight line. Specifically, the normal probability
plot of the residuals is a simple graphical method to detect the normality assumption in linear regression if and only if the
n points of residuals fall close to a straight line, the random errors are claimed to be normally distributed. As concerned,
the graphical tests are more intuitive and more easily interpretable than non-graphical ones. However, the drawback is that
different people can make different interpretations of the plots. Thus, graphical tests are usually regarded as informal
techniques because the conclusions arrived at may be influenced by the subjectivity of users.

In methodology section, the construction of graphical tests on normal probability plot are developed to provide
the 1—Qu simultaneous probability intervals for the residuals as objective judgement. Then, we compare the powers of
graphical tests on normal probability plot and non-graphical tests to identify the tests shown in results and discussion

section. Finally, the conclusion of this research is presented in the subsequent section.

Methodology

T . . . . .
Let e=(e],e2,...,en) be the vector of residuals from a normal error in linear regression with

e~ N(0,0 2(I—H)) and e, < <e be the residual arranged in ascending order. In addition, the unknown error

n

. 2, .
variance O is estimated by S, = as before.

n—p—1

Normal probability plot for residuals consists of the n points (z ), k=1,...,n. There are several ways to

%

choose the reference values z . Denote that ®(-) is the cumulative distribution function of the standard normal

distribution and (I)_l (*) is the inverse function of ®(+). One can be used a set of plotting positions 0 < p, <..<p, <l,

that is, (I)(Zk )=p, for k=1,...,n. According to [1], plotting position proposed by Blom (1958) is most suitable in the
k—0.375

normal distribution. Thus, through this research we will use p, =———— for k=1,...,n as plotting positions [2].
n+0.25
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We introduced two graphical tests considered in this article as follows:

1. The first test on normal probability plot based on Kolmogorov-Smirnov (1933) statistic [3] is

e k—0.375
D = max |® —

isken | |S \J1—h n+0.25

Let ¢ be a critical constant so that P {D <c, }: I -« underH . The probability statement P {D <cy } =1—a can

be rewritten as

l-a= P{D < CD}
@(e[k]/sem>7<(k70.375)/(n+0.25))

= P4 max <c,
1<k<n

:P{e[k] €S afl—h D (((k0.375)/(n+0.25))j:c[)) for k=1,...,n }

Therefore, the simultaneous intervals of € for k=1,...,n is given by

S./l—h, P (((k ~0375)/(n +0.25)>i cD) :

2. The second test on normal probability plot constructed based on Michael [4] is

2
D_ = max —arcsin
P 1<k<n ’]T

2
— —arcsin

Let ¢ | be a critical constant so that P{DSp <csp}:1—oc under H . The 1—-Q simultaneous probability intervals

associated with the probability statement P {Dsp <c, } =1— can be rewritten as
l1-ax=P {D <c }
sp sp

2
= P4 max | —arcsin

1<k<n ’T(

Therefore, the simultaneous intervals of € for k=1,...,n is given by

—1 2 T
S.A/1-h, 0} sin arcsin\/((k70.375)/(n+0.25) :I:—cSp
2

In power comparison, we include the Anderson-Darling [ 5] and Shapiro-Wilk [5] tests as the non-graphical

based tests. That is, the Anderson-Darling statistic is
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—n

1 n
AD = ——[Z(2k - 1){ln Z +In(-Z _ . )}

n Lk=t

Crg
S ./1—-h

e kk

wherez, = P . The critical constant ¢, = which corresponding to P {AD <c,, }= I—Q canbe

determined by simulation as the critical constant ¢ .

The Shapiro-Wilk statistic is
2 2
n e

n e
SW = Z a, (k] Z (k]
k=1 S /]—hkk k=1 S_4/1—h
where a _are coefficients tabulated by Shapiro and Wilk. The critical constant ¢ which corresponding to
P{SW <Cgy } = 1—Q can be determined by simulation as the critical constantc | .

To compute power results among graphical and non-graphical tests when standardized and studentized residuals

are applied for linear regression with one explanatory variable, 10,000 simulations are used. Similarly, the ET b .,z—:: are
drawn from the given distribution. Note that |1 is the mean of the given distribution as shown in the next section. Then the
error vector is € = (ET — M, .,E: — W) . The residual vector can be computed by e =(I—H)€ applying to test e . The
proportion of times that H  is rejected taking as the power of the test when compare with critical values in [6].

In our simulation study, we use ¢ =0.05 and the two different forms of design matrix X which are presented by
[6]. For the symmetrical design matrix ( say Design 1), we generate the first % observations of column vector for
explanatory variable in X are set to be -1 and the remaining % observations are set equal to 1. Conversely, for the
asymmetrical design matrix (say Design 2) the first observation is set equal to -1 and the remaining observations are set
equal to 1.

Group I of the given distributions is asymmetric on the support (0,c0) including Xlz , exponential(0,1) and

Xi . Group II of three distributions is on interval (0,1) and includes uniform(0,1), beta(1,2) and beta(2,2). In addition,
Group III of distributions are symmetric on the support (—oco,oc) consisting of t(1),t(3) and t(6) .

In practice, the 1—Qu simultaneous probability intervals can then be used to test H  based on corresponding
graphical tests in the following procedure:
1. Choose a significance level (v and the graphical test.
2. Calculate the critical constant which depends on (x , sample size n and the number of simulation.

3. Sort e, ’s in ascending order e | <...< € and plot (Q)_] (pk ),e[k]), k=1,...,n. This step produces normal

[
probability plot.

4. For each k, plot the vertical intervals corresponding to O based on the graphical test considered for
k=1,...,n.

5. Join the upper bounds and the lower bounds of all n vertical intervals from step 4 which becomes the bands.

6. Reject the null hypothesis H atlevel o if at least one point (Q)_] (pk ),e[k] ), k=1,...,n falls outside the bands.
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Results and Discussion

From the power comparison among all alternative distributions in Group I, IT and III given in Table 1 and 2, the
following observations can be made as follows:

For overall results of power comparison in Table 1, D test performs quite badly in comparison with the other
tests but the performance of D test seems better on other situations (especially Group III). The reason is because the
characteristics of X is choose as in Methodology section. In General, SW test gives highest power among all tests for
Group I, but it performs as good as AD test based on distributions in Group II and III. Although the D, test is not the best

test for all cases, it still gives higher powers than the D test in almost all cases.

Table 1 Power comparison among D, D_, AD and SW tests where X comes from Design 1

sp?

Distributions n D D, AD SW
2 8 22,94 2328 31.52 35.04

X
12 4753 49.13 56.68 60.11
24 86.14 93.41 94.08 95.79
48 99.68 99.98 99.95 99.97
60 99.97 100 100 100
exponential(0,1) 8 13.75 13.71 17.13 20.15

9

12 27.50 27.52 35.36 38.74
24 59.99 7331 76.12 81.10
48 92.43 99.09 98.57 99.41
60 97.29 99.92 99.70 99.94
2 8 8.71 8.53 10.42 11.86

X4
12 1535 15.29 19.92 2238
24 33.86 41.40 46.90 54.09
48 64.23 86.67 83.98 90.71
36 75.97 95.12 92.40 96.51
uniform(0,1) 8 6.60 7.16 7.24 7.40

2
12 8.27 8.82 8.90 7.84
24 12.50 1431 19.70 18.84
48 26.88 39.39 51.56 59.26
60 34.45 56.37 65.34 75.45
beta(1,2) 8 7.22 727 8.13 8.40
bl
12 10.34 1024 11.89 11.79
24 2022 24.17 27.78 29.06
48 4327 7321 63.93 71.06
60 54.84 88.83 78.82 86.05
beta(2.2) 8 4.99 5.11 521 521
bl

12 5.63 5.45 5.69 471
24 631 5.96 721 5.66
48 9.10 9.06 13.46 12.34
60 10.55 12.38 16.59 17.11
(1) 8 24.98 26.68 3235 3591
12 48.41 51.85 55.10 57.52
24 83.41 86.53 88.78 88.86
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Distributions n D Dsp AD SW
48 98.69 98.93 99.50 99.41
60 99.56 99.63 99.87 99.86
{(3) 8 6.72 7.04 7.85 8.11
12 12.48 13.78 15.76 12.77
24 23.52 28.67 3178 26.11
48 4334 50.00 56.42 44.52
60 49.85 55.73 63.52 51.62
16) 8 5.48 543 5.66 6.14
12 6.61 6.90 8.24 9.17
24 9.32 12.08 13.17 16.59
48 13.36 18.03 20.18 26.73
60 15.70 20.45 23.49 31.06

Table 2 power comparison among D, Dsp , AD and SW tests where X comes from Design 2

Distributions n D Dsp AD SW
X2 8 25.54 13.83 17.80 15.25
1
12 45.78 37.14 42.04 32.76
24 85.51 86.23 90.73 77.61
48 99.64 99.99 99.97 99.40
60 100 100 100 99.91
exponential(0,1) 8 14.69 6.82 8.32 631
12 26.64 19.57 20.62 1457
24 58.96 55.69 60.36 40.20
48 91.51 95.15 96.79 82.21
60 97.08 99.37 99.37 93.50
2 8 9.65 476 524 3.76
X4
12 16.17 10.55 10.10 627
24 32.73 28.47 28.18 14.58
48 64.72 61.04 70.70 37.80
36 75.93 76.22 84.63 52.22
uniform(0,1) 8 6.26 3.50 4.98 4.07
2
12 6.74 424 543 2.79
24 10.58 10.97 9.77 0.95
48 23.22 33.98 33.80 112
60 31.89 50.75 49.98 2.20
beta(1,2) 8 7.59 326 3.97 35
>
12 9.11 5.58 459 4.82
24 18.30 14.49 10.93 1438
48 40.48 31.82 41.14 40.13
60 51.86 45.65 58.19 56.80
beta(2,2) 8 525 3.94 447 420
>
12 4.40 333 330 3.60
24 5.80 4.95 3.70 4.03
48 7.44 6.93 6.4 6.10
60 9.95 9.45 9.91 9.87
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Distributions n D Dsp AD SW
(1) 8 29.01 32.09 34,01 32.50
12 54.44 59.44 60.32 56.61

24 86.59 88.50 90.87 87.40

48 99.10 99.03 99.69 99.14

60 99.76 99.80 99.93 99.84

{(3) 8 8.75 11.83 10.88 8.76
12 13.86 18.93 18.39 13.64

24 26.13 31.26 34.62 26.16

48 45.44 52.65 59.98 43.10

60 54.14 62.24 69.47 50.63

£(6) 8 6.55 7.71 6.76 6.88
12 7.59 10.00 932 10.14

24 9.98 12.75 14.61 16.98

48 14.20 20.20 23.28 26.24

60 17.34 24.64 28.01 31.66

For the conclusion made by Table 2, It is very interestingly that there is a slight difference among D_. AD and

SW tests in several cases. Obviously, the D test performs well in X12 , exponential(0,1), Xi and beta(2,2). The D_ test
shows impressive powers for the rest even though it is a graphical test.

Montgomery [7] studied on the rocket propellant and the authors suspected whether the shear strength is related
to the age in weeks of the batch of sustainer propellant or not. The twenty observations on shear strength and the age of
the corresponding batch of propellant have been collected when shear strength is a dependent variable and age of
propellant (weeks) is an explanatory variable in simple linear regression. To estimate the model parameter, least squares
method is applicable to obtain the least squares equation as y — 2627.82 —37.15x .

Now, we will apply the procedure of 1—Q simultaneous probability intervals in the methodology section to
produce the vertical intervals for each residual. The objective judgement on normal probability plot is that if at least one
point ((D_] (p, ),e[k]), k=1,...,n in the normal probability plot is not included in the corresponding vertical interval,
ones can claim that H  is not supported by the observed data.

To draw the conclusion that the random errors follow normal assumption by Figure 1, all residuals must lie
within the corresponding intervals. The top panel of Figure 1 shows that each residual e, k=1,...,n. falls inside the
corresponding vertical interval based on the D test. Hence, the inference is that the random errors are normally distributed
under the D test. However, from the bottom panel of Figure 1, ¢, = —213.6 does not lie inside the corresponding
interval ( —204.9496, — 72.5683). Thus, we can draw the conclusion that the errors do not follow a normal distribution
based on the D_ test. Additionally, by the statistical software, we also make a conclusion that the null hypothesis H | is

rejected at O =0.05 under AD and SW tests.
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Figure 1 Simultaneous intervals for testing normality of residuals based on rocket

propellant data for graphical based D and DSp tests at . =0.05

Conclusion
Based on the investigations set out in the previous sections, the SW and AD tests are non-graphical tests, they
may not be more powerful than the graphical tests. In general, the DSp test, which is effectively graphical test for
normality based on residuals in linear regression, is good enough to detect normality on residuals as shown in above
figure similar to the SW and AD tests. Therefore, the graphical test on normal probability plot becomes a useful tool for

practitioners who look for the objective judgement on the normal probability plot.
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