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Abstract: This work has studied CO, decomposition through the
dielectric barrier discharge (DBD). The configuration of the DBD reactor
was performed as a coaxial DBD tube. The dielectric barrier was made of
a quartz tube with 1 mm thickness, while an outer electrode was made of
a copper flat sheet wrapping around a quartz tube. The coaxial axis was

Citation:
Rattanarojanakul, N.;
Srikhongrak, S.; Nuleg,
W.; Tirawanichakul, Y.
CO: decomposition using
the coaxial dielectric
barrier discharge: effect

made of stainless steel rod to be an inner electrode. The power source was
applied by the alternative current (AC) high voltage with 7.8 kHz of
frequency to both electrodes of the plasma reactor. The experiment was

. conducted on various conditions such as a mixed gas ratio, discharge gap,
of additive gas and & ge gap

double outer electrodes.
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applied voltage, outer electrode length, two outer electrodes, and gas flow
rate. The results showed that CO, conversion was decreased when CO,
concentration increased. Similarly, the increase of gas flow rate also
caused the decrease of CO, conversion. Whilst the increase of an applied
voltage causes the CO, conversion clearly increased. Similarly, the CO»:Ar
ratio of 60%:40% achieved 30% of CO, conversion. Furthermore, the high
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’ The dielectric barrier discharges (DBDs) are well-known for the
Publisher’s Note: generation of ionized gases and have been employed for several

applications such as greenhouse gas decomposition, gas conversion,
pollution control, ozone synthesis, excimer laser, material, and film
surface modifications, etc. CO, gas is a part of greenhouse gases and has
been attracting to the global warming and climate change on the earth,
which can be more emitted from the transportations, burning of all fossil
fuels, and also had presented in the natural gas and biogas [1-3]. However
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CO; gas is one of the additive gases in the process of methane conversion into hydrocarbon gases [4-8].
The chemical bond of CO; is very strong and hard to be dissociated. To break the bond of C-O, the
temperature has to be used at least at 1,500 °C for the thermolysis process, resulting in the huge power
consumption. However, plasma technologies have been adopted to avoid the use of such high
temperatures. Many geometries were configured for plasma-assisted reforming such as an arc
discharge, glow discharge, corona discharge, dielectric barrier discharge (DBD), radio frequency (RF)
discharge, etc. [9-18]. The reactions of plasma chemistry for CO, decomposition can be seen in Eq. 1 and
Eq. 2, after the process of CO, decomposition, this CO; is converted into CO and O, 2. Similarly, Eq. 1
and Eq. 2 confirm that CO and O; are the main product, where AH is the enthalpy of the reaction.
However, O; can be formed by the recombination of O radicals, and similarly, CO, also has been
reformed by the recombination of CO with O radicals and O, with C radicals [9, 22]. CO gas product is
utilized for hydrocarbon fuel synthesis (e.g. methanol, ethanol, and acetic acid synthesis) and the
mineral and metal industries (e.g. smelting and refining processing).

€O, = CO+50,,AH = 2.9 eV 1)
CO, - CO + 0,AH = 5.5 eV )

Furthermore, it can be considered in the unit of Joule 23.
CO, — CO + 0,AH = 529.8 kJ/mol 3)

The DBD plasmas have been utilized for a long time for surface modifications, gas treatment,
chemical synthesis, etc. The characteristic of DBDs can initiate plasma reactions in low energy
consumption and low temperature in the atmosphere. Whilst gas temperature can remain low, the
electron temperature is high. These electrons have high energy in the range of 1-10 eV, in which it has
enough energy to break the chemical bonds of gas molecules directly [9, 11, 24-28].

COs conversion using a DBD reactor was operated under various conditions such as gas flow
rate, gas temperature, power frequency, and power input [29]. The previous results indicated that the
increase of input power and gas temperature could raise the conversion rate, while the increase of flow
rate caused the conversion to decrease. In support, Indarto, A. et al. [9] had reported the review article
for greenhouse gas and toxic gas decompositions via plasma technologies. In summary, they suggested
that the advantage process should be the combined or new alternative process. In addition, other reports
[9, 12, 14, 21] have also suggested and presented that noble gas (such as He, Ar, Kr, xe) contained in gas
feeding or placing a solid catalyst in plasma zone can raise the rate of the gas conversion and product yield.

Furthermore, CO, was utilized in the process of CH4 reforming to produce hydrogen and
hydrocarbon fuels. A recent article from Tao, X. et al. [8] has reported the reviewed article for the
opportunity of CH4-CO, reforming in different methods and processes. They have suggested that it is
included by three factors to achieve high performance, there are reactor configuration, electron density,
and plasma temperature. These factors caused the high plasma and electron densities to elevate the gas
dissociation and produce more ions and neutron species.

This work represented CO, decomposition via the coaxial DBD applying by AC high voltage
with high frequency under several conditions such as CO, mixed with Ar to increase an electron density
[12, 14, 21], applied voltage, gas flow rate, discharge gap and discharge volume (length of outer electrode
and outer electrode numbers). Which was operated in the atmosphere and the room temperature.

2. Materials and Methods

2.1. Experimental configuration
The experimental diagram is represented in Figure 1 consisting of CO, and Ar gas tanks, gas
regulator, valve, flow meter, mixer unit, needle valve, coaxial DBD reactor, bubble flow meter, high
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voltage power source, resistor (Rimit = 1.5 k(}), measuring capacitor (C,=10 nF), high voltage (HV) probe
(Tektronix, P6015A), voltage probe, Oscilloscope (Tektronix, TDS3014B) and Gas analyzer (Geotech,
Biogas Check). Coaxial DBD reactor was fabricated from quartz tube, Teflon insulator, Aluminum flat
sheet, and stainless steel rod. A quartz tube with a thickness of 1 mm and an inner diameter of 12 mm
was provided for a chamber. Teflon insulator is used for closing both sides of a quartz tube and fixing
the inner electrode in the middle of a quartz tube. An aluminum flat sheet is wrapped around a quartz
tube to set as an outer electrode, while stainless steel rod is placed inside of a quartz tube to be an inner
electrode. Especially, Figure 2 has been illustrated the different installations for one outer electrode (A),
two outer electrodes to increase the discharge volume (B), and the cross-section of the reactor (C).

Valve
Mixer
Needle valve
Flow meter Gas
7 regulator
HV probe
Co,
Flow meter
Valve
@ Flow meter Gas
i regulator
High voltage DBD
reactor
ishee Bubble Ar

flow meter

-——

Ground

Gas analyzer

Figure 1. Experimental diagram and setup.

Outer electrode
Inner electrode

© 17

(A)

Dielectric barrier

Discharge gap

Figure 2. Reactor configuration for one outer electrode (A), two outer electrodes (B), and the cross-
section of the reactor (C).

2.2. Operating and Measurement Methods

The concentration of CO; gas before and after the reaction process through the coaxial DBD
reactor was investigated by a Gas analyzer instrument (Geotech, Biogas Check), this instrument consists
of a gas detector for CHs, CO,, Oz, and H:S. Inlet gas flow was controlled and measured by a needle
valve and flow meter, respectively, while outlet gas flow was measured by the bubble flow meter. The



ASEAN |. Sci. Tech. Report. 2022, 25(1)50-59.

53

applied voltage used for plasma generation is measured by the HV probe. Furthermore, charge transfer
can be measured from the voltage across Cnn by using a voltage probe. These parameters of applied
voltage and charge transfer were utilized to calculate the power consumption by Q-U Lissajous plotting
[30].

2.3. Analysis and Calculation Methods

The results will be analyzed such as CO, conversion (Xcony), O: selectivity (Oi), power
consumption, and conversion efficiency to propose the performance for the system of CO, decomposition.
The formulas for gas analysis are rewritten from Danhua, M. et al. [24] and Paulusen, S. et al. [29]as
shown in the following equation.

CO; converted (mol)

Xconv (%) = x 100 4)

CO3 input (mol)

_ 03 product (mol)
05 (%) = €O, converted (mol) X100 ®)
Whilst Oz selectivity (Oa) was calculated by Eq.5 because this O, molecule reformed from CO;
dissociation. In the case of power consumption (Pg) and the conversion efficiency (n¢ony), it can be
adopted from Wang, S. et al. [10] and Phuengkum, N. et al. [30] as shown below.

T
Py (W) = f- Cy f, Usduc (6)
CO3 conversion (%
Nean (0/ W) = Eose5pueion %

In Eq. 6, parameters were included the power source frequency (f = 7.8 kHz), measuring
capacitor (C= 10 nF), applied voltage (U;) and voltage across Cn (uc).

3.Results and Discussion
3.1. Effect of CO: concentrations
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Figure 3. Effect of CO; diluted in Ar on CO; conversion and O; selectivity.

COs gas was diluted by Ar gas, the percentage of CO, concentration was varied from 60% to
90%. The operating condition consists of 50 ml/min of gas flow rate, 1.30 mm of discharge gap, 8 cm of
outer electrode length, and applied voltage was 8 kV. The result is shown in Figure 3, it has indicated
that the increase of CO, concentration causes CO, conversion to decrease. On the other hand, O,
selectivity which is the gas product has higher increased at 80% of CO; concentration.
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3.2. Effect of outer electrode length and applied voltage
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Figure 4. Effect of outer electrode length and applied voltage on CO; conversion and Os selectivity at
1.3 mm of discharge gap.
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Figure 5. Effect of outer electrode length and applied voltage on CO; conversion and Os selectivity at
2.8 mm of discharge gap.

The experimental condition was conducted by 80 ml/min of gas flow rate and 60%:40% of
CO2:Ar ratio. These conditions have operated on two discharge gaps; there are 1.3 mm (Figure 4) and
2.8 mm (Figure 5), respectively. Figure 4 shows that the highest conversion of CO: can be achieved from
the longest outer electrode. When the discharge gap is considered, 1.3 mm of discharge gap can raise
CO; conversion higher than 15% for 8 cm and 10 cm of outer electrode lengths. In contrast, when the
discharge gap was set at 2.8 mm (in Figure 5), the result has represented that it cannot raise CO;
conversion to 15% for all of the outer electrode lengths. However, Figure 4 had been shown that 10 cm
of outer electrode length can achieve higher CO, conversion than all of it. Whilst O, product was
considered in terms of O, selectivity, Figure 4 and Figure 5 have indicated that O selectivity was slightly
changed after 5 kV of applied voltage. Indeed, it was implied that the high conversion of CO; can’t raise
the O, selectivity directly. As the gas product of CO; plasma consists of CO, O, and O;, when O
selectivity was decreased it seems that the O3 product might be increased. Because the O3 forming can
become from the recombination of O, molecules with O radicals.
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3.3. Effect of discharge gap and plasma volume

The discharge gap is varied as 0.4 mm, 1.3 mm, and 2.8 mm, the length of the outer electrode
was 8 cm, gas flow rate and CO,:Ar ratio were 50 ml/min and 80%:20%, respectively. The free space
between one outer electrode and another outer electrode was 8 cm as shown in Figure 2B to configure
the two outer electrodes to increase the plasma volume. the result In Figure 6 has obviously indicated
that the highest conversion of CO; can be obtained from the two outer electrodes with 1.3 mm of
discharge gap (1.3 mm, 20E). For O, selectivity, the result in Figure 7 has shown that O, selectivity from
the 1.3 mm discharge gap with two outer electrodes (1.3 mm, 20E) and 0.4 mm discharge gap has
downward trended, while CO, conversion was increasing. However, the result in Figure 6 and Figure 7
have represented that the highest conversion of CO, and lowest O, selectivity can be achieved from a
1.3 mm discharge gap with two outer electrodes.
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Figure 6. Effect of discharge gap and two outer electrodes (1.3 mm, 2 OE) on CO; conversion.
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Figure 7. Effect of discharge gap and two outer electrodes (1.3 mm, 2 OE) on O, selectivity.
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3.4. Effect of feeding flow rate
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Figure 8. Effect of gas flow rate and applied voltage on CO, conversion and O; selectivity.

The experiment was conducted through the condition of 1.3 mm discharge gap, 60%:40% of
CO2:Ar ratio, 10 cm of outer electrode length. Whilst the feeding flow rate is varied from 40 ml/min to
80 ml/min. The result is shown in Figure 8, it has clearly present that the high flow rate causes the
conversion CO; to decrease, while the low flow rate raises the percentage of CO, conversion. The highest
conversion of CO, was obtained at 40 ml/min and gradually increased with increasing applied voltage.

3.5. Power consumption and conversion efficiency

The results were computed by Eq. 6 and Eq. 7 and have represented in Figure 9 and Figure 10
for the power consumption and conversion efficiency, respectively. In Figure 9, the results have shown
that increasing of applied voltage causes the power consumption to increase for all conditions, while
igure 10 has been showing the conversion efficiency was decreased when an applied voltage increased.
However, the result has indicated that the high efficiency of CO, conversion can be achieved at a 1.3
mm discharge gap and 1.3 mm discharge gap with two outer electrodes. In contrast, the 2.8 mm
discharge gap has shown a negative result of the power consumption and the conversion efficiency,
there is high power consumption and low conversion efficiency.
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Figure 10. Conversion efficiency versus applied voltage for each discharge gap.

4. Conclusions

In summary, this work obviously exhibited that the use of the longest outer electrode at 10 cm
and two outer electrodes with a 1.3 mm discharge gap could improve the performance of the coaxial
DBD reactor and enhance the percentage of CO, conversion. In similarity, the increased applied voltage,
low flow rate of gas feeding, and low CO, concentration can also raise the CO; conversion. It is clear that
the highest percentage of CO, conversion was achieved at a 1.3 mm discharge gap with two outer
electrodes, while its conversion efficiency was found to be lower than that of one outer electrode. In
addition, this work can elevate the CO, conversion up to 47.2% at 10 cm of outer electrode length with
a 1.3 mm discharge gap and 60%: 40% of the CO»:Ar ratio with 40 ml/min of gas flow rate.
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