

 Research article

ASEAN J. Sci. Tech. Report. 2022, 25(3), 25-33 https://doi.org/10.55164/ajstr.v25i3.247183

Improving Cluster-Based Index Structure for

Approximate Nearest Neighbor Graph Search

by Deep Learning-Based Hill-Climbing
Munlika Rattaphun1, Amorntip Prayoonwong2*, Chih-Yi Chiu3,

and Kritaphat Songsri-in4

1 Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, 80280, Thailand;

munlika_rat@nstru.ac.th
2 Faculty of Science and Technology, Suratthani Rajabhat University, 84100, Thailand;

aprayoonwong@gmail.com
3 Department of Computer Science and Information Engineering, National Chiayi University,

Taiwan; cychiu@mail.ncyu.edu.tw
4 Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, 80280, Thailand;

kritaphat_son@nstru.ac.th

* Correspondence: E-mail: aprayoonwong@gmail.com

Abstract: This study presents a novel approach to archive an excellent tradeoff

between search accuracy and computation cost in approximate nearest neighbor

search. Usually, the k-nearest neighbor (kNN) graph and hill-climbing algorithm

are adopted to accelerate the search process. However, using random seeds in

the original hill-climbing is inefficient as they initiate an unsuitable search with

inappropriate sources. Instead, we propose a neural network model to generate

high-quality seeds that can boost query assignment efficiency. We evaluated the

experiment on the benchmarks of SIFT1M and GIST1M datasets and showed the

proposed seed prediction model effectively improves the search performance.

Keywords: Inverted indexing; Nearest Neighbor Search; Nearest Neighbor Graph;

Hill-climbing; Neural network;

1. Introduction
The nearest neighbor (NN) search technique is widely applied in

numerous fields, including computer vision, pattern recognition, signal

processing, information retrieval, recommender systems, and so on [1-2].

Typically, the feature of each object of interest (such as an image) is represented

in a high-dimensional space. A distance function is used to calculate distances

between all data points and a given query. The NN is the data point with the

smallest distance to the given query. When the number of data points and the

number of data dimensions increase, an exhaustive search becomes impractical

due to the expensive computation cost. To accomplish this task, numerous

approximate nearest neighbor (ANN) [3-9] search methods are proposed to

address the tradeoff between speed and accuracy.

The graph-based method is one of the most popular approaches to

addressing the ANN search problem. The basic idea is that a neighbor of a

neighbor is also likely to be a neighbor [5]. Most graph-based methods are based

on constructing the k-nearest neighbor graph (kNN graph), built in the offline

phase. A straightforward way to create the kNN graph is an exhaustive comparison

Citation:

Rattaphun, M.;

Prayoonwong, A.; Chiu,

C.Y., Songsri-in, K. Title.

ASEAN J. Sci. Tech. Report.

2022, 25(3), 25-33. https://

doi.org/10.55164/ajstr.v25i3.

247183.

Article history:

Received: August 3, 2022

Revised: September 20, 2022

Accepted: September 21,

2022

Available online: September

28, 2022

Publisher’s Note:

This article is published and

distributed under the terms

of the Thaksin University.

https://doi.org/10.55164
https://doi.org/10.55164

ASEAN J. Sci. Tech. Report. 2022, 25(3), 25-33 2 of 9

between each pair of vectors. Then, the top-k nearest neighbors for each reference vector are selected to be the

connected node in the kNN graph. When the query is given, the search process is started by traversing the

chart to find the NN candidates.

Two main challenges are considered to improve the graph-based index structure performance: (1)

how to effectively generate the kNN graph and (2) how to traverse the kNN graph to find the NN candidates

efficiently. The first challenge focuses on reducing the computation cost of constructing the kNN graph. It can

be addressed using an approximate kNN graph [5] [10-11]. In this paper, we focus on the second challenge.

One popular method is the hill-climbing algorithm [12-13] which utilizes the kNN graph for ANN search. It

generates multiple random seeds to traverse the kNN graph and takes several iterations to refine the traverse

result. However, random seeds are easily trapped in local optima and frequently visit unlikely NN candidates.

To address the problem and speed up the process, Zhao et al. [12] proposed using inverted indexing in the

residual vector space and applying cascaded pruning to avoid redundant candidates. Still, it may take a long

time to converge. We thus propose an index method that employs the kNN graph to accelerate the search

process. The contributions of the proposed method are emphasized as follows:

• We propose to modify the hill-climbing algorithm with a novel seed generation method.

Instead of using random seeds in the original hill-climbing algorithm, we generate high-quality

seeds based on a neural network.

• The proposed model learns the relation between query features and clusters in the kNN graph,

which can estimate the cluster probabilities for a given query and provides a better way to

select the initial seed without constructing an extra index table.

• We evaluated the experiment on the benchmarks of SIFT1M and GIST1M datasets and

showed the proposed methods effectively improve the search performance.

The remainder of this paper is organized as follows. Section 2 presents a brief review of the NN search

related to the kNN graph and hill-climbing algorithm. Section 3 offers the detail of the proposed method. We

demonstrate some experimental results in section 4 and give the conclusion in Section 5.

2. Related Works
To improve index structure for better performance of ANN search, we are interested in the collaboration

of the following three techniques: k-nearest neighbor graph (kNN graph), hill-climbing algorithm, and

inverted file-based (or inverted index) method. The detail of each process are summarized as follows:

The kNN graph is a graph-based index structure widely used for ANN search. A graph structure is

added to the index structure to make the search more efficient. To avoid exhaustive search and decrease the

computation cost in ANN search tasks, the kNN graph construction process can be performed in the offline

phase. The kNN graph is a directed graph defined for a set of N points in a metric space. The chart has a vertex

for each data point, in which two vertices are connected by an edge whenever. The distance between those

two vertices is among the 𝑘𝑡ℎ smallest distances. An exhaustive comparison between each pair of vectors is

performed until the top k nearest neighbors are selected for each reference vector to generate a kNN graph.

The computation complexity is about 𝑂(𝐷𝑁)2, where D is the number of data dimensions and N is the number

of data points [14]. Over the years, many researchers have applied and developed graph structures to increase

the performance of ANN search in many forms. Zhang et al., 2013 [10] and Wang et al., 2012 [15] both

constructed the kNN graph by randomly partitioning their samples into a small number of subsets with

different technical details. [15] used the hierarchical random projections technique while [10] exploited the

locality-sensitive hash functions. Combining the neighborhood graph with a bridge graph yields superior

performance over large-scale datasets [16]. Two more popular graph-based index structure techniques are

deployed to speed up searches: HNSW [8] and NSG [17]. HNSW is a hierarchical multi-level proximity graph

that enables hopping with multi-scales on different graph layers. NSG intends to reduce the density of the

graph edges while the search performance remains accurate.

The hill-climbing algorithm [12-13] is a mathematical optimization algorithm that often utilizes the

kNN graphs for ANN search to find the best solution together with various possible solutions. The hill-

climbing algorithm is a local search algorithm with the following working principles. First, it tries to find the

best solution to the given problem by starting with a random seed (node or solution). It then evaluates the

neighbor nodes. If the best of those neighbor nodes is better than the current node, it replaces the current

ASEAN J. Sci. Tech. Report. 2022, 25(3), 25-33 3 of 9

solution with this better solution. It subsequently continues to move in the direction of elevation or increasing

values to find the peak of the local mountain or the best solution. The algorithm terminates when it reaches a

peak value where no neighbor has a higher value. By starting to traverse the kNN graphs from a random seed

and applying the abovementioned working principles, there is no guarantee that the best solution will always

be found. It is easy for the algorithm to trap in a local maximum. Many researchers have proposed several

approaches to address that problem in terms of speed and optimized values. For example, [12] used the

combination of the inverted indexing in residual vector space and cascaded pruning to speed up the search

by avoiding redundant candidates. [14] avoided using the random seed by incorporating new hash-based

methods for seed generation: LSH [18] and ITQ [19]. These principles have been applied to generate higher

quality seeds, which lead to increased accuracy and a lower computation cost.

The inverted file-based (or inverted index) method is another popular framework in multimedia

retrieval. In text retrieval, an inverted index is used as a vocabulary of words, where each word has a list of

the associated documents that contain this word. For image retrieval, the inverted index is used to store the

codewords from the quantization process, and each codeword has a list of all vectors belonging to these

codewords. The non-exhaustive search performs by checking only items in the codeword list. The inverted

file-based method can be operated on the billion-scale dataset to avoid the exhaustive search and achieve good

recall and speed in many works [20-22]. For instance, the inverted multi-index (IMI) [21] built a multi-

dimensional index table, which is the Cartesian product of codebooks. IMI showed better accuracy without

increasing the query time. The jointly inverted indexing [22] is a method that generates multiple quantizers

and jointly optimizes all the codewords instead of computing the multiple quantizers independently. IVFADC

[3] showed that the combination of inverted indexing with Product Quantization (PQ) [3-4] and Asymmetric

Distance Computation (ADC) could handle billion-scale datasets efficiently.

In the past years, the learned index structure employed by machine learning techniques has been used

in place of the existing index structure in many studies. For example, [23] proposed a combination of

supervised classification and graph partitioning to build better-balanced graph partitioning. [9] presented the

learned index structure by using the nearest neighbor probabilities model that employed neural networks to

characterize the neighborhood relationships, which can rank and find candidate clusters of the given query

effectively. A previous work [14] used the hashing approaches to generate a compact binary code to index the

associated clusters in the inverted index table. When the query is given, the same hashing function is used to

create binary code for each query. The query hash codes and hash code index in the inverted index are then

mapped to retrieve the initial seeds for the hill-climbing algorithm. In this paper, the proposed method also

brings up a higher quality seed generation method by utilizing the learned index structure. We present a novel

method based on a neural network that predicts cluster probabilities. Then, top-R clusters are then selected as

the initial seeds for hill-climbing.

3. Methods

The proposed method consists of two parts. Figure. 1 shows an overview of the proposed method.

First, we construct a kNN graph using a clustering approach integrated with inverted indexing. Second, we

offer a novel seed selection method based on the neural network approach. The model learns the relationship

from the training data to produce the cluster probabilities. Then, the clusters are ranked based on their

possibilities, and the top-R clusters are selected as the initial seeds in the hill-climbing algorithm to find a set

of NN candidates. The details for each part are elaborated in the following subsections.

Figure 1. Overview of the proposed method

ASEAN J. Sci. Tech. Report. 2022, 25(3), 25-33 4 of 9

3.1. Cluster and kNN graph construction

To further reduce the memory space and time complexity of building a kNN graph, we adopt Principal

Component Analysis (PCA) to perform dimensionality reduction.

Given a reference set of data points {𝑥𝑖 ∈ ℝ𝐷|𝑖 = 1,2, … , 𝑁}, where 𝑁 is the number of data points and

𝐷 is the number of data dimensions. First, we applied PCA to reduce the dimensionality of 𝑥𝑖. To d dimensions,

where 𝑑 < 𝐷. The PCA process is done by a linear transformation of 𝑥𝑖 from the original space ℝ𝐷 into a lower

space ℝ𝑑. We first standardize the data by subtracting each 𝑥𝑖 with the mean and dividing it by the standard

deviation of the reference set. Next, a covariance matrix, which is a 𝐷 × 𝐷 symmetric matrix, is computed.

Each element in the covariance matrix reflects the covariance of the corresponding variables. After that, we

can identify the principal components by computing the eigenvectors and eigenvalues of the covariance

matrix. We selected the highest d principal components to construct a projection matrix. Then, each data point

𝑥𝑖 is transformed into a new space with the projection matrix.

After we performed dimensionality reduction, the k-means clustering is adopted to divide the compressed

data space into M clusters, {𝑐𝑗|𝑗 = 1,2, … , 𝑀} where 𝑐𝑗 represents the centroid of the jth cluster. Finally, we construct

the kNN graph by calculating the distance between cluster centroids to find k nearest clusters. So, each cluster is

associated with a list of k nearest centroids. After that, the inverted index is used to store k indexes.

3.2. Hill-climbing seed generation using neural network

The main idea of our approach is to build a model that can estimate cluster probabilities for a given query.

Then, n clusters with the highest probabilities are selected as a set of the initial seed in the hill-climbing algorithm.

Function 𝑍 implicitly models the neighborhood relationships expressed as 𝑍(𝑥𝑖) = {𝑝1, 𝑝2, … , 𝑝𝑚}, which maps a

data point 𝑥𝑖 to the NN probabilities = {𝑝1 , 𝑝2, … , 𝑝𝑀 }, where 𝑝𝑀 represents the NN probability of the mth cluster.

The following training process constructs it. Let 𝑄 = {𝑞(1), 𝑞(2), … , 𝑞(𝑇)} be the training dataset of T queries. The tth

query 𝑞(𝑡) ∈ {ℝ𝑑} is associated with the weighted ground truth of kNNs, denoted as 𝐺(𝑡) = {𝑔(𝑡,1), 𝑔(𝑡,2), … , 𝑔(𝑡,𝐾)}

and 𝑊(𝑡) = {𝑤(𝑡,1), 𝑤(𝑡,2), … , 𝑤(𝑡,𝐾)} where 𝑔(𝑡,𝑘) is the kth NN of 𝑞(𝑡)and the corresponding weight is 𝑤(𝑡,𝑘). In

𝑍(𝑥𝑖), the input 𝑥𝑖 is the query feature representation 𝑞(𝑡). The output, also known as the target, is a vector of NN

probabilities of 𝑀 clusters, denoted as, 𝑌(𝑡) = {𝑦1
(𝑡)

, 𝑦2
(𝑡)

, … , 𝑦𝑀
(𝑡)

 }, where 𝑦𝑀
(𝑡)

 is defined by:

𝑦𝑚
𝑡 =

∑ {𝑤(𝑡,𝑘)|𝑔(𝑡,𝑘) ∈ 𝑐𝑚}𝑘

|𝐺𝑡|
 (1)

where |∙| denote the set cardinality.

We characterized 𝑍 by a fully-connected neural network to learn the neighborhood relationships from

the training data {𝑥𝑡 , 𝑦𝑡|𝑡 = 1,2, … , 𝑇}. The input layer receives 𝑥(𝑡) and the output layer predicts NN

probabilities for M clusters, denoted as 𝑝(𝑡) = {𝑝1
(𝑡)

, 𝑝2
(𝑡)

, … , 𝑝𝑀
(𝑡)

}. Based on the cross-entropy loss between the

predictions 𝑝(𝑡) and the target 𝑦(𝑡), we computed the error derivative concerning the output of each unit, which

is propagated backward to each layer to tune the weights of the neural network. The proposed seed prediction

model is shown in Figure 2.

Given a query 𝑞, by using the learned mapping function 𝑍, the model can predict the NN probability

among clusters. We then rank these clusters based on their likelihood in descending order to return the top-R

cluster used as the initial seed in the hill-climbing algorithm.

ASEAN J. Sci. Tech. Report. 2022, 25(3), 25-33 5 of 9

Figure 2. The seed prediction network

4. Experimental results

We performed experiments to evaluate the proposed method on the SIFT1M and GIST1M datasets of

BIGANN. Each contains one million SIFT, GIST, and 10,000 and 1,000 query vectors, respectively. Each query

is provided with the first 100 nearest neighbors of ground truth with the smallest Euclidean distances. The

properties of the two datasets are summarized in Table 1. We applied PCA to reduce the dimensionality of

SIFT1M from 128 to 32 dimensions and that of GIST1M from 960 to 120 dimensions. Afterward, we used k-means

clustering to generate M clusters where 𝑀 ∈ {256, 1024, 4096}.

Table 1. Summary of SIFT1M and GIST1M datasets

Datasets SIFT1M GISR1M

#data dimensions 128 960

#Reference set 1,000,000 1,000,000

#Training set 20,000 20,000

#Queries set (Test set) 10,000 1,000

#Ground truth set (per query) 100 100

The neural network model is characterized by a three-layer fully connected neural network, including

an input layer, two hidden layers, and an output layer. The input layer receives the query feature as input,

where the number of units equals the dimension of the input vector. The two hidden layers use ReLU as an

activation function, each having an M unit. The output layer also has M units that predict the probability for

M clusters using the softmax activation function. The detail of the configuration is elaborated in Table 2.

Table 2. The configurations of the neural network model with various sizes of the cluster.

The number of units

Activation function
SIFT1M GIST1M

#clusters 256 1024 4096 256 1024 4096 -

Input 32 32 32 128 128 128 -

Hidden 256 1024 4096 256 1024 4096 ReLU

Hidden 256 1024 4096 256 1024 4096 ReLU

Output 256 1024 4096 256 1024 4096 Softmax

ASEAN J. Sci. Tech. Report. 2022, 25(3), 25-33 6 of 9

A training set is generated by randomly selecting 20,000 data points from the reference set to train the

neural network model. We provide 100 NNs of ground truth calculated from Euclidean distance for each training

data point. We set the batch size to 128 and ran 100 epochs for training. The test set consists of 10,000 and 1,000

queries, respectively, provided by the SIFT1M and GIST1M, as shown in Table 1.

We implemented several configurations for the hill-climbing algorithm as follows:

• Exhaustive search. This method uses the Euclidean distances to calculate the distance between

a given query and cluster centroids and select clusters in a particular way so that the hill-

climbing algorithm is not applied here.

• Random seed hill-climbing [12-13]. Initial seeds for hill climbing are generated randomly.

• 8-bit, 10-bit, and 12–bit LSH seed hill-climbing [14]. LSH [18] is used to transform data points

into 8, 10, and 12-bit hash codes.

• 8-bit, 10-bit, and 12-bit ITQ seed hill-climbing [14]. ITQ [19] is used to transform data points

into 8, 10, and 12-bit hash codes.

• DNN seed hill-climbing. This approach uses the proposed neural network model to rank the

cluster according to their probabilities.

Other parameters were set as follows: the number of the neighboring clusters kept in the kNN graph

of a cluster 𝑘 ∈ {20,30}, and the number of seeds for hill-climbing search 𝑠 = {10, 20, 30}. Experiments were

run on a PC using Windows 10, with an Intel Core i7 3.4 GHz CPU and 32 GB of Ram. The program was

implemented in Python.

We use the recall rate to measure the correctness of the NN search. Let 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑇} be a set of

T queries and 𝐺 = {𝑔1, 𝑔2, … , 𝑔𝑇} be the ground truth, where 𝑔𝑡 is the first NN of ground truth for 𝑞𝑡. A recall

is defined as:

𝑟𝑒𝑐𝑎𝑙𝑙 =
1

𝑇
∑ 𝑓(𝑅𝑡),

𝑇

𝑡=1

𝑓(𝑅𝑡) = {
 1 𝑖𝑓 𝑔𝑡 ∈ (𝑅𝑡)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(2)

where 𝑅𝑡 is the retrieved set corresponding to the 𝑞𝑡. In addition, we counted the number of Euclidean

distances calculated between query and cluster centroids to reflect the computation cost for each configuration.

Figures. 3 and 4 show the results under different M in SIFT1M and GIST1M, respectively, where k and s

are fixed to 20. The X-axis denotes the number of Euclidean distance computations during the search process,

and the Y-axis denotes the recall rate. The exhaustive method yields the best recall, which is served as the

accuracy upper bound. However, the computation cost is the highest due to the exhaustive comparisons between

the given query and all clusters. The other methods, such as random, LSH, ITQ, and DNN, run five iterations in

the hill-climbing algorithm. It shows the recall rates get close to the upper bound with a few iterations and spend

much fewer computations. More iterations are required to converge in a more significant number of clusters.

The proposed deep learning-based methods outperform the random and hashing methods. It can get the highest

recall rate at the first iteration. Using our seed prediction model can provide a better initial seed in a hill-climbing

algorithm since the model can learn the relationship between the query feature and cluster to predict the

probability for each cluster. Moreover, compared to the previous version of hash-based seeds [14], the proposed

DNN method yields better results but requires no additional memory space to store the inverted index lookup table.

Figures. 5 and 6 show the results against different 𝑘 ∈ {20, 30} and number of seeds 𝑠 ∈ {10, 20, 30},

where M is fixed at 4096. We observe that increasing k makes the convergence of recall faster than increasing s.

However, it needs more space to store a larger kNN graph.

We also analyzed the memory usage of the proposed DNN model compared with the hash-based seed.

The memory space consumed by the hash-based seed method is the inverted lookup table loaded into memory

for real-time searching. The number of clusters determines the size of the inverted lookup table. Assume that M

is the number of clusters, and it takes 2 bytes to store cluster-ID, 2𝑀 bytes are required for hash-based seed index.

The neural network used for seed prediction occupies 8(𝜏𝜆^2 + 𝑀𝜆), where the model has 𝜏 hidden layers, each

of which contains 𝜆 units, and each nan 8-bytes floating-point number represents each network coefficient.

ASEAN J. Sci. Tech. Report. 2022, 25(3), 25-33 7 of 9

The time complexity mainly involves two parts: index time and candidate calculation. The time spent

on the index depended on the machine and the environment. Some programs merely cannot run very well in the

same environment. Therefore, it would be better to analyze the complexity by calculating the number of candidates,

making the result more comparative. The results in terms of the number of candidates are shown in figures 3-6.

Figure 3. Recall in SIFT1M with different sizes of cluster, where k and s are fixed at 20

Figure 4. Recall in GIST1M with different sizes of cluster, where k and s are fixed at 20

4. Conclusions

In summary, we proposed a novel index method for ANN search that employs a kNN graph to

accelerate the query assignment process. A modified hill-climbing algorithm is presented with the DNN-based

seed generation method, which initializes high-quality seeds and thus improves the hill-climbing algorithm.

Experimental results on the SIFT1M and GIST1M datasets demonstrate the superiority of the proposed

method.

5. Acknowledgements

This study was supported by the Department of Computer Science and Information Engineering,

National Chiayi University, Taiwan.

ASEAN J. Sci. Tech. Report. 2022, 25(3), 25-33 8 of 9

Figure 5. Recall in SIFT1M, where M is fixed at 4096.

Figure 6. Recall in GIST1M, where M is fixed at 4096.

ASEAN J. Sci. Tech. Report. 2022, 25(3), 25-33 9 of 9

References

[1] Hu, P.; Peng, X.; Zhu, H.; Zhen, L.; Lin, J. Learning cross-modal retrieval with noisy labels. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, 5403-5413.

[2] Prétet, L.; Richard, G.; Peeters, G. Learning to rank music tracks using triplet loss. In ICASSP 2020-2020

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, 511-515.

[3] Jegou, H.; Douze, M.; Schmid, C. Product quantization for nearest neighbor search. IEEE transactions on

pattern analysis and machine intelligence. 2011, 33(1), 117-128.

[4] Ge, T.; He, K.; Ke, Q.; Sun, J. Optimized product quantization for approximate nearest neighbor search.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013, 2946-2953.

[5] Fu, C.; Cai, D. Efanna: An extremely fast approximate nearest neighbor search algorithm based on knn graph.

2016, arXiv preprint arXiv:1609.07228.

[6] Muja, M.; Lowe, D. G. Scalable nearest neighbor algorithms for high dimensional data. IEEE transactions

on pattern analysis and machine intelligence. 2014, 36(11), 2227-2240.

[7] Heo, J. P.; Lee, Y.; He, J.; Chang, S. F.; Yoon, S. E. Spherical hashing: Binary code embedding with

hyperspheres. IEEE transactions on pattern analysis and machine intelligence. 2015, 37(11), 2304-2316.

[8] Malkov, Y. A.; Yashunin, D. A. Efficient and robust approximate nearest neighbor search using

hierarchical navigable small world graphs. IEEE transactions on pattern analysis and machine intelligence.

2018, 42(4), 824-836.

[9] Chiu, C. Y.; Prayoonwong, A.; Liao, Y. C. Learning to index for nearest neighbor search. IEEE

transactions on pattern analysis and machine intelligence. 2019, 42(8), 1942-1956.

[10] Zhang, Y. M.; Huang, K.; Geng, G.; Liu, C. L. Fast kNN graph construction with locality sensitive

hashing. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in

Databases. 2013, 660-674.

[11] Dong, W.; Moses, C.; Li, K. Efficient k-nearest neighbor graph construction for generic similarity

measures. In Proceedings of the 20th International Conference on World Wide Web. 2011, 577-586.

[12] Zhao, W. L.; Yang, J.; Deng, C. H. Scalable nearest neighbor search based on KNN graph. arXiv preprint

arXiv:1701.08475 2017.

[13] Hajebi, K.; Abbasi-Yadkori, Y.; Shahbazi, H.; Zhang, H. Fast approximate nearest-neighbor search with

k-nearest neighbor graph. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence.

2011, 1312-1317.

[14] Rattaphun, M.; Prayoonwong, A.; Chiu, C. Y. Indexing in k-Nearest Neighbor Graph by Hash-Based

Hill-Climbing. In Proceedinngs of the 16th International Conference on Machine Visios Application (MVA).

2019, 1-4.

[15] Wang, J.; Wang, J.; Zeng, G.; Tu, Z.; Gan, R.; Li, S. Scalable k-nn graph construction for visual descriptors.

In Proceedinngs of IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1106-1113.

[16] Wang, J.; Wang, J.; Zeng, G.; Gan, R.; Li, S.; Guo, B. Fast Neighborhood Graph Search Using Cartesian

Concatenation. In Proceedings of the IEEE International Conference on Computer Vision. 2013, 2128-2135.

[17] Fu, C.; Xiang, C.; Wang, C; Cai, D. Fast Approximate Nearest Neighbor Search with the Navigating

Spreading-out Graph. VLDB Endowment. 2019, 461-474.

[18] Datar, M.; Immorlica, N.; Indyk, P.; Mirrokni, V. S. Locality-sensitive hashing scheme based on p-stable

distributions. In Proceedings of the 20th annual Symposium on Computational Geometry. 2004, 253-262.

[19] Gong, Y.; Lazebnik, S.; Gordo, A.; Perronnin, F. Iterative quantization: A procrustean approach to

learning binary codes for large-scale image retrieval. IEEE Transactions on Pattern Analysis and Machine

Intelligence. 2013, 35(12), 2916-2929.

[20] Ercoli, S.; Bertini, M.; Del Bimbo, A. Compact hash codes for efficient visual descriptors retrieval in large

scale databases. IEEE Transactions on Multimedia, 2017, 19(11), 2521-2532.

[21] Babenko, A.; Lempitsky, V. The inverted multi-index. IEEE Transactions on Pattern Analysis and Machine

Intelligence. 2014, 37(6), 1247-1260.

[22] Xia, Y.; He, K.; Wen, F.; Sun, J. Joint inverted indexing. In Proceedings of the IEEE International Conference

on Computer Vision (ICCV). 2013, 3416-3423.

[23] Dong, Y.; Indyk, P.; Razenshteyn, I.; Wagner, T. Learning space partitions for nearest neighbor search.

arXiv preprint arXiv. 1901. 08544, 2019.

