

Induction of Gynogenetic Dipoles in the Tropical Oyster, *Crassostrea belcheri* 1873 (Ostreids: Ostreoidea) from Southern Thailand.

Supatcha Chooseangjaew^{1*}, Nuntaporn Getlekha², Worawut Koedprang³, Chanika Saenge Chooklin⁴, Kattinat Sakulsawasdipan⁵, and Suwat Tanyaros⁶

¹ Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Trang, 92150, Thailand; supatcha.c@rmutsv.ac.th

² Faculty of Science and Technology, Muban Chombueng Rajabhat University, Chombueng, Ratchaburi, 70150, Thailand; nanthaphonket@mcru.ac.th

³ Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Trang, 92150, Thailand; worawut2000@hotmail.com

⁴ Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Trang, 92150, Thailand; chanika.sae@gmail.com

⁵ Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Trang, 92150, Thailand; kattinat.s@gmail.com

⁶ Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Trang, 92150, Thailand; stanyaros@gmail.com

* Correspondence: supatcha.c@rmutsv.ac.th

Citation:

Chooseangjaew, S.; Getlekha, N.; Koedprang, W.; Saenge, S.C.; Sakulsawasdipan, K.; Tanyaros, S. Induction of gynogenetic diploids in the tropical oyster, *Crassostrea belcheri* 1873 (Ostreids: Ostreoidea) from southern Thailand. *ASEAN J. Sci. Tech. Report.* 2024, 27(2), 72-78. <https://doi.org/10.55164/ajstr.v27i2.250804>.

Article history:

Received: September 3, 2023

Revised: February 11, 2024

Accepted: February 26, 2024

Available online: February 29, 2024

Publisher's Note:

This article is published and distributed under the terms of Thaksin University.

Abstract: The induction of diploid gynogenesis in the Tropical oyster, *Crassostrea belcheri* 1873, was carried out through two main experiments: 1) the destruction of spermatozoa DNA using ultraviolet (UV) irradiation, and 2) the induction of gynogenetic diploids. UV light source was placed 30 cm over the sperm for various durations, including 0 (control), 30, 60, 90, and 120 seconds. The study revealed that the highest survival rate was observed in trophophore at 90 minutes ($42.5 \pm 2.50\%$) compared to the normal control *C. belcheri* ($p > 0.05$). Based on cytogenetic study, haploid ($n=10$), diploid ($2n=20$), and aneuploid were observed in all trials, while only diploid ($2n=20$) could be seen in the control group. Diploid gynogenesis was induced using 100 μ mol 6-DMAP for 10 minutes. The study found that the survival rate and developmental stages in both trophophore and D-shape were gradually decreasing as the duration of UV rays increased. The highest survival rate of trophophore in the control group was $75.20 \pm 4.84\%$, while survival rates in other experimental groups ranged from $52.22 \pm 4.82\%$ to $59.33 \pm 13.57\%$. However, regarding the survival rate of D-shape larvae, their survival rates were relatively low across all trials. They displayed abnormal embryo development, distorted shape, unnatural swimming, and were smaller than normal (40-50 μ m). Moreover, haploid ($n=10$), diploid ($2n=20$), triploid ($3n=30$), tetraploid ($4n=40$), and aneuploid were observed in all trials, while only diploid ($2n=20$) could be discovered in the control group. However, gynogenesis in this tropical oyster is still limited at this time. Therefore, suitable conditions for inducing gynogenesis in oysters should be further developed.

Keywords: Gynogenesis; *Crassostrea belcheri*; UV-irradiated sperm; 6-DMAP; UV rays

1. Introduction

Diploid gynogenesis is a biotechnological method of manipulating chromosome sets in marine animals. This production strategy has an advantage over conventional methods as it only produces genetically identical females by destroying DNA in the spermatozoa using the UV irradiation

method [1, 2]. Research on artificial gynogenesis with ultraviolet light-irradiated sperm in the Pacific oyster, *Crassostrea gigas*, has been conducted to study its induction and survival rates [2]. It was found that some aquatic organisms such as *Haliotis discus hannai*, *C. gigas*, *Mulinia lateralis*, *Mytilus edulis*, and *M. galloprovincialis* have higher growth and survival rates in females, which is attributed to their high market demand compared to males [3]. The sexual transformation from male to female can be observed in bivalves and gastropods such as *H. discus hannai*, *C. gigas*, *M. lateralis*, *M. edulis*, *M. galloprovincialis*, and *Chlamys farreri* [4]. It is noteworthy that male *C. belcheri* can become female after its first breeding, and this sex change can occur once or multiple times during a breeding season depending on environmental factors such as temperature and food availability [5].

Some research demonstrated that mature females weigh more than males, indicating a faster growth rate in females [6]. Males also have a higher mortality rate than females, which could be related to changes in the sea [7]. It has been reported that diploid gynogenesis can be achieved in mollusk species such as *Haliotis diversicolor*, *H. discus hannai*, *C. farreri*, *M. edulis*, *M. galloprovincialis*, and *M. lateralis* through cold shock treatment, cytochalasin B, and 6-dimethylaminopurine [8-13]. However, the application of this technique in the economically important *C. belcheri* species in Thailand have not yet been reported. Therefore, this study aimed to apply diploid gynogenesis to this oyster species to promote its production and the aquaculture industry in the country. The successful implementation of this technique will contribute to the production of genetically identical female shellfish.

2. Materials and Methods

In this study, Four females and one male of the mature *C. belcheri* (shell width 12.5 ± 0.2 cm; shell length 11.8 ± 0.3 cm.) were purchased from a farmer farm in Trang Province and were thoroughly washed to remove all dirt from the shell. The oysters were then transferred to a semi-closed recirculation system for cultivation. The oysters were fed with single-cell algae such as *Isochrysis galbana*, *Chaetoceros calcitrans*, and *Tetraselmis suecica* at a rate of 3% calculated by dry meat weight, as described by [14]. The maturity of the oysters was monitored routinely for up to 4 weeks. To examine the maturity of the shellfish, their gametes were collected and analyzed under a light microscope (Motic, Spain) following sampling and dissection, as described by [15].

2.1 Egg preparation

After inducing mature *C. belcheri* broodstock with cold shock at 19°C to release their gametes, the suspension of eggs at a concentration of 1×10^5 eggs/ml was filtered through a 70-90 μm pore size filter and transferred to a clean container with 25 psu seawater.

2.2 Seminal fluid preparation

The seminal fluid generated in seawater was filtered through a 20-30 μm pore size to eliminate grease and dirt before being stored in a clean, dry container. Next, the fluid was diluted with 0.85% NaCl at a ratio of 1:9 (fluid:0.85% NaCl). To prepare a sample for UV radiation, 1 mL of the diluted fluid was transferred to 15 petri dishes with a diameter of 8 cm each.

2.3 Exposure of the seminal fluid to UV light and gamete fusion (fertilization)

The petri dishes containing the diluted fluid were subsequently exposed to a 30-watt UV lamp at a distance of 30 cm for 0 (control), 30, 60, 90, and 120 seconds. After exposure, the diluted fluid from each petri dish was combined with eggs prepared on filtered cloth about 50-60 μm pore size for 15 to 30 minutes before diploid induction.

2.4 Induction of gynogenetic diploids

1. Diploid gynogenesis induction

At the designated time, 100 μmol of 6-DMAP was added to the sample on each plate and left to incubate for 10 minutes and 30 minutes post-insemination. This concentration and timing of 6-DMAP for treatment was based on that described in the previous research in this oyster [16].

2. Hatchery and nursery

To prevent the larvae from falling to the bottom of the container, they were nurtured in aerated seawater (30 psu) for 24 hours (D-shape stage) at an ambient temperature of about 27 $^{\circ}\text{C}$ following the diploid induction.

3. Data collection

One mL of rearing water was collected at 6-8 hours post-fertilization (trochophore larvae stage) to determine egg hatching and the percentage of haploid larvae. The survival rate and percentage of induced diploid gynogenesis were further examined by metaphase chromosome counting, as described by [17]. The experimental design used in this study was a completely randomized design (CRD) with three replicates.

2.5 Chromosome identification

The oyster larvae, including the trochophore and D-shape stages, were immersed in 0.05% colchicine for 90 minutes. After washing with seawater to remove the chemical, they were treated with 0.075 M KCl for 40 minutes, followed by a fixative for 5 minutes. Next, 15-20 drops of 50% acetic acid were added to 0.2 mL of the sample on a petri dish. After incubation for 20 minutes, the sample was placed on a slide, dried by heating, and stained with 10% Giemsa solution for 40 minutes. Finally, the sample was rinsed with water and examined under a light microscope to determine the metaphase chromosome count.

2.6 Data Analysis

The statistical analysis of all values was performed using a one-way analysis of variance (ANOVA) followed by the New Duncan Multiple Range Test. A p-value of less than 0.05 was considered statistically significant.

3. Results and Discussion

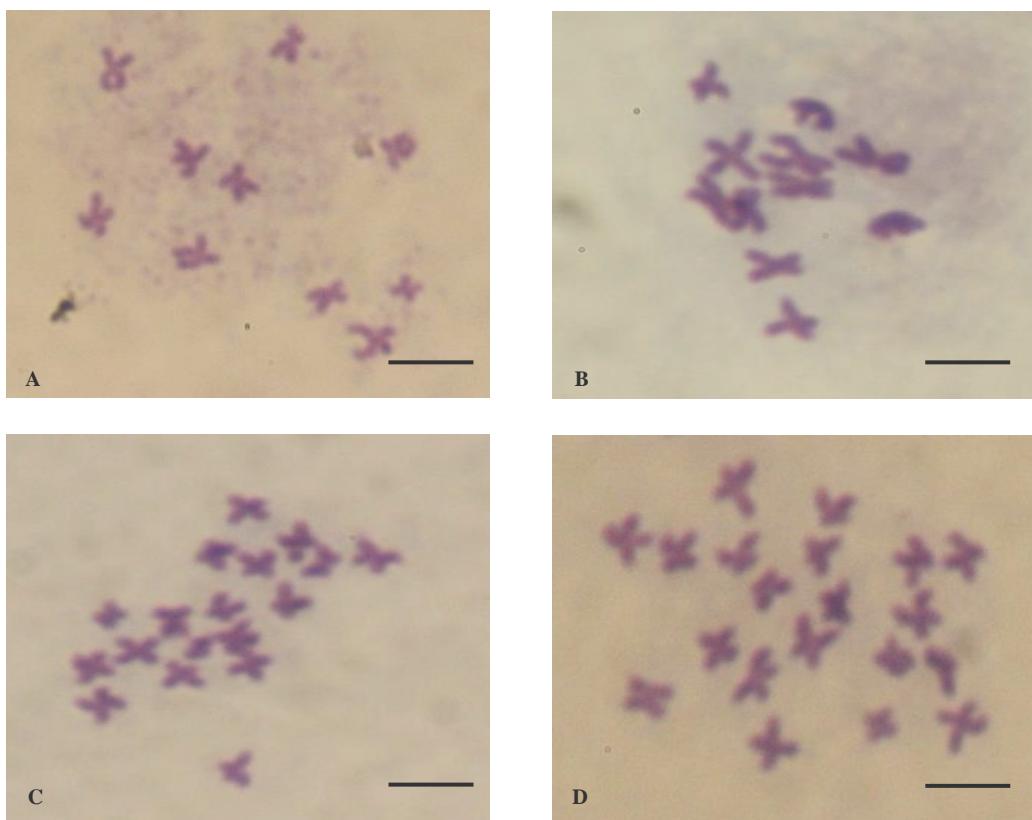
Gynogenesis induction in the tropical oyster *Crassostrea belcheri* (1873) involves two main steps: 1) UV irradiation to inactivate the sperm and 2) gynogenesis induction during the larval stage.

1) Inactivation of sperm chromosomes using UV-irradiated sperm

This experiment was conducted using a UV bulb at a distance of 30 cm, with irradiation periods of 0 (control), 30, 60, 90, and 120 minutes. Afterward, normal eggs were mixed with irradiated sperm. The highest survival rate of trochophore in the control group was found to be $42.58 \pm 12.06\%$. In contrast, the survival rates in the other experimental groups ranged from $32.58 \pm 6.66\%$ to $42.50 \pm 2.50\%$, which were not significantly different ($p > 0.05$), as displayed in Table 1.

Table 1. Survival rate of Trochophore after fertilized eggs with UV irradiated semen.

Periods (Second)	Survival rate (%)
Control	$42.58 \pm 12.06^{\text{ns}}$
30	$32.58 \pm 6.66^{\text{ns}}$
60	$37.17 \pm 9.57^{\text{ns}}$
90	$42.5 \pm 2.50^{\text{ns}}$
120	$36.75 \pm 2.82^{\text{ns}}$


Note: ns= not significant difference ($P > 0.05$)

Previous reports have documented the induction of diploid gynogenesis. For example, [10] investigated gynogenesis induction in the *C. farreri* using a UV intensity of $256 \mu\text{W cm}^{-2} \text{ s}^{-1}$ for 30 seconds. They found that the egg development rate in the control group was 73.3%, but this rate gradually decreased to 33.5% after 30 seconds of exposure. After 60 seconds of irradiation, no development of oocytes was

observed. On the other hand, [2] reported that sperm DNA destruction in *C. gigas* could be achieved with 5-6 minutes of exposure at a UV intensity of $108 \text{ erg mm}^{-2} \text{ min}^{-1}$. In contrast, [16] stated that the use of UV-irradiated sperm from *C. gigas* for 60 seconds at $72 \text{ erg mm}^{-2} \text{ s}^{-1}$ could accomplish sperm DNA destruction to induce gynogenesis. Our study found that embryonic development occurred with an irradiation time of about 25 seconds, but the development rate of D-shape larvae reached 0% in this case. The highest survival rate of trochophore was observed after 90 seconds of UV exposure, which is consistent with the Hertwig effect caused by UV irradiation of sperm in *C. farreri* [10].

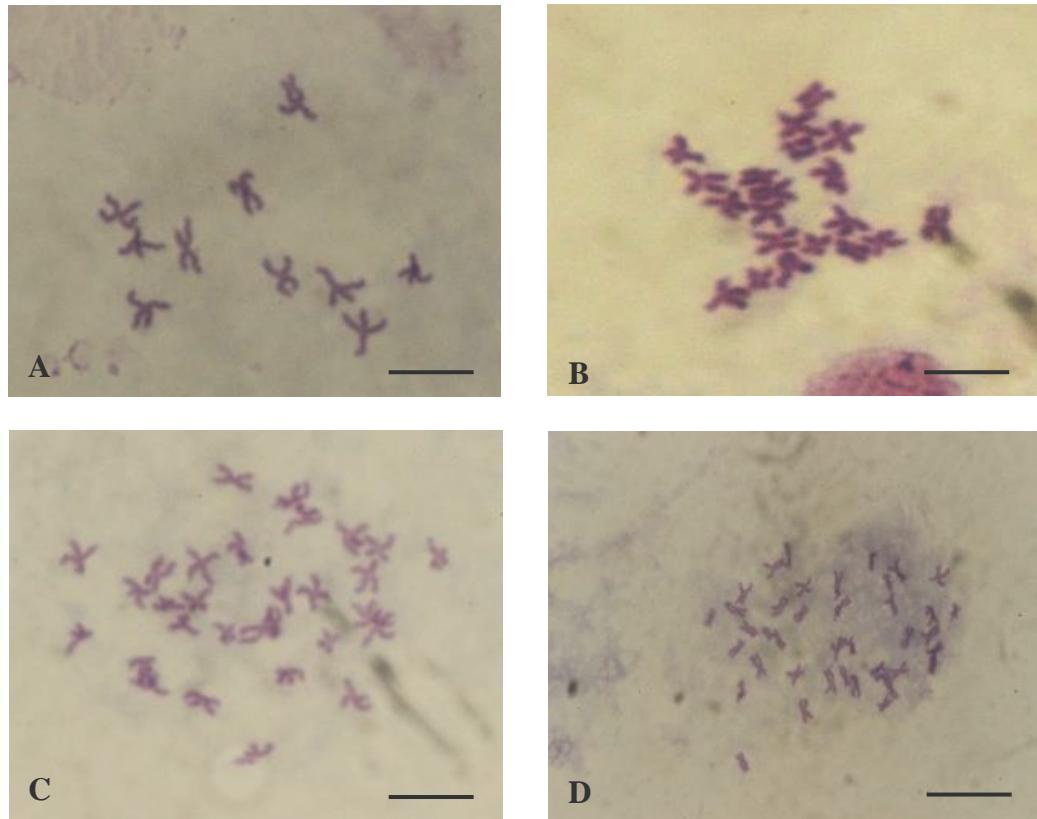
Numerous pieces of evidence have been reported on the destruction of genetic material in sperm. It has been postulated that the development of oocytes would decline with increasing duration of irradiation, resulting in a reduction of the breeding rate, such as the case with the Pacific abalone, *H. discus hannai* [18]. Furthermore, the destruction of sperm at various durations depends on several factors, including the density and quantity of sperm, the intensity of the UV light source, and the aquatic animal species being studied.

The destruction of sperm DNA was examined using a chromosome counting technique with simple dyeing. The results showed that the number of chromosomes ranged from 10 to 20, characterized as haploids, aneuploids, and diploids. (Fig 1.)

Figure 1. Metaphase chromosome plates of Trochophore after fertilized eggs with UV irradiated semen: haploid=10 (A), aneuploid 11-18 (B-C) and diploid=20 (D) (scale bars=5 μm).

2) Induction of gynogenetic diploids of larval stage

As mentioned above, the results of the first phase indicated that the genetic material of *C. belcheri* sperm was destroyed, and then it was used to fertilize a normal egg. After that, the sample was treated with 100 μM of 6-DMAP for 10 minutes, 30 minutes after fertilization, resulting in the successful production of artificial polyploid in the tropical oyster (*C. belcheri*) [16]. In this study, both trochophore and D-shape larvae were observed, and the survival rate for trochophore in the control group was $75.20 \pm 4.84\%$, but it gradually decreased to 52.22 ± 4.82 - $59.33 \pm 13.57\%$ in the 6-DMAP-treated group (Table 2).


Table 2. Survival rate of gynogenetic diploid Trochophore and D-shape stages.

Periods (Second)	Survival rate (%)	
	Trochophore	D-shape
Control	75.20 ± 4.84 ^a	23.03 ± 6.05 ^a
30	59.33 ± 13.57 ^{ab}	7.87 ± 2.66 ^b
60	52.22 ± 4.82 ^b	4.67 ± 1.15 ^{bc}
90	52.66 ± 6.42 ^b	0 ^c
120	55.33 ± 10.47 ^b	0 ^c

Means (± SD) in the same column with different superscripts show significant differences (p<0.05)

This result is consistent with a previous study by Pan et al. [10], who stated that the survival rate of the trochophore stage in the control group was 56.3%, gradually falling to 31.3% with 20 seconds of UV intensity. The study also showed that the survival rate of D-shape larvae decreased continually and reached 0% with 15 seconds of UV intensity. The low survival rate could be attributed to the longer duration of UV exposure. [19] conducted a study on gynogenetic diploid induction in *C. gigas* using Cytochalasin B (CB) at a concentration of 0.5 µg/ml, which was found to effectively inhibit cell division during metaphase II when combined with caffeine at a concentration of 10 mM and an incubation temperature of 32°C. The study showed that the highest production of gynogenetic diploid larvae was achieved at 74.6% and 63.7%, with additional production of triploid larvae at 72.7% and 68.1%. However, the D-shape larval survival rate in gynogenetic diploid induction was relatively low compared to triploid and diploid larvae [19]. Previous research on gynogenetic diploid induction in other bivalves, such as *M. edulis*, demonstrated that the highest haploid results were achieved in 15 minutes [11]. *M. galloprovincialis* was operated for 2 minutes at 62 erg/mm² per second [12], and *H. discus hannai* was also studied [9, 20]. However, these studies showed that low production of gynogenetic diploid induction might be due to polar body inhibition in the meiosis II process or damage from UV-irradiated genetic material.

This study found that the survival rate of larvae in the D-shape stage was low after 30 and 60 seconds of exposure to UV-irradiated sperm, whereas no larvae developed to the D-shape stage after 90 and 120 seconds of exposure. In addition, upon examining the overall condition of the larvae that were able to develop up to the D-shape stage, it was discovered that they exhibited a relatively impaired shape, with deformities and smaller sizes of approximately 40-50 µm in comparison to the normal D-shape stage. Some larvae were also found to be non-motile. All surviving larvae were investigated for chromosomal characteristics using conventional staining to quantify the number of chromosomes discovered during gynogenesis induction. It was discovered that haploid (1N), diploid (2N), triploid (3N), and tetraploid (4N) chromosomes could be identified (Fig 2). Additionally, chromosomal characteristics of various aneuploid types were also present. [10] conducted a study to examine the effect of destroying genetic material and inducing diploid gynogenesis on the normal developmental stage of *C. farreri*. The study found that the normal diploid number of chromosomes was 2n=38. However, after 15 seconds of sperm DNA destruction, the number of chromosomes observed was 32, with some being in the form of aneuploidy. Furthermore, 19 haploid chromosomes were discovered within 30 seconds.

Figure 2. Metaphase chromosome of gynogenetic diploid *C. belcheri*: haploid =10 (A), diploid=20 (B), triploid =30 (C), and tetraploid=40 (D) (scale bars=5 μ m).

4. Conclusions

The control group had the highest trochophore survival rate ($42.58 \pm 12.06\%$), which was not significantly different from the 90-second UV exposure group. Additionally, chromosomal characteristics were determined using the conventional staining method, and both 10 and 20 chromosomes and various aneuploid types were observed. The control group had the highest rate of trochophores, indicating diploid gynogenesis ($75.20 \pm 4.84\%$). However, it should be noted that a relatively low survival rate of the D-shaped stage was observed, which may be due to increased stress during development.

5. Acknowledgements

The authors are highly grateful to Rajamangala University of Technology Srivijaya, Trang Campus, for the opportunity to use the laboratory to do this research.

Author Contributions: Conceptualization, S.C., S.T., and W.K; methodology, S.C., and N.G.; formal analysis, S.C., and C.C.; investigation, S.C.; writing—original draft preparation, S.C., and K.S.; writing—review and editing, S.C.

Funding: This research was funded from the university income budget for 2019.

Conflicts of Interest: The authors declare no conflicts of interest.

References

[1] Yuan, TC.; Liang, Y.; Cai, WR.; Hai, YR.; Ping, WZ. Triploid of *Crassostrea gigas* induced with 6 dimethylaminopurine: blocking polar body I, *J. Fish. China.* **1999**, 2, 128-132.

[2] Guo, X.; Hershberger, WK.; Cooper, K.; Chew, KK. Artificial gynogenesis with ultraviolet light-irradiated sperm in the Pacific oyster, *Crassostrea gigas*. I. Induction and survival. *Aquaculture*. **1993**, *113*, 201-214.

[3] Manan, H.; Hidayati, AN.; Lyana, NA.; Amin-Safwan, A.; Ma, H.; Kasan, NA.; Ikhwanuddin, M. A review of gynogenesis manipulation in aquatic animals. *Aquaculture and Fisheries*. **2022**, *7*(1), 1-6.

[4] Li Q, Kijima A. Segregation of microsatellite alleles in gynogenetic diploid pacific abalone (*Haliotis discus hannai*). *Marine Biotechnology*. **2005**, *7*, 669-676.

[5] Gosling, E. Bivalve molluscs: biology, ecology and culture: John Wiley & Sons. **2008**.

[6] Teeraya, C.; Natthapong, T.; Siwa, T. The season of Oyster maturation in Bandon Bay, Suratthani Province. Technical Paper No. 2/2006. Coastal Fisheries Research and Development Bureau, Department of Fisheries, Ministry of Agriculture and Cooperatives. **2006**. 21p. (In Thai).

[7] Galtsoff, PS. The American oyster *Crassostrea virginica* (Gmelin). US Fish Wildlf. *Serv. Fish. Bull.* **1964**, *64*, 1-480.

[8] Zhang, Z.; Wang, Y.; Zhang, Z. Induction of gynogenetic diploids in the small abalone, *Hauotis diversicolor supertexta*. *J. Shellfish Res.* **2004**, *23*(4), 1115-1122.

[9] Fujino K, Arai K, Iwadare K, Yoshida T, Nakajima S. Induction of gynogenetic diploid by inhibiting second meiosis in the Pacific abalone (*Haliotis discus hannai*). *Bull. Jpn. Soc. Sci. Fish.* **1990**, *56*: 1755-1763.

[10] Pan, Y.; Li, Q.; Yu, R.; Wang, R. Induction of gynogenetic diploids and cytological studies in the zhikong scallop, *Chlamys farreri*. *Aquatic Living Resources*. **2004**, *17*, 201-206.

[11] Fairbrother, JE. Viable gynogenetic diploid *Mytilus edulis* (L.) larvae produced by ultraviolet light irradiation and cytochalasin B shock. *Aquaculture*. **1994**, *126*(1-2), 25-34.

[12] Scarpa, J.; Komaru, A, Wada KT. Gynogenetic induction in the mussel, *Mytilus galloprovincialis*. *Bull. Natl. Res. Inst. Aquac. (Jpn.)*. **1994**, *23*, 33-41.

[13] Guo, X.; Allen, S. Sex determination and polyploid gigantism in the dwarf surfclam (Mulinia lateralis Say). *Genetics*. **1994**, *138*(4), 1199-1206.

[14] Helm, M.; Bourne, MN.; Lovatelli, A. *Hatchery culture of bivalves: a practical manual*. **2004**.

[15] Nowland, SJ.; O'Connor, WA.; Elizur, A.; Southgate, PC. Evaluating spawning induction methods for the tropical black-lip rock oyster, *Saccostrea echinata*. *Aquaculture Reports*. **2021**, *20*, 100676.

[16] Chooseangjaew, S.; Tanyaros, S.; Koedprang, W.; Tanomtong, A. Triploid Induction by the use of 6-dimethylaminopurine (6-DMAP) for the Tropical Oyster, *Crassostrea belcheri* (Sowerby, 1871). *Proceedings of the 9th Rajamangala University of Technology International Conference (9th RMUTIC)*. **2018**, 180-188.

[17] Thomas, P.; Mallia, JV.; Muthiah, P. Induction of triploidy in Indian edible oyster *Crassostrea madrasensis* (Preston) using 6-Dimethylaminopurine. *Asian Fish Sci.* **2006**, *19*(1), 15-20.

[18] Kijima, A. Effect of irradiation on genetic inactivation of sperm using marketing Tissue culture petri-dish in the Pacific abalone *Haliotis discus hannai*, *Tohoku J. Agric. Res.* **1992**, *42*, 73-81.

[19] LI, Q.; Osada, M.; Kashihara, M.; Hirohashi, K.; Kijima, A. Induction of gynogenetic diploids and cytological studies in the Pacific oyster, *Crassostrea gigas*. *Aquaculture Science*. **2000**, *48*(2), 185-191.

[20] Li, Q.; Osada, M.; Kashihara, M.; Hirohashi, K.; Kijima, A. Artificially Induced gynogenetic diploid in the Pacific abalone, *Haliotis discus hannai*. *Fish Genet. Breed. Sci.* **1999**, *28*, 85-94.